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1. ABSTRACT

Reward deficiency syndrome (RDS) was 
first proposed by Kenneth Blum in 1995 to provide a 
clinically relevant and predictive term for conditions 
involving deficits in mesocorticolimbic dopamine 
function. Genetic, molecular, and neuronal alterations in 
key components of this circuitry contribute to a reward 
deficit state that can drive drug-seeking, consumption, 
and relapse. Among the dysfunctions observed in RDS 
are dysregulated resting state networks, which recently 
have been assessed in detail in chronic drug users 
by, positron emission tomography, functional magnetic 
resonance imaging, and functional connectivity analysis. 
A growing number of studies are helping to determine 
the putative roles of dopamine and glutamatergic 
neurotransmission in the regulation of activity in resting 
state networks, particularly in brain reward circuitry 
affected in drug use disorders. Indeed, we hypothesize 
in the present review that loss of homeostasis of 
these systems may lead to ‘unbalanced’ functional 
networks that might be both cause and outcome of 
disrupted synaptic communication between cortical and 
subcortical systems essential for controlling reward, 
emotional control, sensation seeking, and chronic drug 
use.
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2. INTRODUCTION

Drug use disorders continue to represent a 
major health and socioeconomic challenge affecting the 
lives of many in the U.S. and worldwide. In 2013, in the 
U.S. alone 24.6. million individuals aged 12 years or older 
reported illicit drug use, and among these, 1.5. million 
reported using the psychostimulant cocaine (1). An 
astounding 21.6. million adults 18 or older were reported 
that same year as having a substance use disorder, with 
4.2. million showing abuse of dependence on marijuana, 
1.9. million on pain relievers, 855,000 cocaine, and 
517,000 heroin (1). These staggering numbers warrant 
more preclinical research, especially in novel directions 
that could ultimately help diagnose drug use disorders 
(through genetic testing) and offer effective treatments.

Reward Deficiency Syndrome (RDS) was first 
defined by K. Blum in 1995 as a putative predictor of 
impulsive and addictive behaviors related in large part 
to mesolimbic dopamine (DA) system dysfunction (see 
Table 1) (2-6). Binding of the neurotransmitter dopamine 
(DA) to the D2 DA receptor (DRD2), for example, has 
been linked to a variety of behaviors reflecting reward 
seeking (7-9), and the DRD2 has been referred to as 
a reward gene (10-14). The TaqI A1 allele of the DRD2 
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gene has been most associated with neuropsychiatric 
disorders in general, and aggression (15), alcoholism, and 
chronic drug use conditions (16). Co-Morbid antisocial 
personality disorder symptoms and children and adults 
with attention deficit hyperactivity disorder (ADHD) or 
Tourette’s Syndrome and high novelty seeking (17) and 
gambling and obesity (18, 19) have also been associated 
with the DRD2A1.

The brain reward circuitry, in particular, the 
DAergic system and the DA D1 and D2 receptors, have 
been implicated in reward mechanisms (10, 20). The net 
outcome of neurotransmitter interaction in mesolimbic 
brain regions is to produce “reward” when DA is released 
from afferent ventral tegmental area (VTA) synapses on 
GABAergic medium spiny neurons (MSNs) in the nucleus 
accumbens (NAc). This interaction involves D1 and D2 
class of receptors among possibly nine total receptor 
subtypes (2, 21-23). Although initially dubbed the 
pleasure or anti-stress neurotransmitter DA may primarily 
be considered to be a “motivation molecule” (24-26) that 
when released into the synapse increases feelings of 
well-being and reduces stress (27, 28).

The mesocorticolimbic DA pathway plays an 
especially important role in mediating the reinforcement 
of natural reward-seeking behaviors, such as sex 
and eating, as well as non-natural reward-seeking 
behaviors mostly centered around chronic drug use (29). 
Completion of the consummatory phase of natural 
reward seeking involves the satisfaction of physiological 
(appetitive) drives (e.g., hunger and reproduction). 

Seeking unnatural rewards not critical to survival tend 
to involve learning and habit formation, and thus entails 
satisfaction from acquired, pleasures like hedonic 
sensations derived from alcohol and other drugs, as 
well as from gambling and other risk-taking behaviors 
(30-33). Utilizing positron emission tomography (PET) 
others have found substantially lower levels of D2 
receptors in obese, and alcohol and drug dependent 
subjects compared to non-dependent individuals (34-37). 
In animals, overexpression of the D2 receptor via viral 
vector-mediated delivery of the DRD2 gene directly into 
the NAc resulted in a significant reduction of alcohol and 
cocaine consumption (38-41). Also, there is clinical and 
preclinical evidence that obesity is inversely proportional 
to DRD2 levels in the brain, and that food restriction 
reversed this finding (36, 37, 42).

