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1. ABSTRACT

Among all new cancer cases in 2012, on 
average, 15.4% were caused by Helicobacter pylori 
or oncoviruses, including Epstein-Barr virus, human 
papillomavirus, hepatitis B virus, hepatitis C viruses, 
Kaposi sarcoma-associated herpesvirus and human 
T-lymphotropic virus. These pathogens encode a 
variety of non-coding RNAs, which are important 
cofactors for oncogenesis. In this review, we focus on 
recent developments in the study of long and small 
non-protein-coding RNAs, including microRNAs, of 
oncogenic pathogens, and discuss their mechanisms 
of action in the multiple steps of oncogenesis. 

2. INTRODUCTION

In 2001, the human genome sequencing 
consortium released its final draft of the human 
genome (1). Although only 2.94% of the genome was 
revealed to encode protein coding genes, subsequent 
large-scale transcriptomic analyses, such as deep 
sequencing and/or whole genome high-density tiling 
array analyses combined with bioinformatics, revealed 
that the majority of the genome (74.7%) was indeed 
transcribed but was not translated into proteins (2, 3). 
These unexpected findings, that a much larger part 
of the human genome than was previously assumed 

is pervasively transcribed into ncRNA (non-protein-
coding RNA), revolutionized our view of genome 
organization and content. These findings have 
challenged the traditional central dogma of molecular 
biology, which states that genic DNA codes for RNA 
and RNA codes for protein (4). These results also 
changed the definition of a gene; a gene encodes 
information not only for protein-coding RNAs but 
also for ncRNAs. Recent advances in gene studies 
revealed that ncRNAs play important functional roles 
in gene expression and the term ‘RNA gene’ has been 
proposed (5). 

The transcripts from such RNA genes can 
be further categorized according to the length of 
transcripts, and ncRNAs exceeding 200 nucleotides 
in length are typically classified as lncRNAs (long non-
coding RNAs) (6). LncRNAs are functionally very diverse 
(7, 8). In addition to architectural ncRNAs, such as 
rRNAs, tRNAs and paraspeckle assembly transcripts, 
a large fraction of ncRNAs is involved in the regulation 
of gene expression (7, 9, 10); i.e. they can positively or 
negatively affect gene expression in an epigenetic (11) 
or a post-transcriptional manner (12, 13). 

Many reports have documented dysregulated 
transcription of ncRNAs in diverse cancers, with 



that are essential for their stability or function, or both. 
Diverse biological roles, including the regulation of viral 
replication, viral persistence, host immune evasion, 
and cellular transformation, have been ascribed to 
viral ncRNAs (30). 

In this review, we focus on the interplay 
between virus-encoded ncRNAs and their targets with 
respect to pathogen-associated oncogenesis and the 
cancer hallmarks proposed by Hanahan and Weinberg 
(31, 32) (see Table 2). 

3. ONCOVIRAL microRNAs AND  
ONCOGENESIS

miRNAs (microRNAs) are incorporated 
into RISCs (RNA-induced silencing complexes) by 
binding to host AGO (argonaute) family proteins and 
downregulate protein production of target mRNAs. 
The use of viral miRNAs instead of viral proteins to 
manipulate gene expression has several advantages; 
although miRNAs are short, they are capable of 
regulating the expression of a large number of mRNAs, 
which share a common MRE (miRNA response 
element). Moreover, oncoviral miRNAs are less likely 
than proteins to be recognized by the host immune 
system (30). Such miRNAs may help oncoviruses 
maintain the latent infection state in host cells by 
escaping from host immunosurveillance. 

Oncoviruses inhibit both transition to the lytic 
cycle (33) and the induction of apoptosis (34-37), leading 
to latent infection. Oncovirus infection then upregulates 
the production of inflammatory cytokines (38-40), 
which induces a local inflammatory response at the 
site of infection. Latent infections within the host induce 
chronic inflammation (41), which favors oncogenesis by 
stimulating angiogenesis, damaging DNA, maintaining 
stem cells in a cancer microenvironment and chronically 
stimulating cell proliferation (42, 43). 

ncRNAs being overexpressed or suppressed (14-23), 
leading to the downregulation of tumor suppressor 
genes, such as p53 (24). Such dysregulation of 
ncRNA expression and hence, disruption of their 
regulatory roles is increasingly recognized to be of 
great importance in oncogenesis (25, 26). 

