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1. ABSTRACT

Diabetes is generally associated with 
vasculopathy, which contains both microvascular and 
macrovascular complications, associated with high 
morbidity and mortality. Currently, despite interventional 
therapy, the overall prognosis for patients with diabetic 
vasculopathy remains unsatisfactory. Angiogenesis and 
vascular injury and repair are associated with a variety 
of cells. However, the molecular mechanisms of the cells 
that are involved in pathogenesis of diabetic vasculopathy 
remain largely unknown. As novel molecules, microRNAs 
(miRs) take part in regulating protein-coding gene 
expression at the post-transcriptional level, and contribute 
to the pathogenesis of various types of chronic metabolism 
disease, especially diabetic vasculopathy. This allows 
miRs to have a direct function in regulation of various 
cellular events. Additionally, circulating miRs have been 
proposed as biomarkers for a wide range of cardiovascular 
diseases. This review elucidates miR-mediated regulatory 
mechanisms in diabetic vasculopathy. Furthermore, we 
discuss the current understanding of miRs in diabetic 
vasculopathy. Finally, we summarize the development of 
novel diagnostic and therapeutic strategies for diabetic 
vasculopathy related to miRs.

2. INTRODUCTION

Diabetes has become a major public health 
problem worldwide. According to the China National 
Diabetes and Metabolic Disorders Study Group report, the 
prevalence of diabetes has been increasing alarmingly 
throughout China, and the age-standardized prevalence of 
total diabetes and pre-diabetes is estimated to rise to 9.7% 
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and 15.5%, respectively (1). Diabetes has many short-
term and long-term complications. With the improvement 
of medical treatment, short-term complications are coming 
under effective control, but long-term complications are 
still a major problem. Among chronic complications, 
vasculopathy remains the major cause of morbidity 
and mortality in patients with diabetes (2). These 
complications can be divided into micro- and macro-
complications. The major microvascular complications 
are nephropathy, retinopathy, and neuropathy, whereas 
the macrovascular complications manifest themselves 
as accelerated atherosclerosis, resulting in premature 
ischemic heart disease, increased risk of cerebrovascular 
disease, and severe peripheral vascular disease (3). 
Although various therapies have emerged during past 
decades, the clinical prognosis of diabetic vasculopathy 
remains far from ideal (4). Early impairment of glucose 
metabolism remains below the threshold for diagnosis 
of type 2 diabetes mellitus (T2DM); a state known as 
impaired glucose tolerance (5). Atherosclerotic lesion 
formation is initiated by endothelial cell damage leading to 
endothelial dysfunction (6). It is well known that diabetes 
and cardiovascular disease have a close relationship. 
Recent studies have suggested that metabolic 
syndrome is related to the incidence of peripheral arterial 
disease (7). In vitro studies have shown that high glucose 
levels can damage endothelial cell function, inhibit 
proliferation and migration, and promote apoptosis (8). 
Emerging evidence suggests that circulating stem or 
progenitor cells play an important role in endothelial cell 
regeneration (9). Hill et al. suggested that the number of 
circulating progenitor cells is reduced sharply in patients 
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with diabetes or other chronic metabolic diseases (10). In 
addition, the function of endothelial progenitor cells (EPC) 
is impaired (11, 12). The currently accepted theory is that 
endothelial progenitor cells are damaged in patients with 
diabetes, and their ability to home to damaged areas is 
limited, leading to an abnormal repair process (13, 14). 
High glucose and advanced glycation end products 
(AGEs) can also damage other important cells, such 
as mesenchymal stem cells, which contribute to tissue 
regeneration, differentiation and immunomodulation (15). 
Diabetes mellitus is a prothrombotic condition, with 
persistent endothelial cell dysfunction with suppression 
of nitric oxide and prostacyclin synthesis, combined with 
platelet resistance, leading to loss of control over platelet 
activation (16). MicroRNAs (miRs) belong to the family of 
non-coding RNAs, which are ~22 nucleotides (nt) in size 
and regulate gene expression at the post-transcriptional 
level, and numerous studies have established a wide range 
of critical roles for miRs (17, 18). It is now well established 
that miRs are important for vascular development, 
physiology and disease (19). Many studies have found 
that miRs may be the key regulators of endothelial 
progenitor cell proliferation and migration (12, 20, 21). 