3. “DOPAMINE HOMEOSTASIS”: BRINGING 
FUNCTIONAL BALANCE TO THE DOPAMINE 
REWARD PATHWAY

Based on the notion that dysregulation of 
mesocorticolimbic DAergic activity promotes further drug 
use, a goal should be to regulate key components of 
this system to reduce abnormal craving, drug seeking, 
and other addictive behaviors included under the 
term RDS (43). Indeed, neuronal populations in the 
mesocorticolimbic system can be identified based on 
their unique gene expression patterns. Such information 
offers potential targets for the development of treatments 
to modulate deficient components of the reward circuit. 
Regarding therapeutic targets, it is believed that there 

Table 1. Reward Deficiency Behaviors a biogenetic model for the diagnosis and treatment of impulsive, 
addictive, and compulsive behaviors (3)

Addictive Behaviors Impulsive behaviors Obsessive
compulsive
behaviors

Personality
disordersSubstance Related Non substance related Spectrum disorders Disruptive 

impulsive 

Alcohol Thrill seeking (novelty) Attention-deficit Hyperactivity Anti-social Body
Dysmorphic 

Paranoid 

Cannabis Sexual
Sadism 

Tourettes and
Tic Syndrome 

Conduct Hoarding Schizoid 

Opioids Sexual Masochism Autism Intermittent 
Explosive 

Trichotillomania
(hair pulling) 

Borderline 

Sedatives and
Hypnotics 

Hypersexual Oppositional 
Defiant 

Excoriation
(skin picking) 

Schizotypal 

Stimulants Gambling Exhibitionistic Non-suicidal
Self-Injury 

Histrionic 

Tobacco Internet
Gaming 

Narcissistic 

Glucose Avoidant 

Food Dependant 

Modified according to DSM-5. Reproduced with permission from (2).
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are many potential gene polymorphisms involved in 
the brain reward system and these known (and even 
unknown) polymorphisms will need to be identified across 
the central nervous system (CNS) especially along the 
brain reward circuitry (44, 45). Certainly, damage to DNA 
along this reward circuitry likely leads to altered, or even 
diminished, DAergic activity (46). Reduced dopaminergic 
activity has the effect of increasing sensitivity to stress, 
blunting reward sensation, and even impairing aspects 
of reward learning, especially in aged individuals (47-49).

There are numerous genes involved in regulating 
the activity of this system. The result of their patterns of 
expression, or their normal function, is to mediate a series 
of neurochemical mechanisms that have previously been 
described as the “brain reward cascade” (50). The brain 
reward cascade involves the release of serotonin, which 
has been shown to stimulate hypothalamic release of 
enkephalin in the substantia nigra. Enkephalin in turn 
inhibits GABA in the substantia nigra, which regulates 
the amount of DA released in the nucleus accumbens 
(“reward site”). The origin of the release of DA is the VTA. 
Various receptors (including 5HT2a receptors, μ-opiate 
receptors, GABA-A receptors, GABA-B receptors, and 
D1 and D2 like DA receptors) are critical in reward 
cascade. It is well known that under normal conditions 
DA in the nucleus accumbens works to maintain normal 
drives (51-56). Recent evidence postulates the role of 
dorsa raphe nuclei in the reward cascade.

For over forty years the Dorsal Raphe 
Nucleus (DRN) have been classified as a serotonergic 
structure and the VTA as a DAergic structure. These 
are two brain reward areas where electrical stimulation 
produces reinforcement responding at the highest rates 
and lowest thresholds (meaning increased reward 
sensitivity). Although multiple studies have examined 
the contributions of the DRN and VTA to reward most of 
these studies, have been focused on the serotonergic 
effects. As a result, these investigations have produced 
conflicting results, and the actual role of DRN-to-VTA 
circuitry in regulating motivated behaviors remains 
unclear. Contrary to the idea that the major input from 
DRN to VTA is serotonergic, Marisela Morales and 
her group (57) found that DRN neurons expressing 
the vesicular glutamate transporter-3 (GluT3) provide 
a major source of inputs from DRN to VTA. Within the 
VTA, these DRN-derived GlutT3 terminals synapse on 
DA neurons. Qi et al. (57) found that some of these VTA 
neurons innervated by DRN GluT3 synapses, in turn, 
innervate neurons in the NAc. By genetic approaches to 
specifically express channel rhodopsin 2 (ChR2) in DRN-
GlutT3 neurons, it was also found that AMPA-mediated 
excitatory currents on DA-neurons that innervate the 
NAc can be elicited by intra-VTA light stimulation of 
the VGLUT3 -fibers. Such stimulation causes DA 
release in the NAc, reinforces instrumental behaviors, 
and established conditioned place preference. The 

Qi et al. (57) discovery of a rewarding excitatory 
glutamatergic synaptic input to the meso-accumbens DA 
neurons arising from DRN neurons containing VGLUT3, 
suggested that, new targets that may be important to 
improve deficits in motivation observed in RDS patients. 
Moreover, unpublished work from this research team at 
NIDA also found that GABA from the Substania Nigra 
regulates VGLUT3 synaptic inputs, and as a result may 
control VTA DA release in the NAc.

In RDS, reduced sensitivity and inefficiency 
of the reward system has been a theme considered by 
many investigators and has generated some controversy 
regarding the regulation of “liking” and “wanting” rewards, 
particularly drug reward (58-63). However, various genetic/
epigenetic factors and neuroanatomical substrates 
converge upon the mesocorticolimbic DA reward system 
in mediating multiple ways in which addictions and related 
psychiatric conditions are expressed (64). Both genetic 
antecedents and environmental influences (epigenetic), 
may result in a deficiency of synaptic DA and predispose 
individuals to a high risk for multiple addictive, impulsive, 
and compulsive behaviors (65).