Several viral and also Helicobacter pylori 
infections are strongly related to human oncogenesis 
(Table 1). In 2012, an average of 15.4% of all new 
cases resulted from such infections, varying from less 
than 5% in the USA, Canada, Australia, New Zealand, 
and several countries in western and northern Europe 
to more than 50% in several countries in sub-Saharan 
Africa (27, 28). 

Six oncoviruses are known to be causative 
agents for human cancers. Human oncoviruses do 
not sit in a single viral class but fall into a wide range 
of taxonomic classifications. They include complex 
exogenous retroviruses (such as HTLV-1 or human 
T-lymphotropic virus 1), positive-stranded RNA viruses  
(such as HCV or hepatitis C virus), DNA-RNA viruses 
(DNA viruses that use reverse transcription as a 
part of their replication process, such as HBV or 
hepatitis B virus), and both large double-stranded 
DNA viruses (such as HHV4 or human herpesvirus 4 
also known as Epstein-Barr virus or EBV and HHV8 
or human herpesvirus 8, also known as Kaposi 
sarcoma-associated herpesvirus or KSHV), and small 
double-stranded DNA viruses (such as HPV or human 
papillomavirus) (27, 28). 

Among these pathogens, gastric H. pylori is 
the strongest risk factor, playing virtually indispensable 
roles in the development of both intestinal and diffuse 
gastric non-cardia adenocarcinomas (29). 

Like their host cells, many, but not all, viruses 
synthesize their own ncRNAs. Similar to their host 
counterparts, viral ncRNAs associate with proteins 

Table 1. Pathogens and cancers

Pathogens1 Cancers elicited Reference

Hepatitis B virus (HBV) Hepatocellular carcinomas (HCCs) (122, 123)

Hepatitis C virus (HCV) Hepatocellular carcinomas (HCCs) (124)

Human herpesvirus 4
(Epstein-Barr virus; EBV)

Burkitt lymphoma (BL), Hodgkin’s lymphoma (HL), 
Nasopharyngeal carcinoma (NPC), Gastric  
carcinoma (GC), and Opportunistic lymphoma

(125)

Human herpesvirus 8
(Kaposi sarcoma-associated herpesvirus; KSHV)

Kaposi’s sarcoma (126)

Human papillomavirus (HPV) Cervical cancer (127, 128)

Human T-lymphotropic virus 1 (HTLV-1) Adult T-cell leukemia (ATL) (129)

Helicobacter pylori Gastric carcinoma (130)

1Virus nomenclatures are based on International Committee on Taxonomy of Viruses (ICTV) 2014 Master Species List. Only formal taxonomic names 
are written in italics.
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Table 2. Viral ncRNAs and oncogenesis

Virus ncRNA Target Cancer hallmarks1 Reference

EBV miR-BHRF1-3 CXCL-11/I-TAC Avoiding immune destruction (47)

EBV miR-BART5 PUMA Resisting cell death and maintaining latency (34)

EBV miR-BART4/15 Bim Resisting cell death (35, 36)

EBV miR-BART16 TOMM22 Resisting cell death (37)

EBV miR-BART6-3p PTEN Resisting cell death (49)

EBV miRNAs from BHRF1 locus Resisting cell death and favoring cell cycle 
progression and proliferation

(50)

EBV miR-BART2 BALF5 Maintaining latency (33)

EBV miR-BART6-5p EBNA2, Dicer Maintaining latency (51)

EBV miR-BART3 DICE1/INTS6 Promoting cell growth (54)

EBV miR-BART9 CDH1 Activating invasion and metastasis (61)

EBV BART miRNA cluster 2 NDRG1 Activating invasion and metastasis (62)

EBV EBER1 and EBER2 IL-6 and IL-10 Tumor-promoting inflammation (52, 53) 

