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1. ABSTRACT

The double-stranded, circular mitochondrial 
DNA (mtDNA), which is present in all eukaryotic life 
forms, was initially discovered and characterized in the 
last century and has been widely used in evolutionary 
studies. Since then, a large number of studies have taken 
advantage of the genetic information encoded in this 
genome. Because of its small size in animals (in general), 
the technical ease of manipulating mitochondrial genome 
and the dynamics of its evolutionary change, this genome 
has been the workhorse of evolutionary studies over 
the past three decades. However, the ease with which 
nuclear DNA can be manipulated due to next generation 
sequencing (NGS) methods, has recently caused an 
expected dip in the use of mtDNA in evolutionary studies. 
This review examines the future of mitochondrial DNA as 
a useful tool in studies centered around evolution.

2. INTRODUCTION

A plethora of reviews about the utility of 
mitochondrial DNA in evolutionary studies has been 
produced in the more than three decades that this 
molecule has been used as a tool for evolutionary studies. 
The sheer volume of the reviews and the breadth of 
subject matter they span (see timeline in Figure 1) points 
to an incredibly important position for mitochondrial DNA 
in evolutionary studies. The unique characteristics of this 
small molecule make it an important tool in evolutionary 
biology, as summarized in Table 1. The major role played 
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by mtDNA as a marker in evolutionary studies has been 
in two subdisciplines of evolutionary biology – population 
genetics and systematics. Specifically, mtDNA has played 
a central role in understanding human population genetics 
and the movement of our species across the planet. 
mtDNA has also been used as an evolutionary focus in 
studies of natural selection. This review examines the 
important role of mtDNA in the development of modern 
evolutionary biology and attempts to address the future 
utility of this tiny workhorse of evolutionary studies.

3. INGRAINED USES OF mtDNA

One of the major reasons mtDNA has been so 
useful in population genetics is the rapidity with which 
it evolves. The haploid nature of mtDNA means that 
coalescence of neutral genes will be positively correlated 
with the effective population size of the species (1, 2). 
This means that from population genetics theory mtDNA 
should evolve four times faster than the average nuclear 
gene. Hence, mtDNA can be used to follow divergence 
in very closely related taxa and even within species. 
The long tradition of using this marker in population and 
species boundary studies in animals was started by 
John Avise who authored several seminal papers in the 
early 1980’s and popularized the term “phylogeography”. 
Since then literally thousands of papers focused on 
thousands of different species have been published 
(Figure 1).
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Figure 1. Timeline for major developments of animal mtDNA analysis. The curve was established by searching Google Scholar for the terms “mitochondrial 
DNA” AND “evolution” and counting the hits at two year intervals starting in 1980 and ending in 2016. The Y axis shows the number of hits. A similar 
search for “evolution” was linear in the same time period. The arrows point to specific years where seminal events occurred in the history of mitochondrial 
use as an evolutionary marker. The colors on the graph represent where different technological developments occurred. The red section can in general 
be considered Pre-Polymerase Chain Reaction, the green section is post-PCR but pre genomics, the blue region represents first generation genomics 
sequencing and the yellow section represents the period where Next Generation Sequencing (NGS) techniques became available. Seminal events 
shown in the figure are coded as follows: 1. Brown et al., 1979 (9) Rapid evolution of mtDNA; Avise et al., 1979 (79) mtDNA RFLP population structure; 
2. Brown, 1980 (32). Human RFLP mtDNA; 3. Anderson et al., 1981 (80) First human mtDNA – genome; 4. Clary et al., 1982 (81) Drosophila mtDNA 
genome; 5. Aquadro et al., 1983 (33) Seven human mtDNA gene study; 6. Higuchi et al., 1984 (82) – Extinct quagga mtDNA; 7. Cann et al., 1987 (34) 
mitochondrial Eve; Avise et al., 1987 (83) Phylogeography; 8. Kocher et al., 1989 (84) Universal mtDNA primers; 9. Birky, 1991 (2) mtDNA popgen; 10. 
Excoffier et al., 1992 (85) mtDNA molecular variance; 11. Tamura, 1983 (86) Human dloop Popgen; Torroni et al., 1993 (87) Human Haplogoups named; 
12. Baker and Palumbi, 1994 (48) – Whale mtDNA ID; Avise, 1994 (88) Molecular Markers; 13. Krings et al., (89) Neanderthal mtDNA; 14. Kogelnik et al., 
1998 (90) MITOMAP; 15. Hebert et al., 2003 (47) DNA barcoding; 16. 2004, CBoL (47) established; 17. Briggs et al., 2009 (39) Five Neanderthal mtDNA 
genomes; 2009 Mitochondrial DNA Journal launched; van Oven and Kayser 1992 (91); Haplogroups refined; 18. Dabney et al., 2013 (92-94) ultrashort 
mtDNA sequencing; 19. Picardi et al., 2012 (95) 1000 genomes mtDNA; 20. Meyer et al., 2016 (96) 450,000 year old mtDNA from Sima de los Huesos 
hominins. We have started this “history” in 1979 when the modern DNA analysis era kicks in. However, the following are significant events prior to this 
date. 1949 - Slonimski and Ephrussi isolated yeast mutants which were defective for cell respiration and hypothesized presence of some non-Mendelian 
genetic characters; 1960 - Chevremont demonstrated that mitochondria incorporated tritiated thymidine, a marker nucleoside: nucleic acid metabolism in 
mitochondria; 1962 - Nass and Nass demonstrated by morphological studies that mitochondria contained DNA; 1965 - Saccone and colleagues showed 
that isolated mitochondria were able to synthesize RNA; 1965 - Kroon demonstrated that intact mitochondria or fragments could incorporate amino acids, 
signaling presence of a protein translation system in organelle; 1967 - Clayton and Vinogra isolated circular dimer and concatenate forms of mtDNA 
in human cancer cell lines; 1974 - Bogenhagen and Clayton revealed multicopy state of mtDNA in human and mouse cells; 1974 – Berk and Clayton 
clarified several features of mtDNA replication in mouse cells, including its asymmetry in time and space; 1975 - First complete mitochondrial genomes 
cloned by Chang and colleagues.

