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1. ABSTRACT

Viruses are important human and animal 
pathogens causing disease that affect global health and 
the economy. One outcome of many virus infections 
is the regulation of cellular trafficking machinery. Viral 
proteins recruit and interact with cellular trafficking 
proteins to divert the normal trafficking of key proteins 
or to induce the formation of novel membrane 
structures in the host cell. These alterations often 
increase replication efficiency by mislocalizing 
immune regulators or restriction factors ot by creating 
platforms for replication and assembly of new virus 
particles. Our knowledge of how viruses interact with 
the cellular trafficking machinery is still limited and 
furthering this understanding will be important for the 
future development of prophylactic and therapeutic 
treatments. This review provides a glimpse of the types 
of interplay between viral and cellular factors that result 
in a disruption of cellular trafficking or modifications to 
cellular membranes.

2. INTRODUCTION

The membrane system of eukaryotic cells 
is a complex, highly developed network of distinct 
compartments consisting of unique repertoires of 
lipid and protein composition. The diverse membrane 

composition and shape of organelles provide distinct 
identities and allow for execution of specific functions. 
The sophisticated network of transport machinery in 
eukaryotic cells ensures a balanced flow of membrane 
and membrane cargo between these compartments. 
The regulated and organized flux among compartments 
is essential for maintaining organelle identity and 
membrane homeostasis. Viruses, many of which 
require interactions with membranes at multiple steps 
during their replication cycle, often alter the membrane 
profiles of cells. These alterations have several 
benefits for the virus and may be essential for immune 
evasion strategies or to create a novel milieu optimal 
for replication. These changes may be a direct result 
of viral proteins targeting cellular machinery, or an 
indirect effect associated with viral replication. Whether 
direct or indirect, these changes are remarkable. In this 
review, we address both viral-mediated regulation of 
trafficking events and the morphological alterations to 
the membranes of cellular organelles. Recognizing the 
large amount of quality research in this area, we focus 
on post-entry events, namely alterations associated 
with genome replication and virion assembly and 
consider only a subset of the mechanisms of viral-
mediated regulation of membrane transport and 
organelle morphology.
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3. VIRUSES, THE GOLGI APPARATUS  
AND ARFS

ADP ribosylation factors (Arfs) constitute a 
family of GTP binding proteins that regulate membrane 
trafficking pathways. There are three classes of 
mammalian Arf proteins, distinguished by size and 
homology (1). As a generalization, class I and II Arfs 
mainly localize to the trans-Golgi network (TGN), 
endoplasmic reticulum-Golgi intermediate complex 
(ERGIC) and Golgi apparatus to mediate membrane 
trafficking between these compartments, whereas the 
class III Arf6 localizes to the plasma membrane and 
is involved in endocytosis (2–4). Like other GTPases, 
Arf proteins cycle between the active GTP-bound 
and inactive GDP-bound states. Upon activation, 
a myristoylated N-terminus is exposed to promote 
membrane binding and activity. Upon inactivation, Arf 
dissociates from membranes and returns to the cytosol. 
This cycle is mediated by guanine nucleotide exchange 
factors (GEFs) and guanine nucleotide activating 
proteins (GAPs) known as Arf GEFs and Arf GAPs. A 
key feature of Arf GEFs is the presence of a 200 amino 
acid Sec7 domain which catalyzes release of GDP (5). 
GBF1 is an Arf GEF that acts on both class I and class 
II Arfs, whereas BIG1 and BIG2 preferentially activate 

class I Arfs (6–8). GBF1, BIG1 and BIG2 are mostly at 
the Golgi and are sensitive to the trafficking inhibitor 
brefeldin A. Many of the initial observations linking the 
Arfs to virus replication are based on the observation 
that replication is sensitive to brefeldin A. It should be 
noted that some Arf GEFs, like ARNO and EFA6, are 
resistant to brefeldin A treatment.

Activated Arfs have several effector proteins. 
The outcome of Arf activation often depends on the 
Arf GEF and where activation occurs. For example, 
GBF1 is localized to both the ERGIC and cis-Golgi 
and is associated with recruitment of the COPI 
coat. COPI, consisting of seven subunits, mediates 
trafficking from the cis-Golgi to the endoplasmic 
reticulum. Arf recruitment of COPI was the first to be 
described and is well studied. In contrast, BIG1 and 
BIG2 localize to the TGN and recycling endosomes, 
and these Arf GEFs are associated with recruitment of 
adaptor protein complex 1 (AP1) and Golgi-localized 
gamma-ear-containing Arf-binding (GGA) protein 
complexes. Both complexes are involved in clathrin-
dependent trafficking. In addition to these coats, Arf 
proteins also stimulate effectors that modulate lipid 
composition. These include phospholipase D and 
phosphatidylinositol 4-phosphate 5-kinase (9–11). 

Figure 1. Schematic representing select points of regulation of cellular trafficking by viruses. The picornavirus 3A and 3CD proteins regulate trafficking 
by binding Arf GEFS, GBF1 or BIG1/2, respectively. Other viral proteins that target Arf directly or components of the Arf pathway include GBV-C E2 and 
SARS-CoV ORF 3a. Other viruses such as MHV or HCV regulate the Arf pathway, but the viral effectors involved remain uncharacterized. Arf1 is also 
involved in the lipid droplet delivery of DENV protein C and the Nef-mediated rerouting of MHC-I during HIV infection. COPII vesicles are also targeted by 
viruses. The poliovirus proteins 2B & 2BC promote formation of COPII vesicles and FMDV utilizes COPII vesicles to support infection. The p22 protein of 
Noroviruses blocks protein secretion and may do so by rerouting COPII vesicles, preventing them from reaching their Golgi destination.
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Thus Arf proteins modulate a number of different 
cellular processes. Many of the processes intersect 
with important stages of viral replication and as 
such, many viruses modulate Arf proteins to optimize 
replication conditions (summarized in Figure 1).

