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1. ABSTRACT

Mitochondria are responsible for the majority 
of energy production in energy-intensive tissues like 
brain, modulate Ca+2 signaling and control initiation of 
cell death. Because of their extensive use of oxygen 
and lack of protective histone proteins, mitochondria are 
vulnerable to oxidative stress (ROS)-induced damage to 
their genome (mtDNA), respiratory chain proteins and 
ROS repair enzymes. Animal and cell models of PD 
use toxins that impair mitochondrial complex I activity. 
Maintenance of mitochondrial mass, mitochondrial 
biogenesis (mitobiogenesis), particularly in high-energy 
brain, occurs through complex signaling pathways 
involving the upstream “master regulator” PGC-1alpha 
that is transcriptionally and post-translationally regulated. 
Alzheimer disease (AD) and Parkinson disease (PD) 
brains have reduced respiratory capacity and impaired 
mitobiogenesis, which could result in beta-amyloid 
plaques and neurofibrillary tangles. Aggregated 
proteins in genetic and familial AD and PD brains impair 
mitochondrial function, and mitochondrial dysfunction is 
involved in activated neuroinflammation. Mitochondrial 
ROS can activate signaling pathways that mediate cell 
death in neurodegenerative diseases. The available data 
support restoration of mitochondrial function to reduce 
disease progression and restore lost neuronal function 
in AD and PD.

2. INTRODUCTION

Mitochondrial dysfunction is associated with 
the aging process and the onset of AD and PD (1-3). 
Mitochondria constantly generate reactive oxygen 
species (ROS) as a byproduct of oxygen metabolism (4)
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and these are important cell signaling molecules (5). With 
age, mitochondrial DNA (mtDNA) mutations accumulate 
in post mitotic tissues leading to the malfunctioning 
of oxidative phosphorylation and an imbalance in 
the expression of antioxidant enzymes resulting in 
the net overproduction of reactive oxygen species 
(ROS) (4, 6, 7).

Excessive ROS attenuates the bioenergetic 
function of mitochondria by causing more mutations in 
nuclear DNA (nDNA) and mtDNA that further impair the 
tricarboxylic acid cycle (TCA) and the electron transport 
chain (ETC) complexes. Oxidatively damaged proteins 
and organelles, such as mitochondria, then accumulate 
and overwhelm the protein and organelle quality control 
systems (8-10). This ROS-mediated, progressive 
mitochondrial damage also affects mitochondrial Ca2+ 
homeostasis, membrane-permeability and defense 
systems and elicits a vicious-cycle that amplifies cellular 
dysfunction that triggers neurodegeneration (4, 6, 7, 11).

The brain is particularly reliant on optimum 
mitochondrial function because of its high energy demand. 
It is also especially vulnerable to ROS-induced damage 
because of its high content of membrane polyunsaturated 
fatty acids and relatively low anti-oxidant defenses. The 
brain also possesses of high iron and ascorbate tissue 
levels which can enhance further ROS generation 
through the Fenton/Haber Weiss reactions (12).

Alzheimer’s disease (AD) is the most common 
cause of dementia with an estimated 10% of the world’s 
population aged more than 60–65 years currently affected 
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and more than 30 million people projected to be affected 
in the next 20 years (13). Familial AD (FAD) accounts 
for only 5–10% of all AD cases and usually exhibits 
an autosomal dominant form of inherited mutation in 
the amyloid precursor protein gene or the presenilin 1 
or 2 genes. Sporadic cases account for 90–95% of all 
AD cases and usually present in individuals older than 
65 years. Evidence from multiple studies show that 
mitochondrial degeneration and oxidative damage are 
involved in the pathogenesis of AD (14-16). mtDNA 
haplogroups influence the risk of AD with the demented 
parent of an AD patient usually being the mother (17, 18). 
Transferring mtDNA from AD patients into cell lines 
devoid of mtDNA (rho0 cells) has been shown to induce 
respiratory enzyme deficiency similar to that seen in 
AD tissues. This suggests that the deficit is carried at 
least in part by mtDNA abnormalities (3). And while AD 
brains harbor somatic mitochondrial DNA mutations that 
suppress mitochondrial transcription and replication (19), 
there is no consensus about causality of mtDNA 
changes (20).