Table 1. Advantages and disadvantages of mtdna in evolutionary studies
Characteristic Advantages

Small Size (in most cases <20,000 bp) • Ease of annotation

Ratio of copies to nuclear genome is high • Ease of isolation and manipulation; Also allows for isolation from long dead tissues

Protein genes + ribosomal genes + AT rich region • Increased range of evolutionary rates

Maternally Inherited • Clonal and hence genetics simple

Ne ¼ of nuclear genes • Goes to fixation faster

Gene order easily determined • Gene order phylogenetics possible1

Non-recombining • Clonal and hence genetics simple

High mutation rate • Rapid change accommodates examining closely related organisms

Disadvantages

Sometimes heteroplasmic • Destroys advantage of clonality

Insertions in nuclear genome • nuMts cause horizontal evolution problems

Different regions of genome often show • Because mtDNA is clonal this causes

Phylogenetic incongruence with each other • Interpretation problems

1See Figures 2 and 3 for information on taxonomic groups and limitations of this advantage
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3.1. Animal population genetics and 
phylogeography

Animal mtDNA population studies have 
focused on phylogeographic patterns using tree building 
methods. In this approach, individuals from populations 
are analyzed for polymorphisms in their mtDNA. These 
polymorphisms are then used as characters to construct 
a branching diagram of the relationships of the individuals 
in the populations. The distribution of individuals in the tree 
can often times be interpreted in a population genetics 
context. mtDNA is also used to examine demography 
using techniques like the mismatch distribution 
approach  (3, 4) and the standard analysis of variance 
population genetics parameters (5). In addition methods, 
like Templeton’s (6) nested clade analysis have been 
used mostly with mtDNA data. With the advent of NGS 
technology, one might think that mtDNA would be replaced 
by nuclear markers. True to form, a recent survey of the 
phylogeographic literature Garrick et al., (7) showed that 
nuclear DNA Single Nucleotide Polymorphisms (SNPs) 
have increased steadily. However, their survey also 
showed that mtDNA “continues to represent an important 
component of phylogeographic data”, in combination 
with or in comparison to nuclear markers. This trend is 
encouraging for the future use of mtDNA as a marker in 
population genetics.

3.2. Animal systematics using mtDNA 
sequences

Early on in the development of molecular 
systematics, sequences from mtDNA and the nuclear 
small subunit ribosomal RNA were used to generate 
animal phylogenies. The focus on these markers was 
the result of the limits of the technology available in the 
1980’s and early 1990’s. As with population genetics 
and phylogeography, literally thousands of publications 
have resulted from the use of mtDNA sequences in 
systematics. While it would be impossible to address all 
of these studies in this review, several aspects of mtDNA 
evolution in the context of systematics became clear from 
the many phylogenetic studies that were generated.