3.1. Altering trafficking by modulating the  
Arf pathway

One outcome of infection with poliovirus, 
a member of the picornavirus family, is the rapid 
inhibition of protein secretion (12). This block in 
secretion promotes immune evasion by decreasing 
MHC class I and TNF receptors at the cell surface 
and blocking secretion of interleukins 6, 8 and beta-
interferon (13–15). The block occurs in trafficking 
from the ER or ERGIC to the Golgi apparatus, and 
is replicated by expression of protein 3A from either 
poliovirus or the related coxsackievirus B (CVB) (12, 
16–18). This inhibition is a result of the direct binding of 
3A to GBF1, a guanine nucleotide exchange factor for 
Arf1 (19, 20). Overexpression of either GBF1 or Arf1 
rescues the 3A-mediated block in protein secretion 
(19). Furthermore while virus replication is normally 
inhibited by brefeldin A, a resistant form of GBF1 
containing a single amino acid substitution is sufficient 
to support viral replication in the presence of the drug 
(21). Thus, the 3A-mediated regulation of GBF1 is an 
important step for blocking protein secretion during 
coxsackievirus and poliovirus infection.

Other picornaviruses utilize different strategies 
to modulate protein secretion. Expression of 3A from 
human rhinovirus 14 (HRV14), foot-and-mouth disease 
virus (FMDV), enterovirus 71 (EV71), hepatitis A, 
Theiler’s virus and encephalomyocarditis virus (EMCV), 
does not inhibit protein secretion (20, 22). Analysis of 
the 3A protein from HRV, which is closely related to that 
of CVB and poliovirus, reveals a reduced ability of this 
3A protein to bind GBF1, which likely accounts for the 
inability of HRV 3A to block protein secretion. In another 
case, the EV71 3A interacts with GBF1, which together 
with Arf1 and Arf3, is essential for replication of the 
virus (23). This result suggests that EV71 3A regulation 
of GBF1 is essential for viral replication, even though 
it doesn’t block protein secretion as it does for the 
related CVB and poliovirus. EV71, and the other viruses 
mentioned above, have 3A-independent strategies to 
block protein secretion. At least for FMDV, the activity 
is associated with the nonstructural protein 2BC, as the 
coexpression of both the 2B and 2C proteins together, 
but not expression of the 3A protein from FMDV, was 
responsible for perturbing protein secretion (24, 25). 
Thus, picornaviruses have multiple strategies for 
blocking protein secretion.

In addition to GBF1, other Arf GEFS are 
regulated during enterovirus infection. Whereas 
3A regulates GBF1, the viral protein 3CD, through 

regulation of BIG1 and BIG2, promotes the membrane-
association of Arfs (26). The GBF1 recruitment by 3A 
brings COPI to membranes. In contrast, 3CD helps 
recruit the GGA3 coat to membranes (26). Mutations 
in 3CD that abrogate Arf activation also impair virus 
production. Thus, 3CD activation of Arfs through BIG1 
and BIG2 is not redundant with the 3A-mediated 
activation of GBF1, and each Arf GEF may mediate 
a different activity during virus replication. Thus, by 
regulating various Arf effectors different enterovirus 
proteins can direct alterations in the infected cell that 
are essential for replication.

Other virus families also have developed 
mechanisms to block protein secretion. One effector 
is the non-structural protein precursor NS4A/B of 
Hepatatis C virus (HCV), a flavivirus (27). A link 
between the NS4A/B-mediated block in secretion 
and the Arf pathway has not yet been demonstrated, 
although GBF1, Arf1 and COPI components all are 
critical for HCV replication (28–30). HCV proteins also 
alter membrane morphology, producing membrane 
buds at the rough ER and forming a membranous 
web that is tightly associated with vesicles (31). GBF1 
does not appear to be required for membranous 
web formation, suggesting that alternative trafficking 
pathways deliver membranes to the HCV replication 
compartment (29). In contrast, the Arf1 pathway 
is required for HCV proteins to localize to this 
compartment. In the absence of functional Arf1, NS3 
an NS5A, two multifunctional viral proteins that both 
play a role in RNA replication, are redirected from 
replication compartments to the periphery of lipid 
droplets, resulting in reduced replication of viral RNA 
(28). In addition, Arfs are required for delivering cellular 
factors to sites of replication. During HCV replication, 
PI4KIIIbeta is delivered to replication membranes in 
an Arf-dependent manner to generate a PI4P enriched 
environment (32). In this case, HCV redirects transport 
to ensure important cargo is delivered to its replication 
membranes. Of note, HCV is also dependent on 
COPI and requires the secretory pathway for virion 
maturation and exit. Thus, HCV relies heavily on Arf-
mediated events for its replication.

HCV is not the only flavivirus that regulates 
Arfs during infection. GB virus C (GBV-C) is a flavivirus 
that infects humans. Clinically, even though the virus 
has not been associated with its own disease, GBV-C 
appears to delay progression of AIDS in HIV-infected 
patients (34). Among the different mechanisms that 
have been proposed to explain this block in disease 
progression by GBV-C, one is that HIV gag is unable 
to be delivered to the plasma membrane due to the 
altered trafficking associated with GBV-C E2 regulation 
of Arf (33). The E2 protein of GBV-C decreases 
Arf1 levels by promoting its degradation, resulting 
in disrupted Golgi morphology and impaired vesicle 
trafficking to and from the Golgi (33). In this context, 
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the inhibition of protein trafficking by GBV-C may 
have unintended and beneficial clinical consequences 
that are unrelated to GBV-C replication. Thus, global 
inhibition of protein secretion is a feature shared by 
several virus families and not only may help viruses 
avoid an immune response but also may produce 
additional unappreciated outcomes.