For example, our previous studies have found specific 
miRs downregulating EPCs in the cardiovascular system 
in patients with diabetes, which impairs their functional 
properties. Many other studies have shown that EPC 
functions are temporally and spatially regulated by miRs 
in many aspects (20, 22, 23). In this review, we highlight 
miR-dependent regulation of diabetic vasculopathy, 
exploring new mechanisms that could be used for miR-
based therapeutic approaches for diabetic vasculopathy.

3. PHYSIOLOGICAL FEATURES OF MIRS 
AND THEIR MECHANISMS OF ACTION

The physiological features of miRs and their 
mechanisms of action are shown in Figure 1. miRs are 
first transcribed by RNA polymerase II as primary miRs 
(pri-miRs) in the nucleus through a complicated and 
multistep process. The pri-miRs are then processed further 
in the nucleus by Drosha into a 60~70 nt precursor miR (pre-
miR), acting with its dsRBD partner, called DGCR8 (24-26). 
The nuclear export protein, exportin-5, carries the pre-miRs 
to the cytoplasm bound to Ran GTP, which can transport 
RNAs and proteins through the nuclear pores (27, 28). The 

Figure 1. Physiological features of miRs and their mechanisms of action. DGCR8 = dsRBD domain binding partner protein; dsRBP=a double strand RNA 
binding protein; RISC = RNA-induced silencing complex; TRBP = HIV-1 TAR RNA binding protein.
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resulting pre-miRs have a hairpin structure. Dicer and its 
dsRBD partner protein cleave the pre-miRs to generate 
a duplex containing two strands in the cytoplasm (29). 
The duplex is recruited into an RNA-protein complex 
called RNA-induced silencing complex (RISC), which is 
dependent on Dicer, other RNA-binding domain proteins, 
and members of the Argonaute protein family (30, 31). And 
finally switching to mature forms--a single RNA filament 
of a 20-22nt. The mRNA targeting pathway by miRs 
involves recognition and binding between the miRs and 
mRNA (32). This miR-mRNA interaction happens with 
either complete or incomplete matching via a Watson-Crick 
base-paring mechanism (33, 34). Successive research has 
shown that each miR has the ability to silence hundreds 
of different target genes, estimating that miRs regulate 
gene expression of >60 % of the mRNAs. Moreover, one 
mRNA can be targeted by more than one miR, thus adding 
complexity to the regulatory networks (33-35).