It is well known that alcohol and other drugs 
of abuse, as well as sex, food, gambling, aggressive 
thrills and other positive reinforcers, cause activation 
and neuronal release of brain DA and involvement of 
the Na(+)/K(+)-ATPase (66). Increases in DA release, 
particularly in NAc, can decrease negative feelings and 
satisfy abnormal feelings like cravings for substances 
like alcohol, cocaine, heroin, and nicotine, which among 
others are linked to low DA activity (67). Therefore, a 
formidable challenge to both scientists and clinicians in 
the field of substance and non-substance compulsive 
seeking behaviors is the development of compounds 
that can induce “dopamine homeostasis”. In other words, 
rather than tilting the dopamine-mediated brain reward 
balance to either extreme (too high or too low), a balance 
needs to be maintained within a limited functional range. 
Assessing such functional limits within mesocorticolimbic 
circuitry requires in vivo brain functional biomarkers 
of activity, which are only possible through functional 
magnetic resonance imaging (fMRI) and potentially 
functional connectivity analysis of brain network activity. 
Emerging evidence strongly suggests that cognitive, 
emotional and behavioral disturbances observed in 
some psychiatric illnesses are associated with functional 
deficits in widespread brain networks (68-72). The same 
principle of dysregulated functional circuitry may hold true 
for drug addiction (73). However, the cellular mechanisms 
mediating resting state functional connectivity, and in 
particular the role of dopamine, serotonin, and glutamate 
in mediating specific patterns of functional connectivity 
remain unclear. In the following sections, we summarize 
some of the work that has been done, specifically focusing 
on studies examining changes in functional connectivity 
and drug use disorders.
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4. UNDERSTANDING RESTING STATE BRAIN 
FUNCTIONAL CONNECTIVITY

Recently, there has been controversy concerning 
the role of brain DA in reward and addiction. David Nutt and 
associates eloquently proposed that DA may be central 
to psychostimulant dependence, and somewhat relevant 
for alcohol, but not important for opiates, nicotine, or 
even cannabis (74). Others have also argued that surfeit 
theories can explain cocaine-seeking behavior and non-
substance-related addictive behaviors. It seems prudent 
to make a distinction between, what constitutes “surfeit” 
as compared to ”deficit” regarding short-term (acute), 
and long-term (chronic), brain reward circuit responsivity. 
In an attempt to resolve the controversy regarding the 
contributions of mesolimbic DA systems to reward, we 
cite the three most important competing explanatory 
categories: “liking,” “learning,” and “wanting.” They are 
(a) the hedonic impact (liking reward), (b) the ability to 
predict rewarding effects (learning) and (c) rewarding 
stimuli incentive salience (wanting).

Regarding acute effects, RDS behaviors, 
and most drugs of abuse have been linked to 
hyperdopaminergic states and heightened feelings 
of well-being due to the preferential DA release at 
mesolimbic-VTA-caudate-accumbens loci. Also, most of 
the evidence seems to favor the “surfeit theory” (59, 75) 
in the acute phase of the experience. The “dopamine 
hypotheses”, is now known to be complex and involves 
encoding attention, reward expectancy, incentive 
motivation and the set point of hedonic tone.

In terms of chronic effects, the work of 
Willuhn’s group provides impetus to develop anti-RDS 
compounds that can modulate dopamine function. They 
demonstrated, in an extended access cocaine self-
administration paradigm, that excessive use of cocaine 
is caused by decreased phasic DA signaling in the 
striatum (76). Also regarding chronic addictions, others 
have shown a blunted responsivity at brain reward sites 
with food, nicotine, and even gambling behavior. Being 
cognizant that there are differences in DAergic function 
as addictions progress, relapse may involve a prolonged 
state of DA deficiency. Vulnerability to compulsive 
drug use and relapse may be the cumulative effects of 
genetic reward polymorphisms and elevated sensitivity 
to stress. The preferred goal to combat relapse may be 
DA homeostasis and with this aim functional connectivity 
in both animal and human models is an emerging area 
of interest.

Compulsive drug use can affect widely distributed 
regions of the brain and evidence is accumulating that 
the functional interactions between brain regions change 
throughout the stages of cocaine use, abstinence, and 
relapse (77-88). Identifying neural circuits affected 
by cocaine use disorders, and understanding their 

association with compulsive drug seeking behavior, 
remains a challenge (73). Some researchers have 
addressed this matter by applying novel optogenetic 
approaches to investigate the causal role of individual 
neuronal groups in driving drug self-administration and 
reinstatement (89-96).