Dengue virus infection relies on a unique 
form of Arf-mediated trafficking. In infected cells, the 
Dengue C protein accumulates around lipid droplets 
(35). Transport of C from the ER to lipid droplets uses 
the GBF-Arf1-COPI pathway (36). Delivery of cellular 
proteins to the surface of lipid droplets also is COPI-
dependent (37). However, because lipid droplets 
contain a phosopholipid monolayer, as opposed to 
most transport vesicles that contain a lipid bilayer, 
transport to lipid droplets is likely to be different from 
canonical vesicle trafficking. More work is needed to 
elucidate this trafficking pathway in both uninfected 
and infected cells and Dengue virus infection could 
provide a useful model.

A number of other viruses require a functional 
Arf pathway for replication. Proper processing of the 
G protein of the vesicular stomatitis virus (VSV), a 
negative-strand RNA virus, requires an intact secretory 
system. Its topology and processing were first 
investigated several decades ago, and since then it 
has become a membrane protein among the most well-
studied by both virologists and cell biologists (38). A 
recent human genome-wide siRNA screen revealed that 
COPI subunits are required for a productive infection by 
VSV, as are Arf1 and GBF1 (39). Unexpectedly though, 
COPI, Arf1 and GBF1 are required for an early step 
in replication, viral gene expression. Furthermore, the 
block in gene expression is independent of the entry 
and uncoating of the virus that requires endosomal 
transport, since gene expression is also blocked in 
the absence of COPI when the genome is delivered 
by transfection (39). Similar observations were 
made for two other negative-strand RNA viruses, the 
arenavirus lymphocytic choriomenigitis (LCMV) and the 
paramyxovirus parainfluenza virus type 3 (HPIV3). As 
reported for VSV, knockdown of Arf1 and COPI subunits 
inhibits LCMV gene expression. In contrast, for HPIV3, 
COPI subunit knockdown, but not Arf1 (at least to the 
level reported), prevents HPIV3 gene expression (39). 
How the Arf pathway contributes to the gene expression 
of these viruses and the differential requirements for 
pathway components remains an open question. These 
findings highlight the important contribution that cellular 
trafficking events have on multiple stages of infection.

The HIV multifunctional protein Nef is a 
known regulator of intracellular trafficking. Nef prevents 
the plasma membrane localization of a number of 
key immune regulatory proteins, including MHC-I. 
Nef binds MHC-I early in the secretory process and 

reroutes it from the TGN to lysosomal compartments 
for degradation (40). Nef accomplishes this rerouting 
by promoting a direct interaction between the mu 
subunit of the clathrin coat adaptor protein AP1 and 
MHC-I. Arf1 activates AP1 at the TGN and recent 
structural studies of the AP1:Arf1 multimer promoted 
by Nef reveal a previously unappreciated organization 
to the inner layer of the AP1-clathrin coat (41). This is 
an example of how studying a viral-mediated trafficking 
event can provide clues to the normal function of these 
factors. In addition to rerouting traffic early in the 
secretory pathway Nef1 also interacts with trafficking 
machinery at the plasma membrane to change its 
protein composition. A direct interaction between Nef1 
and the plasma membrane localized AP2 complex is 
required for the Nef-mediated downregulation of CD4, 
which is important for HIV infection (42). Thus, Nef 
has evolved distinct strategies to modulate protein 
trafficking at different locations in the cell.

Infection with other clinically important viruses 
also involves Arf-mediated trafficking. Ebolavirus virion 
production requires Rab1a-dependent activation of 
GBF1 (43). Influenza virus requires COPI indirectly for 
entry and perhaps more directly for protein production 
and assembly (44). The Kaposi’s sarcoma-associated 
herpesvirus (KSHV) regulates Arf1 during infection 
with clinically important implications. The KSHV protein 
kaposin A protein binds the Arf-GEF cytohesin-1, 
resulting in activation of Arf1 and regulation of integrin-
mediated cell adhesion (45). This regulation is 
important for KSHV-mediated cellular transformation 
and disease, as a mutant cytohesin-1 that is unable 
to catalyze guanine nucleotide exchange does not 
transform cells.

3.2. Viruses and Golgi morphology

Virus infection can result in gross 
morphological changes in organelles. Alterations of 
picornavirus-infected cells were first observed over a 
half-century ago (46, 47). Disappearance of the Golgi 
apparatus is accompanied by the appearance of an 
extensive membrane network used as a platform for 
replication. Although the loss of the Golgi might be 
linked to the block in protein secretion, several lines of 
evidence indicate that the two processes are separate. 
First, synthesis of viral proteins has differing effects on 
the two processes. Protein 2C disrupts the Golgi but 
has no apparent effect on protein secretion (12, 48). 
Conversely, protein 2B inhibits protein secretion without 
noticeably altering Golgi morphology (12), unless high 
levels of 2B are produced (49). Second, after infection 
with a mutant virus with a single amino acid insertion 
in protein 3A that reduces the ability to inhibit protein 
secretion, dispersion of the Golgi resembles that 
produced by wildtype virus, once again demonstrating 
the uncoupling of the inhibition of protein secretion from 
Golgi dispersion (18). Thus, viral-induced membrane 
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alterations can result directly from viral regulation and 
are not merely a by-product of the block in trafficking. 
Tomographic analysis of infected cells can trace 
membrane rearrangements throughout infection. Initial 
formation of single membrane branching tubules early 
in infection gradually transform into double-membrane 
structures and ultimately into the double-membrane 
vesicles present during the late stages of infection 
(50). Elucidating the mechanism behind this extensive 
membrane rearrangement, including the source of the 
membrane, has been the subject of extensive study as 
well as some controversy. Mechanistically, production 
of the viral proteins 2C or 2BC leads to membrane 
rearrangements that include the formation of vesicles 
and the disappearance of Golgi stacks (48). The 
cellular factors involved in this 2C and 2BC-mediated 
mechanism remained to be elucidated.