4. MIRS IN VASCULAR DEVELOPMENT AND 
INJURY

In recent years, the importance of miR gene 
regulation for vascular development and function in 
patients with diabetes has been widely studied (36). 
Furthermore, Dicer silencing significantly impaired the 
angiogenesis capacities of endothelial cells (ECs) (37). 
Given that Dicer is an important regulator in the production 
of miRs, we can conclude that miRs play critical functional 
roles in vascular development. Chronic hyperglycemia 
leads to vascular disease, and several studies in patients, 
animal models and in vitro studies have revealed that 
hyperglycemia and AGEs alters endothelial metabolism 
and function, causing vascular injury (3). It has been 
proposed that diabetes alters the expression and function 
of many of the aforementioned miRs. Circulating miRs 
have emerged as novel biomarkers of diabetes (38). 
Many inflammatory processes are involved with miRs. 
For example, miR-126 was one of the first miRs found to 
have altered circulating concentrations in T2DM (21, 39). 
It is suggested that endothelial hypoxia-inducible factor 
(HIF)-1α promotes atherosclerosis inflammation, and the 
process is regulated by miR-19a (40). Moreover, miR-19a 
regulates lipopolysaccharide-induced endothelial cell 
apoptosis through modulating the expression of apoptosis 
signal-regulating kinase 1 (41). miR-21 is involved 
with fibrosis, and promotes renal fibrosis in diabetic 
nephropathy by targeting phosphatase and tensin 
homologue (PTEN) and mothers against decapentaplegic 
homolog (SMAD) 7 (42). Recently, a meta-analysis 
confirmed that 40 miRs are significantly dysregulated in 
T2DM. miR-29a, miR-34a, miR-375, miR-103, miR-107, 
miR-132, miR-142-3p and miR-144 are potential circulating 
biomarkers of T2DM (43). Down-regulation of miR-34a 
alleviates mesangial proliferation in vitro and glomerular 
hypertrophy in mice with early diabetic nephropathy by 
targeting growth Arrest Specific-1 (GAS1) (44). Chen 
et al. have demonstrated that miR-34a is an important 

regulator in vascular SMC (VSMC) function and neointima 
hyperplasia, suggesting its potential therapeutic 
application for vascular diseases (45). miR-34a may be 
further investigated as a therapeutic target to reduce 
β-cell death and dysfunction (46). miR-135a promotes 
renal fibrosis in diabetic nephropathy by regulating 
transient receptor potential-canonical 1 (TRPC1) (47). 
miR-135a targets insulin receptor substrate 2 (IRS2) 
levels by binding to its 3’ untranslated region and this 
interaction regulates skeletal muscle insulin signaling, 
which provide more information about aberrant miRs-
135a signatures associated with diabetes (48). miR-138 
might promote proliferation and migration of smooth 
muscle cell (SMC) in db/db mice through suppressing the 
expression of silent mating-type information regulator 2 
homolog 1 (SIRT1) (49). Khamaneh et al. suggest that 
changes in the expression of miR-155 may participate in 
the pathogenesis of diabetes-related complications (50). 
They showed that miR-155 expression was significantly 
decreased in diabetic kidney, heart, aorta, peripheral 
blood mononuclear cells, and sciatic nerve compared 
with the controls (50). Furthermore, Huang et al. found 
that high glucose levels induced over-expression of 
miR-155 and miR-146a in human renal glomerular 
endothelial cells, which in turn increased tumor necrosis 
factor (TNF)-α, transforming growth factor (TGF)-β1, 
and nuclear factor (NF)-κB expression (51). miR-346 
regulates SMAD3/4 expression in renal tissue, which 
influences renal function and glomerular histology in DN 
mice (52). miRs are expressed abundantly in quiescent 
endothelial cells and can suppress abnormal endothelial 
activation through targeting multiple angiogenic signaling 
pathways specifically in the endothelium (53). Caporali 
et al. demonstrated that miR-503 regulates pericyte–
endothelial cell crosstalk in microvascular diabetic 
complications (54). Knockdown of miR-378a increases 
expression of vimentin and β3 integrin, which accelerates 
fibroblast migration and differentiation in vitro and 
enhances wound healing in vivo (55). From all the above 
(Table 1), it is evident that miRs are associated with 
diabetic vascular alterations. However, this subject needs 
further investigation.