Base excision repair (BER), the primary mtDNA 
repair pathway for ROS-mediated small base modifications 
is impaired in AD and may contribute to the disease 
pathogenesis, as a significant brain BER deficiency brain 
correlates with severity in patients with MCI (21). Finally, 
the pathological features of end-stage AD brains include 
the presence of phospho-tau neurofibrillary tangles and 
b-amyloid plaques. Mitochondrial respiratory dysfunction 
and resultant excessive ROS can result in aberrant 
accumulation of transition metals, are thought to lead to 
the accumulation of abnormal b-amyloid or tau- (22-24), 
can inhibit cytochrome c oxidase (25) and can in turn 
induce b-amyloid or tau neurotoxicity.

Parkinson’s disease (PD) affects >1% of the 
population over the age of 6 years and 5% of those over 
the age of 85 years (26) and is the second most common 
neurodegenerative disorder (27). The majority (90–95%) 
of PD cases are non-autosomal, and the remaining 
5-10% have been traced to causal dominantly or 
recessively inherited genes. Both idiopathic and genetic 
cases of PD exhibit high levels of oxidized lipids, proteins 
and DNA and reduced glutathione (GSH) levels (28-31). 
Multiple studies show that the activity of ETC complex 
I is reduced in PD patients (32-34) and that there are 
more respiratory chain deficient dopamine (DA) neurons 
PD patients than in age-matched controls (35). DAergic 
neurons are particularly prone to oxidative stress since 
they not only express tyrosine monoamine oxidase and 
hydroxylase which also generate ROS, but they also 
contain iron which catalyzes the Fenton reaction, where 
superoxide radicals and hydrogen peroxide formed can 
contribute to further oxidative stress (28, 29).

Mutations in genes of mitochondrial proteins 
DJ-1, Parkin and PINK, which result in mitochondrial 

dysfunction, are linked to familial forms of PD. Cells 
which are derived from patients with parkin gene mutation 
show decreased Complex I activity (36, 37). Mice 
deficient in parkin gene have reduced striatal respiratory 
chain activity along with oxidative damage (38, 39). 
PINK1 mutations induce mitochondrial dysfunction 
with excess free radical formation (40). Further, of the 
mutated nuclear genes in PD, a-synuclein, parkin, DJ-1, 
phosphatase and tensin homologue-induced kinase 1, 
leucine-rich-repeat kinase 2 and HTRA2 directly or 
indirectly involve mitochondria (16, 36, 41). Rotenone, 
a specific inhibitor of mitochondrial complex I inhibitor, 
induces mitochondrial dysfunction and ultrastructural 
damage with Parkinsonism like symptoms in rats (42). 
Impaired mitochondrial complex I function is a major 
source of ROS generation in PD models (16, 29) and in 
nigrostriatal degeneration in PD patients (43, 44). Also, 
a-synuclein, although mostly cytosolic, interacts with 
mitochondrial membranes to inhibit Complex I (45, 46) 
and mice over-expressing mutant a-synuclein have 
impaired mitochondrial structure and function (47, 48).

3. MITOCHONDRIAL DNA (mtDNA) MUTATIONS 
IN AD AND PD

MtDNA encodes 13 of the ~92 polypeptides 
of the OXPHOS system. The remaining structural 
polypeptides and assembly factors are encoded by 
nuclear DNA (49, 50). Mitochondria contain many 
antioxidant and DNA repair enzymes including OGG1 
and MUTYH (51-53). However, because of the proximity 
of the mitochondrial genome to the inner mitochondrial 
membrane where ROS are routinely generated, and the 
lack of protective histone molecules, mtDNA has a higher 
mutation rate than nuclear DNA (54).