A number of other viruses also induce 
morphological alterations to the Golgi. The ORF 
3a protein of severe acute respiratory syndrome-
associated coronavirus (SARS-CoV) is multifunctional. 
One of its functions is to induce Golgi fragmentation, 
which is restored by overexpression of Arf1, suggesting 
that 3a directly regulates Arf1 or an upstream factor 
such as GBF1 (51). Like other positive-strand viruses, 
SARS-CoV infection modifies intracellular membranes, 
forming double membrane vesicles, convoluted 
membranes and vesicle packets (52, 53). Consistent 
with the role of ORF 3a in regulating Arf1 and modulating 
Golgi morphology, double membrane vesicles do not 
form in its absence (51). However, replication of the viral 
genome is unaffected. Because the double membrane 
vesicles are not required for genome replication, they 
could be merely a consequence of the regulation of 
Arf1 and protein trafficking by ORF 3a rather than a 
requirement for productive infection.

In mouse hepatitis virus (MHV)-infected cells, 
inhibition of the Arf1 pathway reduces the number of 
double-membrane vesicle replication compartments. 
This reduction appears to be important for infection, 
because expression of a dominant-negative mutant of 
Arf1 reduces infection by about 75%, while expression 
of a constitutively active Arf1 mutant results in 
wildtype levels of virus (54). Arf1 activation during 
MHV infection is associated with GBF1, but not BIG1 
or BIG2. Arf1 does not associate directly with the 
replication compartments (54). Thus, it does not act at 
replication sites and may instead facilitate the delivery 
of key components, such as phospholipids, necessary 
for generating the compartments.

In summary, viruses often alter cellular 
trafficking, in many cases by targeting the Arf pathway. 
In some cases this modulation may morphologically 
alter the membrane landscape, while in more subtle 
cases it may simply be to direct and concentrate cargo 
to a new location important for viral replication.

4. EXITING THE ENDOPLASMIC RETICULUM

The Arf-related GTPase Sar1 regulates coat 
protein complex II (COPII). COPII consists of Sec23, 
Sec24, Sec13 and Sec31, which together form a 
complex capable of forming vesicles from membranes 
(55, 56). COPII acts on the cytosolic face of the ER by 
inducing membrane curvature, concentrating cargo, 
and releasing budding vesicles. The complex is formed 
in a sequential manner, beginning with the activation 
and recruitment of the Arf-related GTPase Sar1 by 
the ER-resident GEF Sec12 (57). The N-terminal 
amphipathic helix of Sar1 is inserted in to the ER 
membrane and the ER-bound Sar1-GTP recruits the 
Sec23/24 heterodimer by binding to Sec23 (56, 58). 
Sec24 is the main adaptor protein of the COPII coat 
and interacts directly with cargos and cargo-bound 
receptors (59, 60). Sec23 recruits another heterodimer, 
Sec13/Sec31, by binding to Sec31 (61). Sec13/31 
forms the outer coat of the forming vesicle and its cage-
like formation drives bending and curvature formation 
of the membrane (62–64). Sec23 also is the GAP 
for Sar1 and with Sec31 promotes GTP hydrolysis 
and ultimately the release of vesicles from ER exit 
sites (65, 66). This GTPase activity is opposed by 
Sec16, preventing premature vesicle scission. Smaller 
vesicles are generated in the absence of this Sec16 
regulation (67). Thus, the formation of COPII vesicles 
requires the concerted action of a number of factors 
regulated spatially and temporally, providing multiple 
points for viral intervention.

4.1. Viral hijacking of COPII vesicles

Poliovirus infection, as it does for the 
Arf pathway, also alters SarI and COPII-mediated 
trafficking. Vesicles that form the poliovirus replication 
complex are associated with COPII. The nonstructural 
proteins 2B and 2BC are sufficient to generate these 
vesicles (68). Furthermore, Sec16, which interferes with 
COPII GTPase activity increases early in infection (67, 
69, 70). The increase in Sec16 occurs simultaneously 
with an increase in COPII-derived vesicles, and this 
transient increase in vesicles may increase the pool 
of membranes that are available to form replication 
compartments (70). Thus, poliovirus exemplifies how 
a virus can target multiple aspects of the cellular 
trafficking system, the Arf pathway and formation of 
COPII vesicles, to generate an environment optimal 
for viral replication.

Unlike poliovirus and other enterovirus 
family members, FMDV replication is resistant to 
brefeldin A. Further, dominant-negative versions 
of Arf1 or Rab1a that completely disrupt Golgi 
morphology actually enhance FMDV replication 
(71). Instead, replication is sensitive to inhibition 
of Sar1a function, indicating that FMDV requires 
COPII-mediated trafficking. A dominant-active form 
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of Sar1a that completely disrupts both the ERGIC 
and the secretory pathway by stabilizing COPII coats 
also supports infection (71). This result suggests 
that FMDV utilizes early secretory membranes 
for replication and also creates a replication 
compartment like that of other virus family members. 
However, unlike related viruses that target the Arf 
pathway, FMDV does so by targeting formation of 
COPII vesicles.