The fourfold greater rate of evolution of mtDNA 
is an advantage and a disadvantage at the same time 
for systematics. The high rate of change means that any 
mtDNA tree will have a very high probability of resolving 
correctly short internodes in a phylogenetic tree 
compared to most nuclear marker (8). While this might 
be preferable for population genetics, and for studying 
phylogeny near the species boundary, it produces 
problems for systematics with deep evolutionary 
history and accelerated evolutionary rates (e.g.  orders 
of insects; deep mammalian relationships etc.). 
Because of its high rate of change mtDNA can back-
mutate rapidly and cause convergence in systematic 
studies. This phenomenon was clearly demonstrated 
in one of the first papers to use mtDNA as a source 
of characters for phylogenetics as shown in Figure  2 

in Brown et al. (9) and is still demonstrable in one of 
the latest, most comprehensive analyses of complete 
mitogenomes in insects (10). The back-mutations 
cause saturation of nucleotide sites, and this saturation 
results in convergence of characters and long branches 
which are then susceptible to long branch attraction 
producing messy phylogenetic signal. There are several 
approaches that researchers have taken to deal with this 
problem. The most used is the development of models 
that take into account the saturation. While models can 
correct for some of the convergence, such models are 
only corrective at shallow phylogenetic levels. On the 
other hand, Simon and Hadrys (10) showed, that in 
insects depending on the group, complete mitogenomes 
can recover intraordinal relationships in agreement 
with morphological and nuclear molecular data sets. 
In contrast they demonstrate that the limits caused 
by convergence still exist in inferring deep hexapod 
(interordinal) relationships using the existing models.

The question with regard to using mtDNA in 
phylogenetics then becomes one of how to treat the data 
in the analysis and much work has been accomplished in 
this context. Due to the strong knowledge of how mtDNA 
sequences evolve, researchers have formulated models 
and weighting schemes for use in phylogenetics. The 
most extreme model is to give a probability of 1.0.  to 
changes that are transversions and a 0.0. probability 
to transitions. This effectively removes transitions from 
the analysis and is called “transversion parsimony” (11). 
Another extreme model is to weight the probability of 
change such that the third position is removed from the 
analysis. This is because most change in mtDNA occurs 
in the third position of coding regions of the molecule and 
would then be susceptible to saturation. Other models are 
easily incorporated into phylogenetic analysis especially 
when using maximum likelihood and Bayesian analysis. 
And since the amino acid sequence of mtDNA genes 
evolve relatively slowly (again third positions are mostly 
impacted by saturation) some researchers have simply 
fallen back on using the amino acid sequences of mtDNA 
genes in phylogenetic studies and have implemented 
likelihood models based on empirical amino acid transition 
patterns (12). Following the protocol of testing for the 
best model using likelihood ratio tests is advised (13, 14) 
whether using mtDNA nucleotide sequences or amino 
acid sequences in likelihood analysis.

It has become very clear though that mtDNA 
sequences may be most informative in combination 
with other nuclear markers or gene sequences. The first 
molecular systematics studies in the 1980’s used mtDNA 
alone to generate trees. When these first phylogenetic 
hypotheses from mtDNA appeared it was evident that 
substantial incongruence of mtDNA based trees and 
morphological trees existed (15). Later in the 1990’s 
when it became easier to obtain information from nuclear 
genes, researchers started to realize that the information 
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from mtDNA often times conflicted with evidence from 
nuclear DNA (8, 16-18).

Data combination or concatenation methods 
and the capacity to analyze the relative support of 
different data sets (19) showed that while mtDNA trees 
are frequently incongruent with trees from other sources 
of data, there is considerable hidden support in all 
data sets for a concatenated analysis. A  more recent 
example of this can be found in Song et al. (20) who 
used mt-genome data and the inclusion of rRNA genes 
to generate a phylogenetic hypothesis of Holometabola 
(insects that develop through larval stages), one of 
the most species rich and controversial branches of 
the tree of life. Based on the largest taxon sampling 
of Holomatbola to date, Song et al. (20) tested mtDNA 
nucleotide and amino acid data sets using several tree 
building algorithms and models. With densely sampled 
mitochondrial genomes they outlined a practical 
approach to recovering reasonable hypotheses of 
Holometabola phylogeny, as corroborated by nuclear 
and morphological data. The inclusion of rRNA 
genes with mtDNA sequences and removal of fast-
evolving sites under a site heterogeneous model 
correctly recovered most of the deep branches in the 
Holometabola. We should also point out, however, that 
there is some controversy concerning concatenation 
methods in phylogenetics (see for instance (21)).

While mtDNA has been used quite successfully 
in animal phylogenetics several problems have arisen 
that warn against its indiscriminate use. One problem 
that has been particularly difficult to detect in the past 
is the presence of nuclear mitochondrial pseudogenes 
(Numts). Numts result from the translocation of 
mitochondrial sequences from the mitochondrial 

genome into the nuclear genome and, once integrated, 
these non-functional sequences accumulate mutations 
freely. The potential for Numt amplification in addition 
to, or even instead of, the authentic target mtDNA 
sequence can seriously confound population genetic 
and phylogenetic analyses. In a study on gorillas (22) 
the prevalence of Numts, for example, obscured the 
presence of two genetically divergent clades and affected 
the understanding of their evolutionary history as well as 
future conservation and management plans. Numts also 
will impact inferences at the population genetics level. 
As an example, the presence of Numts in Aedes aegypti 
(the tiger mosquito) might have seriously confounded 
the interpretation of this mosquito’s demographic 
distribution in the wild. In a combined experimental and 
bioinformatics approach utilizing the recent genome 
sequence of Ae. aegypti the authors (23) showed that 
Numts are indeed prevalent in Ae. aegypti and that 
they more than likely affect demographic studies of this 
species using mtDNA.