5. MIRS REGULATING EPC FUNCTION AND 
VASCULAR REPAIR

Endothelial dysfunction depends on the extent 
of the injury, as well as the capacity for repair (56). The 
endothelium has a weak capacity for self-repair, because 
it is formed mostly of terminally differentiated cells with 
low proliferative capacity (35). Bone-marrow-derived 
mononuclear cells that are capable of regeneration 
circulate in the peripheral blood (57). As a group, these 
different cell populations were initially classified as EPCs, 
which have the capacity to differentiate to endothelial 
cells (19). EPCs play an important role in vascular 
homeostasis and repair in patients with T2DM (19, 58). 
EPCs migrate toward injured endothelial regions, where 
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chemokine signals are released, such as stromal cell-
derived factor (SDF)-1α (59), intercellular adhesion 
molecule (ICAM)-1 (60), and vascular cell adhesion 
molecule (VCAM)-1 (61). Homing to the injured sites 
takes place through interactions axes such as SDF-1α/
chemokine CXC receptor (CXCR)4 (62), ICAM-1/
CD18 (60), and VCAM-1/integrin α (61). Once embedded 
in the injured site, EPCs are involved in endothelial 
repair either by proliferation or forming new endothelial 
cells (63). Increasing research suggests that diabetes 
and other chronic metabolic disease affect the number 
and function of EPCs (64). The differences in miRs in 
EPCs between patients with and without diabetes have 
been verified by other researchers (64-67). Zuo et al. 
suggested that miR-21 suppresses EPC proliferation 
by activating the TGF-β signaling pathway via 
downregulation of WW domain-containing E3 ubiquitin 
protein ligase 1 (WWP1) (68). EPCs also play an 
important role in postnatal neovascularization, and the 
process is also regulated by miRs. Zheng et al. indicate 
that miR-22 induces EPC senescence by downregulating 

AKT expression, providing a potential novel target for 
the reversal of EPC dysfunction in angiogenesis (69). 
Moreover, our previous study proved that downregulation 
of miR-130a contributes to EPC dysfunction in patients 
with diabetes via runt-related transcription factor 3 
(Runx3) (21). Downregulation of miR-130a may underlie 
endothelial dysfunction in diabetes through the activation 
of the c-Jun N-terminal kinase signaling pathway (70). 
Zhang et al. showed that miR-126 targets PI3K regulatory 
subunit p85 beta (PIK3R2) to inhibit endothelial-to-
mesenchymal transition (EMT) in EPCs, and this process 
involves regulation of the PI3K/Akt signaling pathway (71). 
miRs have the potential to be used as biomarkers for 
early diagnosis of intimal hyperplasia in cardiovascular 
disease, and as therapeutic tools for cardiovascular 
diseases mediated by the EMT process (71). Other 
miRs, such as miR-31, miR-126, miR-206, miR-221 
and miR-720, play an important role in regulating EPC 
migration, proliferation and apoptosis (12, 23, 72-74). 
We summarized the content about miRs regulating EPC 
functions and vascular repair in Table 2.

Table 1. miRs expressed in vascular development and injury
miRs Up/Down regulation Targets Function regulated References

miR-19a Up CXCL1 Monocyte adhesion  (40)

miR-21 Down SMAD7/PTEN Glomerulosclerosis  (42)

miR-34a Down Notch1 VSMC proliferation/neointima formation  (45)

miR-135 Down TRPC1 Renal fibrosis  (47)

miR-138 Down SIRT1 VSMC proliferation  (49)

miR-155/146 Down --- Migration, angiogenesis  (51)

miR-503 Down CXCR4, DLL4, FZD4 Inflammation-mediated glomerular endothelial injury  (54)

miR-346 Down SMAD3/4 Ocular neovascularization  (53)

miR-378a Down Vimentin and β3 integrin Matrix accumulation, glomerular hypertrophy and 
mesangial cell proliferation

 (55)

Table 2. miRs expressed in EPCs related to vascular repair
miRs Up/Down regulation Targets Function regulated References

miR-21 Down WWP1 Proliferation  (68)

miR-22 Down AKT3 Senescence  (69)

miR-31 Down TBXA2R Angiogenesis/vasculogenesis  (23)

miR-126 Up Spred-1 Migration, apoptosis, proliferation, angiogenesis  (12, 17)

Down PIK3R2 Inhibit EMT  (71)

miR-130a Down Runx3 Proliferation, migration, differentiation, apoptosis, colony and tubule formation  (21)