Norwalk virus, a single-stranded, positive-
sense RNA virus, also disrupts protein secretion. The 
mechanism is unknown, however the viral protein 
p22 is sufficient to both block protein secretion and 
disrupt Golgi morphology (72). p22 contains an ER-
export mimic sequence that allows it to incorporate 
into COPII vesicles (72). One hypothesis is that 
p22 reroutes the COPII vesicles from their normal 
Golgi destination. Disrupting the flow of incoming 
vesicles to the Golgi would inhibit protein secretion 
and disassemble the Golgi apparatus. Important, 
unanswered questions include whether the block in 
protein secretion is essential for a productive infection. 
Investigations of the p22 homologues of non-human 
noroviruses may be informative. Whereas p22 from 
human noroviruses both blocks protein secretion and 
disassembles the Golgi, the murine homologue, p18, 
disassembles the Golgi but reduces protein secretion 
only modestly (73). The feline calicivirus homologue, 
p30, does not block protein secretion or disrupt the 
Golgi. Thus, these two activities do not appear to 

be essential conserved features of norovirus p22 
homologues, and at least in these species are not 
required for productive infection.

5. VIRUS ALTERATIONS TO ORGANELLES

In addition to regulating the transport between 
organelles, viruses often directly modify organelles to 
generate replication platforms. These modifications 
often result in gross alterations to the organelle 
morphology. For some viruses, cell death and lysis 
is the end game, and whether the organelles remain 
functional or not is inconsequential to the replication 
strategy. However, some viruses have protracted 
replication periods and must maintain at least some 
semblance of normal cell function. For organelles, 
maintenance of function may limit the kinds of changes 
in structure and morphology that can be tolerated. In 
the sections below, we will discuss some viral-induced 
morphological alterations to organelles (Figure 2), and 
describe the viral and cellular proteins responsible for 
these modifications.

5.1. Altering the ER

Many viruses utilize ER membranes as 
a platform for genome replication or as the site 
of envelopment. Two notable modifications to ER 
structure are the formation of replication spherules and 
the regulated rupture of collapsed ER membranes. 
Brome Mosaic Virus (BMV), a small, positive-strand 

Figure 2. Cartoon representation of viral-induced alterations to the morphology of the endoplasmic reticulum, endosomes and lysosomes. Alteration of 
ER membrane during BMV infection involves the formation of spherules. During infection with Vaccinia virus and ASFV, ER membranes are ruptured 
to generate membranes used in virion assembly. Additionally, ER membranes encircle the virus factory or “mini-nucleus” formed during Vaccinia virus 
infection. Viruses also modify membranes of endosomes and lysosomes. SFV & SINV form spherules around the limiting membrane. Rubella also 
forms small vesicles or spherules in addition to large vesicles and straight elements. These modified compartments are often in close proximity to ER, 
mitochondria and Golgi membranes, even forming protein contacts with ER and Golgi, as depicted in the above picture with ER membrane. While 
endosomal membranes are not grossly altered during infection with IBDV, the pep46 protein induces small pores of less than 10 nm in endosome 
membranes.
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RNA plant virus, generates small spherules that bud 
into the ER. Expression of a single viral protein, 1a, 
is sufficient to form these 50–70 nm unscissioned 
vesicles, which protrude inward into the ER (74). 
Several cellular proteins also contribute to spherule 
formation. BMV is notable because it can infect yeast, 
and the ease in genetically manipulating yeast cells 
facilitates the identification and analysis of cellular 
factors that participate in BMV infection. Screening of 
yeast gene collections has led to the identification of at 
least 123 cellular genes that either enhance or inhibit 
BMV replication (75, 76). One outcome is the discovery 
of a role for both ESCRT and reticulon proteins in the 
proper formation of ER spherules (77, 78). Reticulons, 
which normally contribute to ER morphology, may help 
establish the spherules by reducing the curvature of 
vesicles lined with the viral protein 1a. The ESCRTs 
probably function at the neck of the bud, similar to their 
role in intraluminal vesicle formation, to maintain the 
spherule opening. Because ESCRT-mediated reactions 
usually lead to membrane scission, to stabilize the ER 
spherules BMV must somehow stall the progression of 
the ESCRT-mediated deformation event at the open 
bud. Thus BMV spherule formation is example of how 
a virus modulates host machinery to take advantage of 
some of its functions while preventing others.

African Swine Fever Virus (ASFV), a double-
stranded DNA virus member of the nucleocytoplasmic 
large DNA viruses (NCLDV), also modifies ER 
membranes. ASFV virion membranes may be derived 
from open membrane precursors that originate from 
ruptured ER (79). Although the mechanism of this rupture 
is not known, the defined diameter of the membrane 
curls suggests that the process is carefully regulated 
and involves scission of the ER at regular intervals. The 
viral protein p54/J13Lp is necessary for the appearance 
of membrane precursors at virus factories (80). p54 
is sufficient to induce collapse of ER cisternae, which 
occurs by two separate interactions mediated by distinct 
domains of p54. The cytoplasmic domains between 
p54 proteins located on neighboring cisternae form 
antiparallel interactions, while the luminal domains of 
proteins on opposite membranes of the same cisternae 
form disulphide bonds (81). The p54-mediated collapse 
of the ER cisternae may be a prerequisite for ER rupture 
and membrane curl formation.

5.2. Displacing the TGN

In addition to rupturing the endoplasmic 
reticulum to form membrane curls, ASFV also 
disperses the TGN. Resident proteins, TGN46, p230, 
sialyltransferase and AP1 relocalize to vesicles at the 
periphery of the ASFV assembly compartment, also 
referred to as the virus factory (82, 83). The fates of 
the different TGN proteins are not uniform, as TGN46 
and p230 appear to redistribute to distinct vesicles 
(82). Mechanistically, dispersion of the TGN markers 

requires an intact microtubule network and may 
involve an interaction between the viral protein CD2v 
and the adaptor complex AP1 (82, 84). Functionally, 
TGN dispersion slows down trafficking to the plasma 
membrane and lysosomes, an outcome that likely 
contributes to immune evasion. There are many 
remaining questions such as how the virus directs 
different TGN proteins to different compartments, 
and whether this is functionally important for virus 
production.