mtDNA quality control is important for 
communication with the nucleus. ROS-mediated gene 
expression that occurs upon oxidative phosphorylation 
dysfunction may result in a mitochondrial retrograde 
signaling pathway that can stimulate an adaptive 
nuclear response to mtDNA impairment. Mitochondrial 
genetic alterations can affect the expression of more 
than 40 nuclear genes (55, 56). On the other hand, 
mtDNA dysfunction can be induced by many signaling 
molecules that are regulated by nuclear genes, and by 
factors related to mitochondrial metabolism (57-60). 
mtDNA in AD and PD brain are more oxidative damaged 
with increased mutations/deletions and postgenomic 
problems with transcriptional regulation than can be 
attributed to aging (51, 61-64)

4. MITOCHONDRIAL BIOGENESIS IN AD 
AND PD

Mitochondrial biogenesis is essential 
for maintaining an adequate functional neuronal 
mitochondrial mass. It is a highly regulated process that 
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requires coordination and crosstalk between the nuclear 
and mitochondrial genomes (65) and occurs on a regular 
basis in healthy cells where mitochondria constantly 
divide and fuse with each other. Current understanding 
indicates that mitochondrial biogenesis is regulated 
by the “master regulator” peroxisome proliferator-
activated receptor g coactivator-1 a (PGC-1a) which in 
turn activates different transcription factors, including 
nuclear respiratory factors 1 and 2 proteins (NRF-1 and 
NRF-2), estrogen-related receptor alpha (ERR-a) and 
mitochondrial transcription factor A (TFAM) (66-68). 
NRF-1 and NRF-2 regulate transcription of nuclear and 
mitochondrial genes involved in OXPHOS, electron 
transport (complex I–V), mtDNA transcription/replication, 
heme biosynthesis, protein import/assembly, ion 
channels, shuttles, and translation (69).

NRF-1 or NRF-2 also contribute to expression 
of nuclear encoded genes involved in biogenesis 
including (70) mitochondrial transcription factor A 
(TFAM), mitochondrial transcription factor B1 or B2 
(TFB1M or TFB2M), and mitochondrial RNA polymerase 
(POLRMT), and mitochondrial transcription termination 
factor (MTERF), mitochondrial DNA helicase (TWINKLE), 
single-stranded DNA-binding protein (mtSSB), and 
POLgB (71, 72) but not POLgA and MTERF3 (72). ERRα 
regulates genes involved in mitochondrial biogenesis, 
as well as genes involved in gluconeogenesis, oxidative 
phosphorylation, and fatty acid metabolism (73, 74).

When newly formed daughter mitochondria 
have been incorporated into the mitochondrial network, 
mitochondria that have been damaged or that have 
lost membrane potential are specifically targeted for 
degradation by mitophagy (75, 76). Mitochondrial 
biogenesis is impaired in AD as levels of NRF 1, NRF 2, 
and TFAM along with nuclear levels of PGC-1α are 
reduced in hippocampal tissues from AD brain compared 
to age matched control brain associated with fewer 
mitochondria (1, 77, 78). We have shown that in the 
PD frontal cortex mitochondrial biogenesis is impaired 
in a manner that correlates with impaired mitochondrial 
NADH-driven electron flow (34) and PARIS, a Parkin 
substrate, is known to repress mitochondrial biogenesis 
by transcriptionally inhibiting PGC-1α expression (79-81).

5. MITOCHONDRIAL OXIDATIVE STRESS

Nox (nitrogen oxides)-dependent oxidative 
stress induce neurodegenerative diseases through 
the oxidation of DNA, proteins, lipids, amino acids and 
metals, as well as the activation of redox-sensitive 
signaling pathways (82). AD brains have activated Nox, 
that are thought to contribute to AD neuropathology 
(83, 84). Abnormal Nox activation is also thought to 
play an important role in PD pathology (85). ROS can 
induce permeability transition pore (PTP) opening 
resulting in mitochondrial swelling, rupture, release of 

cytochrome c, and neuronal death in the progression of 
these neurodegenerative diseases.

p66Shc, a mitochondria-targeted redox enzyme, 
has recently been identified to become activated by 
oxidative stress by phosphorylation at residue Ser36 
which then translocates to the mitochondrial inner 
membrane space. It accumulates in aged mitochondria. 
Genetic inactivation of p66Shc preserves neuronal 
viability and mitochondrial integrity in response to 
oxidative challenges (86). p66ShcA-deficient mice are 
more resistant to oxidative stress and lived longer than 
the wild-type animals (87). p66ShcA is implicated in the 
degenerative pathology of PD and its phosphorylation 
at Ser36 is significantly increased in PINK1 deficient 
cell lines under normal tissue culture conditions, and 
enhanced in the presence of compounds which elicit 
oxidative stress (88).