Another caveat concerning mtDNA usage in 
phylogenetics is to always keep in mind that it follows 
maternal lineages of animals. This basic aspect of mtDNA 
inheritance becomes relevant for the interpretation of 
phylogenetic patterns generated from mtDNA in animals 
that do not reproduce with random mates. For instance, 
if the mating system of a group of animals is matrilineal, 
mtDNA sequences will bias systematic patterns toward 
the matrilineal pattern. If the evolutionary history is not 
congruent with the matrilineal history then the inferred 
organismal phylogeny from mtDNA will be biased. 
However, if unraveling matrilineal patterns of history is 
a goal of research the mtDNA genome can be exploited 
efficiently to test hypotheses about this interesting 
demographic behavior (24-26).

Figure 2. Structure of animal mtDNA genomes. The largest animal mtDNA genomes are circular and more than 40Kb in size, while the smallest are 
less than 10Kb in size. mtDNA genome linearization and fragmentations have occurred as a synapomorphy in the Medusozoa but are also found as an 
exception in some Porifera (Figure 2). With respect to the gene inventory the most complete mtDNA genomes are found in placozoans, while the derived 
Ctenophora show the most incomplete genomes. Within the Bilateria similar secondary fragmentations of the mtDNA genome are observed in some 
arthropods, but with the structure remains circular. Substantial secondary expansions due to duplication events of whole mtDNA genome regions are 
found in some molluscs.
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4. EMERGING APPROACHES USING mtDNA IN 
EVOLUTIONARY STUDIES

In the following section we discuss several more 
recent applications of the use of mtDNA in evolutionary 
biology. Detailed examination of the structural aspects of 
mtDNA gene products have been used in phylogenetic 
studies. Recent capacity to isolate DNA from Paleolithic 
samples of human bones has opened the way for 
analyses of human mtDNA variation at a time frame 
never before accomplished. DNA barcoding and the use 
of mtDNA in taxonomy are also emerging approaches 
in modern mtDNA research in evolution. And finally the 
application of next generation sequencing technology 
has been suggested as the new wave of mtDNA research 
in evolutionary biology.

4.1. Using molecular morphology to infer 
phylogeny

It has been argued that mtDNA can be useful 
in systematic studies by converting the information from 
mtDNA genomes into structural information. The overall 
structure of mitochondrial DNA genomes has been used 
to decipher relationships in Cnidaria. Bridge et al., (27) 
used the chromosome structure the Cnidarian classes 
to hypothesize that Anthozoa are the ancestral class 
(having a circular and hence ancestral position) relative 
to hydrozoans, scyphozoans and cubozoans (all three 
having linear genomes). Ender and Schierwater (28) 
examined the predicted stem and loop folding structures 
of 16S rDNA molecules to score several “morphological” 
characters relevant to lower Metazoan phylogenetics.

More frequently though the gene order of 
mitochondrial genomes has been used to examine 
phylogeny in many animal systems (29-32), much 
in the same way that banding patterns of polytene 
chromosomes of fruit flies were used to determine 
Drosophila phylogenies. At this point in time it could be 
argued that the spectrum of structural information inherent 
in mt genomes has been insufficiently explored for use in 
phylogenetics. Also, possible complications arising from 
having a wide spectrum of mitochondrial genome sizes, 
genetic inventories, and gene arrangements or even 
linearization of mtDNA genomes in different animal taxa 
have not been adequately addressed yet.

The overview in Figure 2 shows that the largest 
animal mtDNA genomes are circular and more than 40Kb 
in size, while the smallest are less than 10Kb in size. 
mtDNA genome linearization and fragmentations have 
occurred as a synapomorphy in the Medusozoa but are 
also found as an exception in some Porifera (Figure 2). 
With respect to the gene inventory the most complete 
mtDNA genomes are found in placozoans, while the 
derived Ctenophora show the most incomplete genomes. 
Within the Bilateria similar secondary fragmentations of 
the mtDNA genome are observed in some arthropods, but 

with the structure remains circular. Substantial secondary 
expansions due to duplication events of whole mtDNA 
genome regions are found in some molluscs. Overall, it 
looks like mtDNA genomes in diploblastic animals are in 
many respects overly messy for comparative studies at 
higher taxonomic levels.