Kunjin virus, the Australian strain of West Nile 
virus, also morphologically alters the TGN. Among 
the several distinct membrane alterations is the 
appearance of vesicle packets that co-localize with 
TGN markers (85). These vesicle packets may arise 
from repurposed TGN membranes to serve as the 
site of viral RNA synthesis (86). Two other membrane 
structures, paracrystalline arrays and convoluted 
membranes, arise during Kunjin virus infection from 
ERGIC membranes in close association with or 
perhaps continuous with the rough ER (85, 87). Virions 
assemble at these rough ER membranes, enter the 
ER lumen and then transit through the secretory 
pathway for release (88). Which viral proteins direct 
formation of these distinct membrane structures, each 
commissioned for its unique function? An NS4A-NS4B 
cassette containing the viral protease (NS2B-3pro) is 
sufficient to produce the membrane rearrangements 
characteristic of viral infection (89). This result 
suggests that cleavage of the NS4A-4B poly-protein 
is a key event. How the cleavage products cause the 
dramatic alteration of cellular membranes and which 
cellular proteins are required remain to be elucidated.

Other flaviviruses replicate in specialized viral-
induced membrane structures that vary in composition 
and originate from different organelles than the related 
Kunjin virus. Rather than TGN, the New York 99 
strain of West Nile virus uses ER-derived membranes 
for replication (90). The NS4B protein of this strain 
associates with these compartments and is involved in 
initiating the formation of the viral-induced membrane 
structures, unlike the Kunjin homologue that does not 
alone induce the membrane rearrangements (89, 90). 
Another flavivirus, DENV, also induces the formation 
of vesicle packets and convoluted membranes that 
appear to originate from the ER (91). In this case, 
the NS4A protein produces membrane alterations 
resembling those during infection (92). Thus, among 
viruses of the same family, strategies that utilize 
different membrane origins and require distinct viral 
proteins lead to similar outcomes.

5.3. Endosomes and lysosomes

Endosomal and lysosomal membranes 
are also sites of viral modifications. Rubella virus, a 
togavirus, replicates in a “cytopathic vacuole” derived 
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from modified endosomes and lysosomes (93, 94). 
These vacuoles consist of vesicles of varying sizes at 
the periphery and an internal rigid membrane sheet 
that is packed with replicase proteins (95). These 
vacuoles are in contact with rough endoplasmic 
reticulum, the Golgi and mitochondria (94). Electron 
tomography shows that these factories are not only 
in close proximity to these organelles, but at least 
in the case of rough ER and Golgi also appear to 
form contacts with the cytopathic vacuole. These 
contacts include protein bridges, closely apposed 
membranes, and what is described as “fuzzy material” 
(95). Interestingly, the formation of these vacuoles 
in close association with other organelles does not 
affect endo-lysosomal trafficking and the ability to 
receive incoming material from the plasma membrane 
(95). Thus, despite drastic morphological alterations 
to accommodate viral replication, these organelles 
maintain their normal functionality.

Two alphaviruses, Semliki Forest virus and 
Sindbus virus, also utilize modified lysosomes and 
endosomes for replication. First observed nearly 
50 years ago and historically referred to as type 1 
cytopathic vacuoles, these compartments resemble 
those formed by rubella virus in that they have 
membrane invaginations or spherules of approximately 
50 nanometers spaced around the limiting membrane 
of the vacuole (96). Their formation and endosomal 
association of replication proteins requires an intact 
polyprotein containing the viral non-structural proteins 
1 and 3. The individual non-structural proteins are not 
sufficient (97). Although associated with lysosomes, 
in vertebrate cells these replication spherules 
appear to originate at the plasma membrane and are 
subsequently internalized and delivered to endosomal 
and lysosomal membranes (98, 99). Migration of 
the replication spherules depends on endocytosis 
that requires phosphatidylinositol-3-kinase, actin 
and myosin, followed by long-range transport on the 
microtubule network (100). With the exception of 
dynamin and to a lesser extent nocadazole (which 
may have other effects on replication), endocytosis 
inhibitors that prevent the migration of vesicles do not 
profoundly reduce viral replication, suggesting that the 
virus can replicate in spherules that remain located at 
the plasma membrane (99). Notably, in mosquito cells 
the distribution of alphavirus replication spherules 
between the plasma membrane and endosomal/
lysosomal membranes is different from distribution in 
vertebrate (99). This may simply reflect a difference 
in endocytosis dynamics, or may be a more direct 
consequence of the actions of the particular viral 
proteins that direct compartment formation in each 
kind of cell.

Replication of infectious bursal disease 
virus (IBDV) of the Birnaviridae family also requires 
the endocytic compartment for replication. The virus 

causes immunosuppression in chickens and thus 
its control is economically important to the poultry 
industry. IBDV replicates on modified membranes of 
endocytic compartments that label with EEA1, Rab5, 
LAMP-1 and LAMP-2 (101). Unlike the membranes of 
the replication compartments of the viruses discussed 
above, those of IBDV compartments are not grossly 
altered. Rather, IBDV encodes a 46 amino acid peptide, 
pep46, which induces small pores of less than 10 nm 
in endosomal membranes. These pores allow the 
exchange of molecules that initiate replication (102). 
One model is that replication factors exit the endosome 
through the pores, allowing the viral protein VP3, which 
localizes to endosomes, to direct the association of 
these proteins with the limiting membrane. These 
replication factors would then remain associated with 
endosomal membranes as the endosomes traverse 
the microtubule network to the Golgi complex, where 
viral assembly is completed (101). In this model, viral 
modification of the organelle membrane allows entry, 
replication and assembly to be coordinated in a well-
integrated, dedicated subcellular space.