The brain of humans and rodents show a high 
degree of intrinsic synchronous activity measured by blood 
oxygen level-dependent (BOLD) fMRI during rest (97, 98). 
Functional connectivity analysis of these synchronous 
BOLD signals may provide insight into network-level 
changes associated with cocaine and other RDS behaviors 
during self-administration, withdrawal, and reinstatement. 
BOLD signal oscillations have neurobiological and 
behavioral significance (99-101) in human subjects 
and animal models (97, 98). Changes in functional 
connectivity in humans are associated with dysfunctional 
cognitive and behavioral states (68) that might contribute 
to addiction severity and relapse (81, 85, 88, 102). For 
example, it has been reported that cocaine users show 
a reduction in resting state activity along specific neural 
pathways, also significantly increased connectivity has 
been cited (81). In cocaine users, shorter withdrawal 
lengths mostly involve increased or altered connectivity, 
in cortical, striatal and midbrain regions, while, longer 
duration withdrawal times mostly involve significant 
reductions in functional connectivity in comparison to 
controls. However, changes in functional connectivity can 
vary according to factors such as length of abstinence, 
propensity to relapse, response to treatment (81, 85, 103). 
For example, impulsivity and loss of control over recent 
cocaine use are associated with increased functional 
connectivity between prefrontal cortex and striatum (104). 
Subjects with cocaine use disorders that were stabilized 
for 4-8 days in inpatient clinics (short-term abstinence) 
showed hyperconnectivity between structures involved in 
memory, visuospatial processing, and motivation (105). 
This novel approach can reflect the integrity of functional 
circuits that mediate aspects of neural communication 
between CNS regions (106). This method is an informative 
biomarker that may be used to examining the effects of 
drugs of abuse on mesocorticolimbic regions.

4.1. Functional connectivity and addiction: 
neurobiological underpinnings

Understand functional connectivity changes, 
particularly in the context of well-studied intrinsically 
active networks such as Salience, Executive, and Default 
networks, is key to being able to address widespread 
neuroadaptations involved in and/or contributing to 
addictive behaviors. Activity in these and other previously 
described networks, in turn, may relate to underlying 
cellular adaptations in the biophysical properties of 
neuronal membranes. These adaptations include 
changes in electrical excitability of select neurons within a 
broader network and the occurrence of synaptic plasticity 
that can modify the responsiveness of mesocorticolimbic 
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DA and glutamate neurons to subsequent drug reward 
challenges (107-113). For example, in rats, repeated 
cocaine or amphetamine administration alters the 
number of dendritic spines, their morphology, and hinders 
structural plasticity in NAc, prefrontal cortex, and other 
neocortical regions (114-118).

A single exposure or repeated administration of 
cocaine and other drugs of abuse increases the ability 
to elicit long-term potentiation (LTP) and long-term 
depression (LTD) in VTA DA neurons (109, 110, 119-121). 
Repeated cocaine also alters these forms of synaptic 
plasticity in NAc, amygdala, and forebrain (109, 110), 
and effect biophysical parameters leading to changes 
in excitability of NAc MSNs (122, 123). Altered synaptic 
plasticity may impact subsequent excitability and 
plasticity within these regions (110, 122), with the 
consequence of altering the activity of downstream and 
upstream structures (124-126). For example, changes 
in excitability of NAc MSNs (123) may affect activity in 
both the VTA directly, or through the ventral pallidum (91), 
and this circuitry is influential for reinstatement of drug 
seeking behavior (127). Moreover, NAc neurons are 
also influenced by changes in prefrontal cortical 
(PFC) (128, 129) and ventral hippocampal (125, 130) 
activity via incoming glutamatergic synapses, which may 
elicit reinstatement (89, 93, 131). Given the extensive 
connectivity these neurons share with other structures, 
it is likely that the effects of repeated cocaine on their 
activity significantly impacts activity in broadly distributed 
regions of the brain. Thus, in the cocaine-addicted brain, 
a wider network of structures may show altered functional 
connectivity through synaptic changes in PFC, NAc, and 
VTA neurons. Connectivity is likely to involve ventral 
hippocampus, amygdala, pallidal areas, substantia 
nigra, anterior thalamus, and other higher cortical 
centers integrating sensory and spatial information, and 
long-term memory. A critically important aspect of the 
mentioned in vivo functional neurocircuitry of cocaine use 
is that key players in the circuitry vary through distinct 
stages of addiction (78).

4.2. Are glutaminergic and dopaminergic 
pathways therapeutic targets for reward 
homeostasis?

Glutamate and DA represent potential 
targets for novel treatments that modulate not only 
cocaine seeking behavior, but also other RDS 
behaviors, and there is growing evidence that these 
neurotransmitters are necessary for the establishment 
of resting state functional connectivity networks. Both 
substrates are affected by chronic psychostimulant 
administration (111, 112). In cocaine self-administering 
rats, basal extracellular glutamate concentrations are 
reduced in the core of NAc (128), which also receives 
heightened PFC-evoked glutamate release (94, 123). 
Evidence supports this heightened release and reduced 
tonic extracellular glutamate in reinstatement (123, 132). 

Elevating extrasynaptic glutamate by stimulating the 
cystine-glutamate exchanger using the pro-cystine 
drug, N-acetylcysteine (NAC), has been found to reduce 
cue- and cocaine-prompted reinstatement (123, 132-135). 
This outcome supports its development as a treatment 
for cocaine craving and addiction (136). N-acetylcysteine 
restores synaptic plasticity in NAc, normalizes neuronal 
excitability, and glutamate transport (122, 133). 
Additionally, it was recently shown that as cocaine intake 
escalates, phasic DA signaling in the ventromedial 
striatum is reduced (76). The DA precursor L-3,4-
dihydrophenylalanine (L-DOPA) was found to reduce 
escalated cocaine intake and restore striatal DA (76). 
Consistent with this result, in human subjects, L-DOPA 
was observed to increase functional connectivity between 
midbrain and striatal regions (72). In this regard, Febo and 
Blum (unpublished) have examined the effects of a DA 
precursor complex (KB220Z) on functional connectivity 
and have observed that there is a significant increase in 
functional connectivity strength in PFC and NAc of the 
rat (Figure 1).