ROS can induce the accumulation of misfolded 
proteins that, in turn, further enhance oxidative 
stress (89, 90). ROS damage proteins by directly 
oxidizing them and also by impairing the activity of 
immunoglobulin heavy chain binding protein (Bip) and 
protein disulfide isomerase (PDI) in the endoplasmic 
reticulum thereby affecting the protein folding process 
during aging (91). With age, sirtuins (SIRT) levels as well 
as antioxidant gene expression and activity decline (92) 
resulting in increased ROS levels. SIRT3 deacetylates 
and activates MnSOD in the mouse liver (93) and also 
increases the activity of isocitrate dehydrogenase 2 
during aging, thereby stimulating the tricarboxylic acid 
(TCA) cycle in the mouse brain (94). This event increases 
the amount of mitochondrial NADPH and protects 
against oxidative-stress-induced damage by increasing 
the ratio of reduced-to-oxidized glutathione. SIRT1 also 
promotes antioxidant defense through the activation of 
Forkhead box protein O1 (FOXO1) signaling in multiple 
mammalian cell lines (95). SIRT3 expression level was 
found to be reduced in aged skeletal muscle (96). AMPK 
can stimulate the antioxidant response through FOXO1 
activation (97) and ROS- dependent AMP-activated 
protein kinase (AMPK) inhibition leads to a reduction of 
antioxidant defenses during aging.

6. MITOCHONDRIA AND ALTERED CALCIUM 
HOMEOSTASIS

Perturbations in Ca2+-homeostasis are evident 
in AD (98-102) and PD (103-105) and deregulation 
of Ca2+-homeostasis, arising from mitochondrial 
dysfunction, is linked to neurotoxicity (100, 106-108). 
Mitochondria buffer cytosolic Ca2+-by internalizing it 
mainly through uniporter and releasing it by Na+-/Ca2+-or 
H+-/Ca2+-exchangers (106). Cytosolic Ca2+-levels play 
an important role in normal neurotransmission, long and 
short term plasticity and regulation of gene transcription 
in the CNS (109-111) and the levels are carefully buffered 
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by mitochondria. The mitochondrial Ca2+ buffering 
capacity of the CNS declines with age likely due to 
cumulative oxidative damage to mitochondria (112). 
Exposure of phosphatidylserine (PtdS) on the 
cell surface, a sign of cellular energy deficiency, 
enhances the ability of b-amyloid to associate with the 
membrane (113). Neurons with reduced cytosolic ATP 
levels and elevated surface PtdS levels are particularly 
vulnerable to b-amyloid toxicity (114, 115) and in AD, 
b-amyloid oligomers form Ca2+-permeable channels in 
membranes (116).

In sporadic PD and in PD animal models calpain is 
activated (117), and it has been observed that the DAergic 
neurons expressing high levels of the CaBP calbindin 
are relatively spared (105). a-synuclein protofibrils 
generate ion pores in synthetic lipid membranes (118) 
and induce Ca2+ influx in neurons (119, 120). Substantia 
nigra pars compacta dopaminergic neurons, unlike other 
neurons, use CaV1.3. L-type Ca2+channels (121) and this 
continuous Ca2+ influx creates an excessive metabolic 
load that makes them particularly vulnerable to secondary 
insults on mitochondrial function (122).