6. VIRUS-INDUCED COMPARTMENTS

In addition to modifying existing organelles, 
viruses often create their own environment or “organelle” 
that accumulates the viral and cellular proteins, lipids, 
and other factors required for optimal replication. This 
process often involves gross rearrangements and/
or mixing of existing organelles. Replication of the 
aforementioned NCLDVs occurs in this type of viral 
“factory.” The distinctive cytoplasmic virus factory of 
the NCLDV member vaccinia virus, a model poxvirus, 
transitions through several different states during 
infection. After the onset of viral DNA synthesis, the 
virus factory becomes completely enwrapped by ER 
membrane, a process that requires the viral E8R 
protein (103). This form of the viral DNA-containing 
membrane-bound compartment resembles a mini-
nucleus. As virus assembly begins, DNA replication 
declines rapidly and the ER membrane dissociates 
from the factory (103). Subsequently, membrane 
crescents that will ultimately form the viral envelope 
associate with the compartment. These crescents are 
derived in the cytoplasm from small patches of pre-
existing intracellular membrane (104). Unlike most 
viruses that acquire an envelope by budding through 
the plasma membrane or the limiting membrane of an 
organelle, poxviruses derive their primary envelope 
from coalescence of these crescents.

The viral proteins required for the proper 
formation, delivery and assembly of poxvirus 
membranes have been investigated by genetic 
analysis. Because many of these proteins are essential, 
conditional expression systems must be used to 
grow mutant viruses. Some of these systems are not 
without limitations, as inducible gene schemes and 
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temperature-sensitive mutants can be “leaky” under 
supposed null-production conditions. An alternative 
is to grow null viral mutants in complementing cell 
lines. A potential advantage of using both approaches 
is exemplified by genetic analysis of the vaccine 
virus H7 gene. Instead of the crescents formed in 
the presence of wild type virus, cells infected under 
non-inducing conditions by a virus with an inducible 
form of H7 accumulate small membrane arcs coated 
with spicules in association with dense inclusions that 
likely represent the viroplasm that is observed in wild 
type virus infection (105). In contrast, these membrane 
arcs are not observed in cells infected with viruses 
completely lacking H7, produced in a complementing 
cell line (106). These results show a concentration-
dependent effect for H7 on membrane alterations and 
reveal a membrane intermediate under conditions 
where H7 is limiting. In addition to H7, similar genetic 
approaches have implicated vaccinia proteins D13, 
A14, A17, A6, A11, L2 and A30.5. in membrane 
precursor formation and envelopment (105, 107–119). 
Together with H7, the latter four proteins make up a 
group referred to as viral membrane assembly proteins, 
or VMAPs (109). The viral kinase F10 has been 
implicated in orchestrating the formation of membrane 
crescents, likely by phosphorylting A14, A17 and/or 
other candidate membrane-associated proteins (114, 
120, 121). The properties of these proteins and how 
they contribute to formation of crescents and the 
different classes of vaccinia virions has been recently 
reviewed in detail (122).

The origin of the patches that give rise to 
the membrane crescents has been investigated for 
over half a century. It was originally proposed that 
the crescents were synthesized “de novo” because 
they preferentially incorporated newly synthesized 
phospholipid and had a different composition than 
host cell membranes (104). It was then proposed 
that the membranes originate from the ERGIC 
complex because some vaccinia proteins were found 
to associate with ERGIC membranes (123, 124). 
However, formation of the immature virions does 
not require transport between the ER and ERGIC or 
Golgi, suggesting that the virus directly trafficks from 
the ER to the sites of immature virion formation (125). 
A number of recent studies provide evidence that the 
membrane crescents form directly from ruptured ER, 
capturing spicule-coated structures trapped in the 
lumens of partially ruptured ER structures (109, 126, 
127). EM tomography supports the hypothesis that the 
crescents consist of a single membrane and are formed 
by rupturing a pre-existing membrane (111). The 
mechanistic events of this ER rupture are emerging, 
however it is not currently known how or even whether 
viral proteins induce breaks in the ER. The uniformity of 
the membrane crescents suggests a highly regulated 
process. A17 and D13 are important in regulating 
the size and shape of the growing crescents. A17 is 

a reticulon-like protein with membrane remodeling 
capability that promotes extensive tubulation of the 
ER upon expression (128). The reticulon-like property 
of A17 helps shape the growing membrane crescents 
in combination with the D13 scaffold, which forms a 
lattice that supports the growing membrane crescent 
(111, 112). In summary, the unique events of vaccinia 
virus membrane acquisition provide opportunities for 
investigating novel protein-membrane interactions and 
their effects on membrane integrity, shape and size.