Down MAP3K12 Apoptosis  (70)

miR-150 Down c-Myb Migration, tube formation, homing, thrombus recanalization and resolution  (72)

miR-206 Down VEGF-A Migration, Tube Formation  (73)

miRs-221 Up c-kit Neovasculogenesis  (74)

miR-720 Down VASH1 Migration and tubule formation  (23)
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6. MIRS IN PLATELET FUNCTION AND 
INFLAMMATION IN DIABETES

DM can be regarded as a metabolic syndrome, 
containing complex risk factors such as dyslipidemia, 
elevated blood pressure, and raised plasma glucose, 
representing prothrombotic and proinflammatory 
states (75). Platelets are the core component of the 
prothrombotic process. Although platelets are anuclear, 
they are capable of protein synthesis and contain different 
mRNAs and miRs (76-79). Platelets contain large 
amounts of miRs that are altered by disease, in particular, 
DM (80, 81). Platelet-derived miRs can regulate platelet 
protein expression (76). Elgheznawy et al indicated that 
β1 integrin and FXIII-A were downregulated by platelet 
miR-223 (80). This was confirmed by other studies (82-84). 
Hyperglycemia activates platelet function through miR-144 
and miR-223, which downregulates IRS-1 and upregulates 
P2Y receptor 12 (P2Y12) expression in the platelets of 
patients with T2DM, through the IRS-1/PI3K/Akt signaling 
pathway (85). Cystatin expression is downregulated by 
platelet-derived miR-92a in patients with T2DM and lower 
limb ischemia (86). However, Stratz et al. did not find any 
differences in platelet miRNA profiles between patients 
with and without diabetes (87). In Stratz et al. study, drugs 
used to treat coronary artery disease may have influenced 
the results. Some studies have a found marked reduction 
of miRs after anti-platelet therapy (88-92). It is suggested 
that circulating miRs can be novel biomarkers for platelet 
activation (93), and platelet-derived miRs have been shown 
to be novel biomarkers the early diagnosis of T2DM (94).

miRs are associated with inflammatory status 
in patients with T2DM. Recent studies have suggested 
that miR-146 inhibits the inflammation associated with 
diabetic retinopathy. miR-146 inhibits NF-κB activation 
and subsequent inflammatory responses in human 
retinal endothelial cells (95). Fulzele et al. found that 
ectopic expression of miR-146 suppressed adenosine 
deaminase-2 (ADA2) expression and activity, and 
TNF-α release in amadori-glycated albumin (AGA)-
treated human macrophages related to retinal 
inflammation (96). Decreased serum level of miR-
146a is a sign of chronic inflammation in patients with 
T2DM (97). Circulating angiogenic cells from patients 
with T2DM and major cardiovascular events have high 
levels of miR-21, which demonstrates that circulating 
miR -21 is a biomarker of systemic inflammatory 
status (98). Figure 2 shows the mechanism of 
inflammation and platelet hyperactivity in T2DM, 
showing the possible targeting sites for miRs.

7. MIRS AS POTENTIAL PROGNOSTIC 
BIOMAKERS AND THERAPEUTIC TARGETS 
IN DIABETIC VASCULOPATHY

Our understanding of how these miRs function 
in cellular networks provides new molecular targets for 