7. MITOPHAGY

Mitophagy is the process by which damaged 
or dysfunctional mitochondria are selectively engulfed 
by autophagosomes and delivered to lysosomes to be 
degraded and recycled by the cell (123). Alterations in 
the mitophagic pathway have been implicated in AD and 
PD (124-126) and mitochondria have been shown to be 
key targets of increased autophagic degradation in AD 
and PD (127). An excess of reactive oxygen species 
(ROS) may function as an autophagy trigger (128) and 
dysfunctional mitochondria that overproduce ROS, 
are indeed selectively targeted for mitophagy (129). 
Central to mitochondrial and cellular homeostasis, 
mitophagy is modulated by the PTEN-induced putative 
kinase 1 (PINK1)/Parkin pathway (130) which primarily 
targets mitochondria devoid of membrane potential 
(ΔΨm). PINK1 accumulate on the outer membrane of 
dysfunctional mitochondria and recruit the E3 ubiquitin 
ligase Parkin (131-133) that ubiquitinate several 
OMM proteins that are consequently targeted by P62/
SQSTM1 (134).

p62 recognizes ubiquitinated substrates and 
directly interacts with autophagosome-associated 
LC3 to recruit autophagosomal membranes to the 
mitochondria (135). Damaged mitochondria can also, 
independently of Parkin, increase FUNDC1 and Nix 
expression to recruit autophagosomes to mitochondria 
via direct interaction with LC3 (136, 137). Ubiquitin 
ligases, like Smurf1, target depolarized mitochondria 
for mitophagy (138-140). The transcription factor 
nuclear factor erythroid 2-related factor 2 (Nrf2) partly 
regulates p62 expression due to the presence of an 

antioxidant response element (ARE) in its promoter 
region (141, 142). Electrophilic natural products such 
as isothiocyanate compound, sulforaphane which 
upregulate Nrf2 by interfering with its regulator protein, 
the redox sensitive ubiquitination facilitator Keap1 
(Kelch-like ECH-associated protein 1) can potentially 
induce p62 expression (143-145). p62-mediated 
mitophagy inducer (PMI) (HB229), was recently 
developed to upregulate P62 via stabilization of Nrf2 
and promote mitophagy. This compound bypasses 
the upstream steps of the mitophagic cascade and 
acts independently of the ΔΨm collapse, and does 
not mediate any apparent toxic effects on mouse 
embryonic fibroblast (MEF) cells at the concentrations 
used in the assays (146). Parkin also modulates 
transport of mitochondria along microtubules to 
a perinuclear region where autophagosomes are 
concentrated (147, 148). This is likely due to Parkin-
mediated turnover of Miro, a protein required to tether 
kinesin motor protein complexes to the OMM (149). 
HDAC6, a ubiquitin-binding protein deacetylase is 
also recruited to mitochondria by Parkin (150) along 
microtubules (151, 152). Mitophagy is crucial for cellular 
homeostasis and its impairment is linked to several 
neurodegenerative diseases (153, 154). However, 
selective pharmacologic modulators of mitophagy 
that would facilitate dissection of the molecular steps 
involved in the removal of mitochondria from the 
network via this pathway are not presently available.