Key ingredients in this complex act synergistically 
to replenish the pool of L-DOPA and facilitate its conversion 
to DA. The formulation is directed at re-establishing 
baseline connectivity through the DA biosynthetic pathway 
amongst other ingredients (L-Tyrosine and pyridoxine, 
which provide the enzymatic co-factor pyridoxal-5’-
phosphate for L-amino acid decarboxylase conversion 
of L-DOPA to DA) (6, 137). A KB220 variant has been 
tested in abstinent psychostimulant abusers and found to 
normalize quantitative electroencephalographic (qEEG) 
abnormalities (137). Moreover, a preliminary double-
blind cross-over study in heroin-dependent participants 
shows increases in ventral striatal functional connectivity 
(Figure 2).

Understanding how DA and glutamate 
systems modulate resting state functional connectivity 
in mesocorticolimbic structures increases the utility of 
this functional mapping strategy as a biomarker for drug 
use disorders. Research in this regard is limited but has 
recently been approached indirectly through examination 
of the effects of, DA depletion (like Parkinsonism and 
related conditions), DA replacement therapies (like 
L-DOPA), DAergic agonists and N-methyl-D-aspartate 
(NMDA) receptor blockers, on resting state functional 
connectivity (138-141).

The role of DA in the brain at rest is an important 
and an emerging area of research interest especially in 
Parkinsonism (142). Piray et al. (143) using systematic 
pharmacological manipulation of dopamine D2-receptors 
and resting-state functional imaging in humans, found 
that DA modulates interactions between motivational and 
cognitive regions, as well cognitive and motor regions 
of the striatum. Specifically, stimulation and blockade of 
the dopamine D2-receptor had opposite (increasing and 
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decreasing) effects on the efficacy of those interactions. 
In fact, trait impulsivity was specifically associated 
with DAergic modulation of ventral-to-dorsal striatal 
connectivity. Ventral-to-dorsal striatal connectivity in 
individuals with high trait impulsivity exhibited greater 
drug-induced increases (after stimulation) and decreases 
(after blockade) of than those with low trait impulsivity.

Individuals with early stage Parkinsonism, which 
have some initial level of DA depletion in basal ganglia 
structures, showed decreased connectivity of the left 
dorsolateral prefrontal cortex and right insular cortex, right 
superior frontal gyrus and anterior cingulate compared to 
unaffected subjects (138). Others have reported reduced 
connectivity (specifically, node degree) in left putamen, 
right globus pallidus (139). Interestingly, Nagano-Saito 
and colleagues used a transient DA depletion strategy 
by administering an amino acid solution deficient of 
D-Phenylalanine/L-Tyrosine to healthy participants and 
found that performance on set shifting tasks and frontal-
striatal connectivity were both reduced in comparison to 
administering a more balanced amino acid solution (140). 

Thus, deficits in cognitive flexibility caused by acute 
reductions in DA may be associated with a reduction 
in functional connectivity between prefrontal cortex and 
striatum.

There is also building evidence that enhancement 
of DA synthesis and increasing the releasable pool of 
this catecholamine adjusts functional connectivity in 
mesocorticolimbic areas. Thus, administering (L-DOPA; 
which is a precursor for DA synthesis) to healthy 
participants reduced connectivity between the amygdala 
and bilateral inferior frontal gyri and areas of the default 
mode network (DMN) (141). Another group showed 
that L-DOPA increased functional connectivity between 
midbrain and DMN, between caudate and frontal-
parietal areas, and ventral striatum and a frontoinsular 
network (72). On the other hand, blocking DA receptors 
with haloperidol exerted opposite effects on functional 
connectivity between these regions (144). L-DOPA has 
also been shown to increase functional connectivity areas 
of the putamen, cerebellum, and brainstem, and between 
inferior ventral striatum and ventrolateral prefrontal 
cortex (145). Interestingly, it was observed to disrupt 
connectivity between striatal areas and the DMN (145). 
In further support that DA replacement therapies may 
correct deficits in functional connectivity, recently it was 
shown that Parkinson’s patients without medication 
showed significant impairments in connectivity with striatal 
divisions, which was improved by upon administering DA 
medications to patients (142). The above-cited effects of 
DA depletion and replenishment with L-DOPA illustrate 
the important role of DA in modulating resting state 
networks. Consistent with the role of DA in regulating 
activity in basal ganglia, most effects are observed in 
ventral and dorsal striatal regions and their connectivity 
with cortical structures known to receive DA inputs. 
However, it is important to note that in the case of RDS, 
the networks impacted by deficient DA activity may vary 
from DA pathways affected in Parkinsonism due to the 
source of DA being VTA in the mesolimbic pathway rather 
than through Substantia Nigra (nigrostriatal pathway). 

Figure 1. Administration of a complex (KB220Z) increases connectivity with the NAc and PFC. This effect would presumably benefit cocaine-addicted 
individuals showing reduced functional connectivity in mesocorticolimbic circuitry. Reproduced with permission from (79).