In sharp contrast, the typical bilaterian mtDNA 
genome is quite uniform. It typically shows a standard 
size of 16Kb, harbors all respiratory chain genes, a 
complete set of tRNA genes to encode the standard 
set of 20 amino acids, lacks any introns and is always 
circular. Thus within Bilateria and especially for groups 
within the Bilateria, comparative studies of structure 
are not problematic. As an example, in the insects, the 
gene order within the mtDNA genome varies between 
only between orders (Figure 3A). Within an insect order 
gene order is for the most part perfectly conserved. In 
Figure 3B an example is shown for the Odonata, a group 
that has radiated more than 300 Mio. years ago. The only 
structural differences seen here relate to the length of the 
control region and are not evident in gene order at all.

4.2. Paleo human mtDNA studies
MtDNA has been the focus of an immense 

body of work in human evolution studies. Since the first 
publications using mtDNA to examine human variation 
were generated in 1980 (33) to the subsequent sequencing 
of mitochondrial genes in human population genetics (34) 
and to the mitochondrial “Eve” hypothesis  (35) mtDNA 
has had an integral role in clarifying human population 
variation. Current genome sequencing projects have the 
extra added benefit of yielding mtDNA genomes from the 
subjects in such studies (36) and this coupled with a very 
sophisticated view of mtDNA haplotype biology (37, 38) 
ensures that human mtDNA studies will continue to be 
useful in understanding human population genetics.

In addition, human mtDNA has also been a 
relatively important source of information for paleo-
DNA studies (39). To demonstrate the power of this 
paleo DNA approach several studies deserve mention. 
Several H. neanderthalensis individuals have had 
their mtDNA genomes sequenced (40) and three 
non- H. neanderthalensis specimens from the Denisova 
cave have had mtDNA isolated from remains (41). The 
oldest human paleo mtDNA isolated so far is from the 
Sima de los huesos cave in Sierra de Atapuerca in Spain 
dated at 430,000 years old. Two tour de force studies of 
paleo-mtDNA are by Llamas et al., (42) and Fu et al., (43). 
The Llamas et al., (42) study sequenced the whole mtDNA 
genomes of 92 pre-Columbian South American skeletons 
dating from 9000 to 500  years ago. This large study 
showed that the diversity of pre-Columbian H. sapiens 
was large and further that “European colonization caused 
a substantial loss of pre-Columbian lineages”  (42). The 
Fu et al., (43) study examined the paleo DNA of 51 
modern H. sapiens subfossils dating as far back as 
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35000 years ago. This latter study hypothesizes that a 
single founder population for H. sapiens in Europe during 
the Ice Age and also documents a great deal of migration 
and population turnover as major themes in the evolution 
of European H.  sapiens. A  study by Ozga et al., (44) 
explored the potential of archaeological human dental 

calculus as a source for human ancestry information. 
Using an in-solution and enrichment technique with 
subsequent high-throughput NGS, complete mt-genomes 
were reconstructed from dental calculus of “pre-Contact” 
native North American skeletons dating back 700 years 
ago. Although the study itself is focused on the material 

Figure 3. The mitochondrial genomes within the insects are widely conserved with respect to genome size and gene content. A (top): Between different 
insect orders, shown for example are the Diptera (Drosophila), Psocoptera (Lepidopsocid), Thysanoptera (Thrips), Phthiraptera (Bothriometopus) and 
Hemiptera (Tetraleurodes), significant rearrangements of structural RNAs and protein-coding have occured (from Simon and Hadrys (10). B (bottom). 
For the Odonata, we show highly conserved gene orders that might maximize their utility for systematic studies. Between the distantly related damselflies 
Ischnura elegans and Megaloprepus caerulatus (96-98) and the dragonfly Anax imperator (99) the only structural differences seen relate to the size of 
the control region and the number and location of intergenic short spacer regions (Herzog, Feindt & Hadrys, Unpublished).
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and technique, it opens up some new opportunities and 
sources to study human past and health.

The number of paleo-mtDNA studies is too 
large to mention here, but Haber et al., (45) have 
recently reviewed the field and have summarized 
the role of paleo-DNA and mtDNA in particular in our 
understanding of human population genetics and 
movement. They point out that three major areas of 
interest have been addressed using paleo mtDNA. 
These include studies that address how modern humans 
expanded across the globe and focuses on potential 
admixture of H. sapiens with archaic species. Second, 
paleo mtDNA has been used to pin down the patterns 
with which modern Europe have been colonized through 
the Neolithic Transition. Third, paleo mtDNA has been 
extremely useful in determining the patterns with which 
H. spaiens populated the western hemisphere. Given 
the ability to isolate paleo-mtDNA and the extensive 
background work on mtDNA haplotypes of extant 
human populations, this molecule will no doubt continue 
for some time to be an important tool in studying 
human variation and population genetics even despite 
the emergence of spectacular technology that can 
sequence paleo nuclear genomes.