8. MITOCHONDRIAL STRESS RESPONSE 
SIGNALING

Mitochondria produce most of the cellular 
ROS and the stress signaling that induces cellular 
senescence and apoptosis (155-159). A major 
consequence of increased ROS and altered cellular 
redox state is the oxidation of thiol groups in cysteine 
residues in relevant proteins (155). FoxO are activated 
in response to elevated ROS levels and induce anti-
oxidant responses (increased expression of catalase 
and SOD2), cell cycle arrest and/or cell death (160, 161). 
Mitochondrial Akt, GSK-3β, PKA, Abl, PKC, Src and 
Atm modulate the cellular stress response (162-169). 
Akt phosphorylates and inactivates GSK-3β, which can 
localize to the mitochondria. Mitochondrial GSK-3β 
phosphorylates MCL-1 and VDAC (166, 170) leading to 
MCL-1 degradation and induction of apoptosis(170). The 
phosphorylation of VDAC by GSK-3β results in increased 
mitochondrial membrane permeability which also leads 
to apoptosis (166, 171). GSK-3β can also phosphorylate 
and promote the proteasomal degradation of c-Myc, 
cyclin D1, and β-catenin (172, 173). Hypoxia and other 
physiological stresses can induce the translocation of 
PKA to mitochondria (174, 175) causing to bind through 
Rab32 and other A-kinase AKAPs (163) resulting in the 
phosphorylation of VDAC (164), Drp1 (174), and other 
mitochondrial proteins.
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Hypoxia, by inducing SIAH2, a mitochondrial 
ubiquitin ligase, destabilizes AKAP121 and limits oxidative 
capacity under conditions of low oxygen. Interestingly, 
AKAP121 also appears to promote mitochondrial 
localization of Src-tyrosine kinase (176) where Src appears 
to regulate CO activity and respiratory activity (176, 177), 
and other mitochondrial substrates for Src family kinases 
are likely (178). Increased ROS induces protein kinase 
C-delta (PKCδ) association with the mitochondria and 
this in turn recruits other signaling molecules, including 
the Abl tyrosine kinase that is associated with loss of 
membrane potential and non-apoptotic cell death (167). 
Impaired oxidative metabolism and decreased ATP levels 
in neurons activate AMPK (179). AMPK can also be 
activated by drugs such as metformin that inhibits complex 
I or resveratrol that inhibits the F0F1 ATPase (162). AMPK 
modulates mitochondrial metabolism and targets Acetyl 
CoA carboxylase-2 (ACC2) to the OMM where it regulates 
lipid metabolism by controlling production of malonyl 
CoA (162). AMPK therefore plays a key role in mitochondrial 
homeostasis by ensuring that only functionally viable 
mitochondria are retained. Upon its activation it induces 
not only mitochondrial biogenesis through activation of 
PGC-1α (180, 181) but also initiates mitophagy through 
ULK1 activation and mTOR inhibition (174, 182).

ATM kinase inhibition causes CNS 
neurodegeneration in animal models (183). ATM 
kinase, is partly located at the mitochondria and is 
activated by mitochondrial uncoupling (184). While the 
mitochondrial substrates of ATM are not known, loss of 
ATM in genetically engineered mouse models leads to 
mitochondrial dysfunction. ATM signaling is reduced in 
the neurons in vulnerable regions of the AD brain (185). 
ATM is also involved in the pathogenesis of PD because 
ATM gene knockout (ATM KO) mice exhibit severe loss of 
tyrosine hydroxylase-positive DA nigro-striatal neurons, 
and midbrain DA neurons progressively degenerate 
with age (186) and cancers, PARK2 and ATM mutations 
sometimes occur synchronically at the same amino-
acid residue, causing neuronal degeneration (187). 
This overlap suggests that cancers and PD may adopt 
similar mechanisms. ATM deficient neurons re-enter 
the cell cycle and die (188, 189), suggesting that ATM 
may protect neuron by stopping cells re-entering the 
cell cycle and lessening DNA damage. ATM impairment 
in glial cells may also trigger innate immune responses 
leading to cause neurodegeneration (183). The histology 
of microglial cell in ATM KO mice was abnormal, and 
astrocytes from ATM KO mice showed significant 
expressions of oxidative and endoplasmic reticulum 
stress and a senescence-like reaction (190, 191). ATM 
deficiency may disturb DNA repair, trigger apoptosis, and 
accelerate aging and neuroinflammation.

9. MITOCHONDRIA AND INFLAMMATION

The induction of ROS is thought to lead to the 
generation of a possible ligand of NLRP3 or to directly 

affect NLRP3 or associated proteins and most NLRP3 
activators also cause ROS generation in immune cells such 
as macrophages and monocytes (192). NLRP3 stimuli 
induced a translocation of NLRP3 from the mitochondria-
associated endoplasmic reticulum (ER) membrane 
(MAM), where it forms a functional inflammasome with 
caspase-1 and ASC (193). Mitochondria serve as the 
scaffold for NLRP3 inflammasome formation, where 
mitochondrial ROS and oxidative metabolism regulate 
caspase-1 activation, the critical step in maturation of 
Il-1beta and Il-18. Mitochondrial oxidative metabolism 
regulates macrophage polarization, T-cell activation, 
differentiation and memory cell formation (for review see 
Weinberg et al., 2015 (194).