Figure 2. A double-blind cross-over study in abstinent heroin-dependent 
participants of KB220Z, a DA precursor complex one hour following delivery 
of neurotransmitter precursors, functional connectivity between regions of 
the accumbens and the medial orbital cortex is enhanced. Arrow and blue 
circle are shown to emphasize increases in functional connectivity in NAc 
with oral KB220Z. Reproduced with permission from (6).
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Importantly, a caveat to focusing on L-DOPA as a 
treatment strategy is that it omits other components of 
the Brain Reward Cascade.

Administering the DA and norepinephrine 
transporter blocker methylphenidate to healthy subjects 
has been shown to exert varied effects across a 
number of studies, which include increased motor-
memory circuit connectivity and reduced prefrontal 
cortical connectivity (146). Others have reported that 
methylphenidate, mostly reduced functional connectivity 
between NAc and ventral pallidum and subthalamic nucleus, 
and reduced connectivity between NAc and prefrontal 
and temporal cortices (147). However, in another study 
methylphenidate at the same dose (40 mg) was mostly 
found to increase connectivity between dorsal attentional 
networks and thalamus, increase connectivity between 
association areas and primary sensorimotor regions, 
and decrease connectivity with striatothalamocortical 
circuits (148). These above-mentioned effects of 
methylphenidate, are mediated, in part, by elevated 
extracellular levels DA and norepinephrine. However, 
the effect of DA receptor stimulation on functional 
connectivity is unclear. Subjects administered the DA 
agonist, bromocriptine show changes in frontal-striatum 
functional connectivity, which specifically correlated with 
working memory performance (149). In consideration 
of the functional connectivity changes affected in drug 
use disorders (summarized in the preceding sections); 
it makes much less sense to use drugs that bind to DA 
receptors or transporter. That is to say, the results of such 
studies do not seem to be well aligned with outcomes, 
that would benefit or correct deficits in functional 
connectivity. However, based on the effects of L-DOPA 
and our preliminary results with KB220, we argue that 
enhancement of DAergic biochemical pathways would 
instead be an improved strategy adjusting or balancing 
resting state networks, particularly in frontal and striatal 
regions (Figures 1 and 2).

The role of glutamate in functional connectivity 
has largely been assessed by studies seeking to 
understand the effects of ketamine on functional 
connectivity. Ketamine, which has antidepressant 
properties, is a NMDA receptor blocker. Based on the 
excitatory neurotransmission mediated through NMDA 
receptors (activation leading to neuronal depolarization), 
one would expect significant reductions in functional 
connectivity (because such depolarizations would 
be prevented in the presence of the drug). However, 
some studies have shown hyperconnectivity instead. 
Ketamine increased prefrontal connectivity in healthy 
participants (150) and corticothalamic circuitry (151). 
Positive symptoms of ketamine are associated with 
increased cortical paracentral lobule and left precentral 
gyral connectivity, whereas increased connectivity in 
prefrontal and striatal areas was surprisingly associated 
with negative symptoms (152). Interestingly, NMDA 

blockade reduced functional connectivity between the 
DMN and dorsomedial prefrontal cortex, and DMN 
to prefrontal, anterior and posterior cingulate cortical 
areas (153). Regulating extracellular levels of glutamate 
and increasing glutamate transmission (which are both 
disrupted in drug use disorders) with N-acetylcysteine 
(NAC) increases functional connectivity between major 
mesocorticolimbic areas including the ventral striatum, 
prefrontal cortex, precuneus, and areas of the DMN (154). 
This increased functional connectivity correlates with 
improved affective scores and less craving (154).

Overall, the above results bring us a step closer 
to understanding the contributions of DA and glutamate 
in modulating resting state networks. An important aspect 
of these studies that should be considered in light of the 
varied results is the potential for baseline connectivity 
to differ across individual subjects. Moreover, regarding 
treatment strategies, it appears that treatments directed 
at balancing biochemical functioning in mesocorticolimbic 
areas, like L-DOPA, KB220, and NAC, might provide a 
better strategy for correcting the deficiencies present in 
these regions and a better and more consistent readout 
in functional connectivity studies.

To summarize, Willuhn’s group (76) reported 
that dopaminergic function is reduced as substance 
(cocaine) and non-substance-related addictive behavior 
increases. Decreases in D2/D3 receptors and lower 
activation of cues in occipital cortex and cerebellum were 
associated with chronic cocaine exposure by Volkow 
et al. in a recent PET study (155). Therefore, treatment 
strategies, directed towards dopamine homeostasis like 
less powerful pro-dopamine regulators (unable to induce 
DA receptor down –regulation), along with glutaminergic 
optimization using NAC that might conserve DA function 
and may be an attractive approach to relapse prevention 
in psychoactive drug and behavioral addictions. However, 
we caution against the sole use of L-DOPA because of 
known side effects as seen with Parkinson patients (156).