4.3. Taxonomy and museum collections
The field of taxonomy is changing rapidly, 

because of the “ increase in taxonomic breadth of 
mtDNA databases” as Timmermans et al., (46) suggest. 
MtDNA sequence data are already widely used in 
species identification and classification, however, 
increasingly without formal species identification 
based on Linnaean taxonomy. The danger of this 
DNA-based taxonomy lays in its non-association to 
existing biological information linked to the “Linnaean” 
nomenclature. Consequently, the historical knowledge 
repositories in the literature and natural history 
collections could as Timmermans et al.,  (47) suggest 
”become a relic of the past and specimen to species 
links become untraceable”.

Beyond the prominent studies of human 
evolution the improved applicability of paleo  -mtDNA to 
museum collections, other taxonomic groups are being 
focused on using museum collections. This approach has 
added a new and incredibly useful aspect to taxonomy 
by directly linking type material, tissue collections or 
vouchers to its individual (original) genetic “barcode”. 
What this means is that classical type specimens which 
are often times quite old are now being linked to actual 
DNA sequences. This molecular information can then 
be compared with material from outside sources and 
other biological studies of the organisms in focus. While 
conventional PCR-based approaches are susceptible to 
contamination, various new techniques based on shotgun 
NGS and assembly of full mt-genomes with improved 
bioinformatics can overcome these limits.

Complete mitogenome “taxonomies”of pooled, 
large scale museum-samples are now underway to link 
museum and outside sources. While these approaches 
still have to overcome technical limitations and problems 
associated with the endeavor (among-sample variation, 
very short sequences achievable with preserved 
specimens, critical assembly of mitochondrial genomes 
of closely related species in a museum pool, the fact that 
specimens and corresponding DNA are in very different 
conditions) numerous researchers are making progress 
towards its realization. As Timmermans et al. (46) state 
“mitochondrial sequences are particularly accessible to 
bulk sequencing because of the potential full assembly 
of organelle genomes present in high copy number 
from mixtures of specimens”. As a proof of concept 
they tested a pool of 35 British butterflies from a natural 
history collection and successfully extracted the standard 
mt-DNA barcode sequences as well as mitochondrial 
genomes from a large number of the species in the pool. 
While these approaches still have to overcome some 
limitations and problems associated with sequencing 
technology (among-sample variation due to DNA 
degradation and very short sequences achievable with 
preserved specimens to name two) critical assembly 
of mitochondrial genomes of closely related species in 
a pool, specimens and corresponding DNA are in very 
different conditions etc. numerous researchers are 
making progress towards its realization (e.g. 47).

4.4. DNA barcoding
In 2003 Hebert et al., (48) made the suggestion 

that the mitochondrial DNA COI gene could be used as a 
universal tool for identification of animal species. The idea 
of using DNA sequences for identifying species was not 
new (see (49, 50) for early examples), however, the utility 
of Hebert et al., (48) suggestion was to systematically 
use the sequences of the mitochondrial COI gene as a 
sort of a DNA barcode. They pointed out that even in 
a 15 base pair stretch of that gene (or alternatively if 
there were 15 polymorphic sites in short regions of the 
COI gene) that over 1 billion different combinations of 
sequence potentially could be found. This large number 
of potential nucleotide combinations led them to suggest 
that a single small region of the COI gene would be 
adequate for DNA barcoding of animals. Since the initial 
2003 paper thousands of publications have appeared 
either using or discussing the use of DNA barcodes in 
animal identification.

The approach has not been without controversy. 
Most of the controversy arises from imprecise definitions 
of what DNA barcoding can be used for in evolutionary 
and biodiversity studies. It is useful to discriminate 
between using DNA barcodes to “identify” species that 
already have strong taxonomic work done on them, 
and using DNA barcoding to “discover” or “discriminate” 
and systematize new and unknown species (51-55). 
Classical taxonomists argue that an integrative approach 
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using DNA and morphology should be used to identify 
new species and to do taxonomy (56, 51). However once 
new species have been identified there is no reason to 
shy away from using DNA sequences to identify already 
characterized species.

It should be noted that the most popular 
approach to analysis of DNA barcode data can be 
found on the Barcode of Life Database (BoLD) website 
(http://www.boldsystems.org;, (57)). In addition, several 
informatics approaches have been developed to 
utilize DNA barcode data for identification of species 
(algorithms reviewed in 58). According to Little and 
Stevenson (58) these approaches can be divided into 
four major categories  –  clustering methods, similarity 
methods, combination methods and diagnostic methods. 
The similarity and clustering methods (and by default 
the combination methods) contrary to most taxonomic 
approaches utilize distances as a criterion for identification 
of specimens in the database. While it is beyond the 
scope of this review to delve into the mechanisms of 
these other approaches, we point out that an important, 
yet under-represented bioinformatics modification is to 
use a character-based approach, the so-called CAOS 
approach (59-61) to concatenate multiple “layers” of 
either sequences of the mitochondrial COI gene, other 
mt-gene fragments or nuclear gene fragments  (62). By 
identifying taxon-specific characters within a traditional 
or new barcode region many problems of the traditional 
DNA barcoding can be overcome and different 
operational taxonomic units, from population to genera, 
can be identified as this has been shown for example 
in insects (63, 64). At the same time the flagging of new 
or previously unknown species is possible and character 
based barcodes can readily be incorporated into matrices 
including organismal characters (e.g.  morphologyical, 
developmental, ecological and behavioral data).