Thus, mitochondria not only sustain immune 
cell phenotypes but also are necessary for establishing 
immune cell phenotype and function. In a pro-
inflammatory state this is accomplished by mitochondria 
shifting from producing ATP via oxidative metabolism to 
producing building blocks for macromolecule synthesis 
via anapleurosis and glutaminolysis. The shift from 
catabolism to anabolism is critical to affect cell expansion, 
production of inflammatory mediators and immune cell 
fate commitments. This may explain why the increase 
in serum pro-inflammatory cytokines occurs with age, 
giving rise to a chronic state of inflammation, termed 
inflamm-aging (195, 196). In AD, immune dysfunction 
has been identified in T- and B-cells, macrophages and 
microglia (197). AD is associated with increased T cell 
infiltration, changes in immune populations associated 
with disease progression, reduction in T- and B-cell 
numbers and reductions in CD4+CD25+ Tregs (198). 
CD8+CD28- suppressor cells are also decreased in 
PBMCs from AD patients. These data suggest that 
the immunosuppressive capabilities in AD patients 
are diminished and could represent a deficit in the 
ability to control Teff responses. As such, increased 
activities of Th17, levels of IL-21, IL-6, and IL-23, and 
the Th17-associated transcription factor RORγ, were 
increased among lymphocytes in AD patients (199). 
This suggests AD specific overactivity of Th17 T-cell 
function and underactivity of Teff function. Given that 
Th17 T-cells primarily mobilize glycolysis and suppress 
OxPhos whereas Tregs and memory T cells oxidize 
fatty acids via mitochondrial oxidation, supports the 
concept that mitochondrial dysfunction fuels AD immune 
dysfunction (200).The neurodegenerative process in PD 
is accompanied by a neuroinflammatory response, that’s 
mediated by the activation of microglia cells (201, 202) 
which release the pro-inflammatory TNF-α and IL-1β 
cytokines (203, 204) resulting in the accumulation of ROS 
that adversely affects adjacent neurons (39, 205). Many 
PD-linked genetic mutations are involved in the regulation 
of the immune system (206), and it is likely that genetic 
vulnerability predisposes to the development of midbrain 
DA neurodegeneration via inflammatory mechanisms. 
There is also a peripheral immune dysfunction observed 
in PD (207, 208). The abnormalities in peripheral T 
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cells, including decrease in the number of CD4(+) T 
cell subsets and Treg dysfunction are observed in PD 
patients (209-211).

10. CONCLUSION AND PERSPECTIVE

Several lines indicate that mitochondria play a 
critical role in the pathogenesis of AD and PD. The present 
therapeutics for these diseases are at best symptomatic 
and not neuroprotective or neurorestorative.

Therapeutic strategies such as mitochondria-
targeted antioxidants have shown promise in various 
animal models. In addition, pharmacological or nutritional 
approaches (e.g., caloric restriction and caloric restriction 
mimetics such as resveratrol) targeting on evolutionarily 
conserved, Nrf2/ARE-driven, or sirtuin-dependent pro-
survival pathways that upregulate intrinsic antioxidant 
systems in mitochondria, are being explored as potential 
therapeutic targets. Interventions modulating processes 
involved in the regulation of mitochondrial turnover are 
also of particular interest.

Significant research effort is still required to 
elucidate the complexity of the network of multileveled, 
cross-talk that regulate mitochondrial homeostasis. 
This knowledge will likely provide novel and highly 
effective treatment to slow, stop or reverse the 
neurodegenerative process in AD and PD. Due to 
the complex pathophysiology, including a cascade of 
neurotoxic molecular events involving energy provision, 
redox and Ca2+ homeostasis, cellular and intra-inter-
organellar quality control, regulation of cell death/survival 
pathways resulting in neurodegeneration in AD and PD, 
significant research effort is still required to elucidate the 
complexity of the network of multileveled, cross-talk that 
regulate mitochondrial homeostasis and identify potential 
multifunctional therapeutic targets that will improve 
mitochondrial function, attenuate oxidative stress, and 
optimize mitochondrial quality control in neurons and 
slow or halt progressive course of these neurological 
disorders. This knowledge will likely provide novel and 
highly effective treatment to slow, stop or reverse the 
neurodegenerative process in AD and PD.
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