4.3. Dopamine and brain functional 
connectivity: Psychiatric genetic links

Arvid Carlsson, Paul Greengard, Eric Kandel 
equally shared the 2000 Nobel Prize in Physiology or 
Medicine for their outstanding work concerning signal 
transduction in the nervous system and the role of DA as 
a neurotransmitter. Now fifteen years later neuroscientists 
and clinicians have seen some amazing advances 
concerning DA and brain functional connectivity and 
genetic risk factors affecting psychiatric conditions. 
With advances in neuroimaging techniques such as 
fMRI, single-photon emission computerized tomography 
(SPECT), PET, and now optogenetics, understanding 
of DA’s role in the brain will change. Keeping within this 
narrow perspective some studies that further enhance 
our knowledge related to DA and potential DA regulation 
will briefly be discussed.
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It is important to acknowledge the seminal 
findings of Blum et al. (10) published in JAMA on the 
first association of the DRD2 A1 allele as a risk factor 
for severe alcoholism. The role of the A1 allele of the 
DRD2 gene and other reward genes like Mu-Opiate 
Receptor, MOA-A, GABAA, COMT, 5-HTTLPR, DRD4, 
and associated risk alleels, have been confirmed in 
RDS behaviors (157-170). There is also evidence of an 
association of the DRD2 Taq A1 polymorphisms with 
addiction relapse (171), increased hospitalization (172), 
and even mortality (173). However, much less is known 
about the actual role of DA per se in brain functional 
connectivity and potential allelic risk factors in developing 
deficits.

As of 06-29-2016 a word Pubmed search 
“Psychiatric Genetics” revealed 17,433 articles. However, 
a word search using the terms, “Psychiatric Genetics” 
and “Brain Functional Connectivity” revealed only 74 
articles suggesting the relatively new area of research. 
The following section provides a brief snapshot of this 
emerging area of psychiatry.

In one experiment, Zhou et al. (174) found 
significant COMT (rs4680)×DRD2(rs1076560) interaction 
in intra-network connectivity. The network included the 
left medial prefrontal cortex of the anterior DMN, the 
right dorsal attention network at the right dorsolateral 
frontal cortex, and the left dorsal anterior cingulate cortex 
in the salience network. Moreover, they also found that 
DRD2 genotypes exerted differential effects on intra-
network connectivity in subgroups of COMT genotypes. 
Zhou et al. concluded that “These findings suggest a 
network-dependent modulation of the DA-related genetic 
variations on intra-network connectivity.” Regarding 
clinical relevance, (175) a set of structured multimodal 
activities (Combination Training; CT), revealed that 
cognitive/occupational performances and reorganization 
of functional connectivity benefited from greater functional 
connectivity and cortical thickness in a group of healthy 
elderly individuals. This effect was most pronounced in 
carriers of polymorphisms of both COMT (Val158Met) 
and DAergic genes (DRD3 ser9gly).

Work by Tian et al. (176) suggested that COMT 
and DRD2 genotypes may associate with brain functional 
connectivity and dopamine signaling. In support, Xu 
et al. (177) evaluated different genotypic combinations 
of COMT and DRD2 in healthy humans and found a 
non-additive COMT x DRD2 interaction in rsFC in the 
right dorsal anterior cingulate cortex (dACC) exhibiting 
a U-shape modulation by DA signaling. Interestingly, the 
authors suggest “healthy young adults without optimal 
DA signaling may maintain their normal behavioral 
performance via a functional compensatory mechanism 
in response to structural deficit due to genetic variation.”

Interestingly, Meyer et al. (178) pointed out 
that prefrontal DA levels are relatively increased in 

adolescence compared to adulthood. It is well known 
that carriers of the MET variant of COMT result in lower 
enzymatic activity and higher DA availability. Oppositional 
effects were observed in prefrontal brain networks at 
rest, of adolescents and adults, in areas of the brain 
including anterior medial PFC and ventrolateral as well 
as the dorsolateral PFC, and parahippocampal gyrus. 
They also observed an age-dependent and significant 
reversal of COMT Val158Met effects on resting state 
functional connectivity between the anterior medial 
PFC and ventrolateral and the dorsolateral PFC, and 
parahippocampal gyrus. Val homozygous adults exhibited 
increased and adolescents decreased connectivity 
compared to Met homozygotes for all reported 
regions. This finding is somewhat surprising given the 
understanding that carriers of the Val variant results in 
a lower availability of synaptic DA. As such, one would 
expect a decrease in rsFC and not an increase as seen 
in adults compared to adolescents (179). Nevertheless, 
it does suggest that adolescent and adult resting state 
networks are dose-dependent and diametrically affected 
by COMT genotypes when a hypothetical model of DA 
function that follows an inverted U-shaped curve is 
followed.

It is well known that DA signaling through D2 
and other DA receptors has been implicated in reward 
processing, regulation of cognition and the effects of 
drugs of abuse, and also has significant effects on 
responses to stressors and salient aversive stimuli (180). 
In fact, Peciña et al. (181) found that a haplotype block 
comprised of two SNPs, rs4274224, and rs4581480, 
had an effect on the hemodynamic responses of the 
subgenual anterior cingulate cortices (sgACC) during 
implicit emotional processing and the dorsolateral PFC 
during reward expectation. The authors suggest that 
these findings may be normal variation and contribute 
to potential vulnerability to psychopathology associated 
with functions, such as risk for mood and substance use 
disorders (or RDS behaviors).