Despite the controversies, DNA barcoding 
has been an extremely active area of research for 
evolutionary and biodiversity focused scientists. The 
research is summarized on the Barcode of Life Database 
(BoLD) website. As of May, 2016 nearly 5 million DNA 
barcode sequences had been deposited into the BoLD 
database. This number of barcodes encompasses over 
160,000 animal species. More recently, Ratnasingham 
and Hebert, (65) have suggested that DNA barcode 
index numbers can be given to species with DNA barcode 
information calling such numbers the BIN system. Such 
an approach they hope will “aid revisionary taxonomy by 
flagging possible cases of synonymy, and by collating 
geographical information, descriptive metadata, and 
images for specimens that are likely to belong to the 
same species, even if it is undescribed.” While DNA 
barcoding has progressed from a lofty idea in 2003 to 
a full fledged and active movement amongst organismal 
biologists, Coissac et al., (66) make the suggestion that 
in addition to accelerating the standard DNA barcode 

approach, that researchers should also augment that 
approach with NGS methods that can skim genomes for 
extended DNA barcodes outside of the mtDNA COI gene.

4.5. Mitochondrial DNA next generation 
sequencing (NGS) and evolutionary studies

Most of the mtDNA studies at the population and 
systematic level are done using standard Sanger DNA 
sequencing approaches. Recent interest in expanding 
the role of mtDNA not only to meta-barcoding approaches 
of single mt-gene-fragments but to the genome level in 
evolutionary studies have attempted to frame future work 
using Next generation sequencing approaches. Part of 
the problem with utilizing NGS approaches is adapting the 
massively parallel approaches of NGS to single species. 
Crampton-Platt et al., (67) have outlined adaptation of NGS 
approaches that they call mitochondrial metagenomics 
(MMG; also called mito-metagenomics  (68) and 
mitogenome skimming (69) for the study of multiple 
mitochondrial genomes of animals (see above). These 
approaches allow for the bulk processing of mixtures of 
animals (usually smallish insects) in single metagenomic 
sequencing run. Such approaches rely on the recovery of 
full mitochondrial genomes using informatic approaches. 
A possible role for mtDNA has also been suggested for 
detection of eukaryotes in environmental DNA (eDNA) 
studies. Some eDNA studies use a mitochondrial gene 
as a marker because their high copy number enhances 
the likelihood of DNA detection in environmental samples 
(summarized in (70)). There is even a suggestion that 
such approaches might be useful in estimating biomass 
of species in ecological assemblages (67). These 
developments would raise the recent meta-barcoding 
and high-throughput eDNA approaches to a new level of 
assessing biodiversity patterns.

4.6. Evolutionary dynamics of mtDNA: natural 
selection

While mtDNA variation is often times assumed 
to be neutral, several studies have examined the potential 
of natural selection to act upon it (71-73). Several studies 
have examined the role of natural selection in mtDNA in 
specific animal systems, but two recent meta-analyses 
are illuminating as to overall patterns of natural selection 
on mtDNA. Garvin et al., (73) performed a meta-analysis 
of over 200 animal species by examining natural 
selection in mtDNA genomes. Their analysis showed 
that “the ND5 subunit of complex I is a repeated target 
of positive Darwinian selection in diverse taxa” (74). 
In another meta-analysis of over 500 animal species, 
James et al., (74) conducted McDonald Kreitman tests 
for selection and concluded that the majority of mtDNA 
mutations are slightly deleterious. However, they also 
detected a significant proportion (26%) of mutations 
that were non-synonomous and hence potentially being 
influenced by natural selection. Interestingly, they also 
showed a correlation of the rate of adaptive evolution 
of mtDNA mutations with synonomous diversity, which 
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they interpret as “that at least some adaptive evolution is 
limited by the supply of mutations” ((75); p. 67).