The virus factory of another NCLDV, ASFV, 
contains partially and fully assembled virions and is 
the site of virus assembly (Figure 3). This compartment 
excludes obvious cellular organelle markers. These 
factories, which form at the microtubule organizing 
center (MTOC), have several characteristics of 
aggresomes and may utilize similar features for their 
formation. For example, like aggresomes, ASFV viral 
factories are dependent on microtubules and dynein 
and are susceptible to disruption of the dynynein/
dynactin complex by overexpression of p50 dynamitin 
(129, 130). Additionally, viral factories are surrounded 
by a collapsed vimentin cage, another trait shared with 
aggresomes (129, 131). Early in infection, vimentin 
forms an aster at the future site of the virus factory 
next to the MTOC, which eventually converts into 
a cage around the factory in a process dependent 
on calmodulin-dependent protein kinase II (132). 
Similarly, in cells infected by an unrelated virus, a 
positive stranded RNA picornavirus, enterovirus 71, 
vimentin is phosphorylated by CaMK-II and rearranged 
around replication centers (133). This rearrangement, 
characteristic of aggresome formation, may simply 
be part of the cellular response to the accumulation 
of viral proteins at the factory. Alternatively, viruses 
may actually coordinate the vimentin rearrangement to 
generate both a structural component in virus factory 
formation and later a cage to maintain a high local 
concentration of viral replication components. Along 
this line, vimentin not only surrounds the replication 
compartment of vaccinia virus, but also associates 
with the assembling immature virions (124). Thus at 
least in this case, vimentin is likely to play a role in 
the virus life cycle that extends beyond the cellular 
aggresome response.

Human cytomegalovirus (HCMV) infection 
also extensively alters the cellular membrane 
landscape (Figure 3). The cytoplasmic viral assembly 
compartment (cVAC) of HCMV is in many ways 
different from the factories discussed above. One 
major functional difference is that because viral DNA 
is replicated and packaged into capsids in the nucleus, 
DNA replication and packaging do not occur in the 
cVAC. Rather, it is the site of tegument acquisition 
and envelopment. Morphologically, the compartment 
consists of nested cylinders of organelle specific 
vesicles derived from the Golgi, TGN and early and 
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recycling endosomes (134, 135). Like other virus 
factories, the cVAC forms at the perinuclear MTOC 
and requires an intact microtubule network and the 
molecular motor dynein, but unlike the other factories, 
the HCMV cVAC is not surrounded by a vimentin cage 
(136, 137). siRNA knockdown of candidate viral genes 
reveals three essential genes for cVAC formation: UL48, 
UL94 and UL103 (138). Their roles in cVAC formation 
have not yet been elucidated. A number of cellular 
proteins, many of which are involved in trafficking, are 
associated with the formation and/or maintenance of 
the cVAC,. The proteins include Rab11, Bicaudal D1, 
FIP4, BiP and, as mentioned previously, dynein (137, 
139–141). Other cellular candidates include VAMP3, 
RAB5C, RAB11A, SNAP23 and CDC42, which 
are targeted by virus-encoded microRNAs (142). 
Ongoing studies of HCMV assembly should identify 
any additional cellular proteins and elucidate how 
each component participates in the redirection and 
reshaping of cellular organelles to form the cVAC.

What are the functional consequences of 
this drastic reorganization of the cellular membrane 
system? The HCMV life cycle can extend from four 
days to more than a week, depending on the cell type, 
and must maintain cell viability for most of this period. 
Viral glycoproteins, of which HCMV encodes no less 
than 65, must traverse the cellular secretory system 
for proper processing and localization, thus ruling 
out global inhibition of protein secretion as described 
above for other viruses. On the other hand, HCMV 
encodes a number of proteins dedicated to immune 
evasion by preventing the trafficking of specific cellular 
proteins that are required for recognition of the infected 

cell by the immune system. Recent reviews provide a 
comprehensive summary of these viral proteins and 
their immune evasion strategies (143, 144). Briefly, 
the HCMV proteins US3, US10, UL16, UL82, UL141 
and UL142 block the progression of certain cellular 
proteins through the secretory pathway enroute to 
the plasma membrane (145–154). US18 and US20 
direct MICA, a ligand that binds to immune cells 
expressing the NKG2D receptor, to the lysosomes for 
degradation (155). US2 and US11 target MHC class I 
molecules in the ER and promote their ER dislocation 
and subsequent proteasomal degradation (156–161). 
US10 can act in a similar manner to target HLA-G for 
degradation (162). UL20 contains an immunoglobulin-
like ectodomain and is rapidly transported to the 
lysosome for degradation after synthesis, so that it 
never reaches the plasma membrane (163). Why 
would HCMV encode such as short-lived protein? 
Perhaps UL20 binds to and chaperones particular 
cellular proteins to the lysosome for degradation, 
which would add yet another layer of viral regulation 
of trafficking. Thus, although HCMV may not induce 
the global block in protein trafficking observed in other 
viruses, it has evolved a more targeted approach 
for deterring the trafficking of a number of proteins, 
primarily those involved in immune recognition that 
would compromise survival of the infected cell.

7. CONCLUSION

Viruses exhibit remarkable diversity in 
structure, genomes, replication and assembly 
strategies. Yet they face similar challenges by having 
to interact with the host cell environment to produce 

Figure 3. Depictions of the cytoplasmic compartments formed by ASFV and HCMV during infection. The assembly compartment of ASFV forms at 
the MTOC and is surrounded by a collapsed vimentin cage. The TGN is dispersed to vesicles at the periphery of the compartment. The assembly 
compartment of HCMV also forms around the MTOC. The Golgi apparatus and TGN form rings around an endosomal core. The ER fills the space around 
the compartment with mitochondria in close proximity.
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infectious progeny. One aspect of the host system often 
targeted by viral proteins is the machinery involved in 
the transport of proteins and membrane. Viral products 
recruit cellular trafficking components to generate 
specialized compartments for optimal viral replication 
and assembly. They may inhibit trafficking components 
to prevent the proper localization of cellular proteins, a 
process particularly important for immune evasion. In 
many instances, virus infection alters the structure of 
organelles or disperses them altogether. In a few cases, 
the mechanism of action is known. In far more instances, 
very little is known. Increasing our understanding of how 
viruses interact with the cellular trafficking machinery 
will not only expand our knowledge of these fascinating 
entities, but also contribute to development of better 
therapeutics and vaccines.
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