Recent evidence supports the notion that 
the DMN consists of brain regions which relative to 
cognitive processing have “increased” activity during 
rest. Moreover, this activity in the DMN is associated 
with functional connectivity with the striatum, a 
DA-enriched brain region (182). Specifically, it was 
found a lowered DA state caused the following network 
changes: reduced global and local efficiency of the 
whole brain network, reduced regional efficiency in limbic 
areas, reduced modularity of brain networks, and greater 
connectivity between the normally anti-correlated task-
positive and DMN. In support of the work, earlier studies 
by Sambataro et al. (183) evaluated a functional SNP 
within the dopamine D2 receptor gene (DRD2, rs1076560 
G > T) shifts splicing of the 2 D2 isoforms, D2 short and 
D2 long. Within the anterior DMN, the variant GG subjects 
had relatively greater connectivity in medial PFC, which 
was directly correlated with striatal DA transporter (DAT) 
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binding. However, within the posterior DMN, GG subjects 
had reduced connectivity in posterior cingulate relative 
to T carriers. Additionally, rs1076560 genotype predicted 
connectivity differences within a striatal network, and 
these changes were correlated with connectivity in 
medial PFC and posterior cingulate within the DMN. 
Sambataro et al. (183), proposed that that genetically 
determined D2 receptor signaling is associated with DMN 
connectivity and that these changes are correlated with 
striatal function and presynaptic DA signaling. Moreover, 
regarding cognitive processing, non-carriers of the 
A1 allele of the DRD2/ANKK1-Taq A1 polymorphism 
associated with higher DRD2 density show increased task-
switching costs, increased prefrontal switching activity in 
the inferior frontal junction area, and increased functional 
connectivity in dorsal frontostriatal circuits relative to 
A1 allele carriers (184). Also, Stelzel et al. (184) found 
a DRD2 haplotype analysis confirmed an association 
between high D2 density and increased switching effort. 
Accordingly, these results emphasize the importance of 
individual differences in striatal D2 signaling in healthy 
humans, leads to individual differences in switching 
intentionally to newly relevant behaviors.

Finally, understanding that personality traits 
linked to emotion processing are, in part, heritable and 
genetically based, Blasi et al. (185), evaluated the role of 
the DRD2 (intronic single nucleotide polymorphism within 
the DRD2 (rs1076560, guanine > thymine or G > T). They 
found greater amygdala activity during implicit processing 
and dorsolateral PFC response during explicit processing 
of facial emotional stimuli in GG subjects compared with 
GT. They also discovered that rs1076560 genotype 
is associated with differential relationships between 
amygdala/dorsolateral PFC functional connectivity and 
emotion control scores.

5. SUMMARY AND PERSPECTIVES

Based on the above-cited literature, we predict 
that a feeling of well-being can be achieved only when 
DA is released in the nucleus accumbens at balanced 
“dopamine homeostatic” levels. Any deviation causes 
“dopamine resistance” and as such could result in 
increased aberrant cravings. Accordingly, there is a 
need for a compound that can target and achieve DA 
regulation, i.e. DA homeostasis. There is further need for 
a compound that can be administered to normalize such 
brain functional impairments by activating the release of 
brain DA at the reward site and thus reduce excessive 
craving behaviors.

It is now known that drug addiction is 
characterized by widespread abnormalities in brain 
function and neurochemistry, including drug-associated 
effects on concentrations of the excitatory and inhibitory 
neurotransmitters glutamate and gamma-aminobutyric 
acid (GABA), respectively. In healthy individuals, 
these neurotransmitters may drive the resting state, 

a default condition of brain function that is disrupted 
in addiction. We are in agreement with the concept 
that resting state functional connectivity may have 
valuable clinical relevance to the development of 
and risk for RDS behaviors. Studies have shown that 
addicted individuals tended to show decreases in the 
glutaminergic system compared with healthy controls. 
Moreover, select corticolimbic brain regions showing 
glutamatergic and/or GABAergic abnormalities have 
been similarly implicated in resting-state functional 
connectivity deficits in drug addiction (186). There are 
many studies showing impairments of resting state 
functional connectivity with alcohol, opiates, cannabis, 
psychostimulants, nicotine, glucose and even some of 
the behavioral addictions, further suggesting the need 
to find compounds that will restore normal resting state 
functional connectivity (6, 187-200).

Along these lines, it has been shown that 
when NAC was compared to placebo, smokers who 
maintained abstinence, reported less craving and higher 
positive affect, and concomitantly exhibited stronger 
rsFC between ventral striatal nodes, medial prefrontal 
cortex and precuneus-key DMN nodes, and the 
cerebellum (154). Most recently, our laboratory proposed 
the combination of NAC with a well-known enkephalinase 
inhibitor and other pro-DAergic substances to combat 
aberrant RDS behaviors (6).

6. CONCLUSION

The role of DA in brain function is being clarified 
by the advancement of neuroimaging tools indicating its 
critical involvement in resting state functional connectivity 
in the brain reward circuitry. It is accepted that alterations 
of dopaminergic regulation, lead to changes in brain 
functional connectivity considered by many as a key to 
all addictions. Given the vast amount of research in this 
area as an emerging science, it is important to realize 
that ultimately studies on humans are tantamount to 
the development of clinically relevant therapeutics. 
However, continued work on animal models of addiction 
involving, for example, fMRI coupled with optogenetics 
seems parsimonious to extract not only required neuro-
mechanisms of substance and non-substance-related 
addictive behaviors (RDS) and provide a mechanistic 
rationale to evaluate promising anti-RDS agents.
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