Natural selection at the level of the entire 
mtDNA molecule has also been examined (76). Because 
mitochondria are found in large numbers per cell, the 
strength of natural selection on individual molecules of 
mtDNA should be very low. On the other hand, mtDNA 
molecules that promote their own replication no matter 
what cell function might be operating should be strongly 
selected for. Haig (76) suggests that this evolutionary 
paradox has been solved by the transfer of critical 
genes from the mitochondrion to the nucleus. A  few 
very essential genes still exist in the mitochondrial 
genome and according to Haig (76) these are managed 
in an evolutionary sense by homogenization through 
bottlenecking in female germlines and elimination of 
“low quality” mitochondrial genomes with deleterious 
mutations. Another study that has addressed the 
shrinkage of the mitochondrial genome since 
animals diverged looked at the full genomes of over 
2000 animals and modeled all possible mtDNA genome 
gene combinations. Using this approach Johnston and 
Williams (77) were able to show that there are three 
universals in determining whether or not a gene in the 
mtDNA genome will be lost. First if the gene is involved 
as a central player in a biochemical process then it will 
be retained. Second, if the gene codes for a hydrophobic 
protein it will be retained and finally if the gene has a 
high proportion of G’s and C’s in its sequence it will be 
retained. This in silico study points to the importance 
of meta-datasets and of using models to unravel an 
interesting evolutionary problem.

Another broad evolutionary question that can be 
asked about the mtDNA genome concerns its origin and 
maintenance in animal cells. It is widely accepted that the 
mitochondrion arose as an endosymbiotic capture event 
by an ancestral eukaryotic cell of a alpha-proteobacterial 
donor (77). What has not been settled is whether the 
endosymbiont capture event was early or late. Pittis 
and Gabaldón (78) recently report that the event was 
an evolutionarily late one because many of the bacterial 
proteins that appeared before the endosymbiont capture 
are active in the intracellular membrane system. This 
result has been interpreted to mean that the ancestral 
eukaryotic cell that captured the mitochondrial ancestor 
already had a high degree of complexity. On the other 
hand, Esposti (79) suggests an alternative to this late 
hypothesis. However this controversy is settled it will 
remain of interest for some time.

5. THE FUTURE OF mtDNA IN EVOLUTIONARY 
STUDIES

It is not too bold of a statement to suggest 
that mtDNA will continue to be a workhorse of modern 
evolutionary biology despite some suggestions that it has 
run its course as an important tool. Certainly, the molecule 

will continue to be used as a marker in phylogeography 
studies. There is no reason to exclude mtDNA as a 
population genetics tool, as long as its biology and 
limitations are recognized a priori in such studies. In fact, 
mtDNA phylogeography may be the first thing a researcher 
may want to establish when doing population studies or 
when doing full scale phylogeographic studies. Its role in 
paleo-systematics and human paleo research will still be 
an important one as a result of the technical limitations 
this field faces. With the potential of new techniques 
when working with museum material the utility of mtDNA 
in studies in this arena are both promising and exciting. 
The “next generation barcoding techniques” for museum 
voucher specimens is also an important endeavor that 
collection based scientists will need to ponder in the near 
future too.

The use of mtDNA in DNA barcoding studies 
is a reflection of its utility at the level of understanding 
species boundaries and species identification. Its utility 
at this level is very obvious and the continuous drive to 
complete a comprehensive DNA barcoding database for 
the species of animals on this planet will also continue 
to be an important endeavor for research in the future. 
However, its utility might easily be supplanted by more 
genomic based approaches (66). Indeed, mtDNA is still 
at the forefront of integrative taxonomy, with its improved 
potential to recover and “barcode” mito-genomes of 
museum samples and its continuous exploration of species 
boundaries as a marker for environmental metabarcoding 
approaches. Mito-metagenomics also promises to be a 
useful approach for the understanding of closely related 
species that are a part of ecological systems and at the 
same time allow for more sophisticated, reliable and fast 
methods to detect invasive species.

While the dynamics of mitochondrial DNA 
evolution (i.e.,  natural selection and origin of mtDNA 
genomes) are fairly well worked out, novel aspects 
of mtDNA genome evolution will more than likely be 
discovered when researchers start to examine in detail 
the dynamics of change in specific animal groups. Here 
the fast accumulation of comparative information at the 
mtDNA genome and individual gene level will help to 
examine the evolutionary forces involved in adaption 
and speciation processes. In our estimation, while a 
dip in the actual use of mtDNA as a tool in evolutionary 
studies is both demonstrated and expected (Figure  1), 
the use of mtDNA will continue in evolutionary studies in 
many areas of comparative and evolutionary biology. As 
Neupert, (80) has pointed out, “The pathways involved 
in generating mitochondrial diversity are still almost 
completely unknown … (and) very little is known about the 
intimate relationship between mitochondrial architecture 
and function. Here regulation of mitochondrial gene 
expression will be a wide open field of future research on 
mitochondrial evolution.” Being able to decipher the steps 
involved in mediating these regulatory pathways would 
indeed be an important advance in our understanding of 
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the evolutionary process. mtDNA, the small workhorse of 
evolutionary biology, has a lot of work left to do.
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