therapy of diabetic vasculopathy, and the first examples of 
miR-based therapy in animal models are well underway. 
Zampetaki et al. identified two angiogenicmiRs, 
miR-320a and miR-27b, as potential biomarkers for 
diabetic retinopathy (38). Liu et al. presented direct 
evidence suggesting that miRs are intrinsic suppressors 
of pathological ocular angiogenesis in endothelial 
cells (53). Suppression of endogenous miRs in 
pathological neovascularization may induce endothelial 
activation to trigger pathological angiogenesis. miRs as 
endothelium-specific intrinsic inhibitors of pathological 
ocular angiogenesis suggest the potential of modulating 
miRs for the treatment of neovascular eye diseases 
and potentially other vascular diseases (53). García 
et al. suggested that patients with diabetic retinopathy 
had higher expression of miR-221 than those without 
retinopathy, and identification of biomarkers of diabetic 
complications might be useful for monitoring disease 
progression and potential therapeutic targets (65). DM 
is a high risk factor for stroke and leads to more severe 
vascular and white-matter injury than stroke alone. 
Cheng et al. provided evidence for epigenetic regulation 
of gene expression and function in chronic experimental 
diabetic neuropathy (99). They also showed that miR-
126 may contribute to human umbilical cord blood cells 
(HUCBC)-induced neurorestorative effects in T2DM 
mice (100). Yousefzadeh et al. found that deregulation 
of miR-146a may be involved in the pathogenesis 
of diabetic neuropathy (101), which suggests that 
miR-146a is a potential biomarker in diabetic retinopathy. 
Another serious microvascular complication is diabetic 
nephropathy. Liu et al. suggested that urinary miR-126 
was significantly higher in patients with T2DM with diabetic 
nephropathy (102). Successful treatment significantly 
reduced urinary miR-126 in patients with T2DM with 
diabetic nephropathy (102). So, miR-126 could be used 
as a biomarker of diabetic nephropathy and to monitor 
the treatment response (102). Other current studies have 
proved that EPCs are biological markers of peripheral 
arterial disease (103). And now studies have proved 
that endothelial progenitor cells as a biological marker of 
peripheral artery disease (104). Riches et al. suggested 
that increased expression of miR-143/5 in saphenous 
vein SMCs from patients with T2DM induces persistent 
changes in phenotype and function, indicating that 
miR-143/5 play an important role in diabetic peripheral 
vascular disease (105, 106).

miR-21 overexpression enhances TGF-β1-
induced EMT by targeting SMAD7, which aggravates 
renal damage in diabetic nephropathy (107). miR-34a 
alleviates mesangial proliferation in vitro and glomerular 
hypertrophy (44), and miR-135a promotes renal fibrosis in 
diabetic nephropathy (47). miR-346 attenuates SMAD3/4 
expression in renal tissue and ameliorates renal function 
and glomerular histology in mice with diabetic nephropathy, 
which paves the way for clinical studies of miR-346 in 
diabetic nephropathy (52). Bhatwadekar et al. used 



MicroRNAs in diabetic vasculopathy

 456 © 1996-2017

autologous CD34+ cells for vascular repair in spatients 
with diabetic microvascular disease, and restoring levels 
of miR-92a enhanced the usefulness of CD34+ cells in 
autologous cell therapy (106). Endothelial HIF-1α promotes 
atherosclerosis by triggering miR-19a-mediated CXC ligand 
(CXCL)1 expression and monocyte adhesion, indicating 
that inhibition of the endothelial HIF-1α/miR-19a pathway is 
a therapeutic option againstatherosclerosis (40). So, as in 
animal experiments, miR-98 upregulated TRB2 in targeting 
way, which plays important roles in the pathogenesis 
of diabetic complications (108). Thus, miR-98 may be 
regarded as a novel therapeutic strategy for early large 
artery defects in T2DM. In summary, experiments in vitro 
and in vivo indicate that miRs are potential prognostic 
biomakers and therapeutic targets in diabetes.

8. CONCLUSIONS AND PERSPECTIVES

miRs are involved in vascular injury and 
repair, and fibrosis, and have many pathological effects 
in diabetes. One single miR can possibly modulate 

dozens of target genes simultaneously, and one gene 
can be targeted by multiple miRs, thus, it is necessary 
to understand better the integration of miRs within gene 
regulatory networks. Although researchers have made a 
lot of progress, there is a need to learn how to prevent 
or delay T2DM vasculopathy with molecular-based 
therapies. There is a need to find miR-based biomarkers 
and diagnostic strategies useful for the early detection of 
these complications in asymptomatic patients.
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