EBER1 IL-10 Resisting cell death (91)

EBER1 and EBER2 IL-6 Evading growth suppressors (53)

EBER1 and EBER2 FAK, PAK, RhoGD1 and KAI-1 Activating invasion and metastasis (53)

EBER1 PKR Avoiding immune destruction (86, 90)

EBER1 and EBER2 RIG-I Immune destruction (52)

EBER1 TLR3 Immune destruction (89)

EBER1 miR-200 Activating invasion and metastasis (53)

KSHV miR-K12-9 IRAK1 Avoiding immune destruction (67)

KSHV miR-K12-5 MYD88 Avoiding immune destruction (67)

KSHV miR-K12-11 IKBKE/IKKepsilon Avoiding immune destruction (68)

KSHV miR-K12-5, -9, -3 and -10b BCLAF1 Resisting cell death (69)

KSHV miR-K12-10a TWEAKR Resisting cell death (70)

KSHV miR-K12-1, -3 and -4-3p caspase 3 Resisting cell death (71)

KSHV miR-K12-11 LDOC1 Resisting cell death (72)

KSHV miR-K12-1 IkappaBalpha Maintaining latency (73)

KSHV miR-K12-4 Rbl2 Maintaining latency (74)

KSHV miR-K12-7 and -9 RTA Maintaining latency (75)

KSHV miR-K12-3-5p and -7 LIP Tumor-promoting inflammation (76)

KSHV miR-K12-1 p21 Evading growth suppressors (77)

KSHV miR-K12-1, -3-3p, -6-3p, -11 THBS1 Inducing angiogenesis and anchorage 
independent proliferation

(78)

KSHV miR-K12-3-5p GRK2 Activating invasion and metastasis (79)

KSHV PAN IRF4 Avoiding immune destruction (101)

PAN Target: unknown Cell growth (102)

HCV vmr11 HNF4alpha Activating invasion and metastasis (116)

vmr11 TNPO2 Genome instability and mutation (119)

1The hallmarks of cancer proposed by Hanahan and Weinberg (31, 32) constitute an organizing principle for rationalizing the complexities of neoplastic 
disease, which include; (1) sustaining proliferative signaling; (2) evading growth suppressors; (3) enabling replicative immortality; (4) activating invasion 
and metastasis; (5) inducing angiogenesis; (6) resisting cell death; (7) deregulating cellular energetics; (8) avoiding immune destruction; (9) genome 
instability and mutation and (10) tumor-promoting inflammation. 
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EBV miR-BART5 inhibits the expression 
of the cellular protein, PUMA (p53 upregulated 
modulator of apoptosis), to promote host cell survival 
and hence the establishment of latent EBV infection 
(34). Additionally, miR-BART4/15, miR-BART16 and 
miR-BART6-3p target the mRNAs encoding Bim 
(Bcl-2 interacting mediator of cell death), TOMM22 
(translocase of outer mitochondrial membrane 22) and 
PTEN (phosphatase and tensin homologue deleted on 
chromosome 10), respectively, leading to inhibition of 
apoptosis (Figure 2) (35-37, 49). Furthermore, another 
group of EBV-encoded miRNAs from the BHRF1 
locus also inhibits apoptosis and favors cell cycle 
progression and proliferation of infected B cells early 
after infection (Figure 2) (50). 

3.1. EBV miRNAs and oncogenesis

The EBV genome encodes up to 25 miRNA 
precursors from BART and BHRF loci (44-46). The 
miRNAs derived from these loci are involved in escape 
from immune surveillance, apoptosis inhibition, and 
maintaining the latent stage of infection, as discussed 
above. For example, recent studies show that EBV 
BHRF1-3 miRNAs target and suppress chemokine 
CXCL-11/I-TAC mRNA, which encodes the IFN 
(interferon)-inducible T-cell attracting chemokine 
(Figure 1) (47). These miRNAs may play a role 
in the immune evasion strategy with which EBV 
downregulates the CTL (cytotoxic T lymphocyte) 
cytokine networks (48). 

Figure 1. Immune evasion by pathogen-associated ncRNAs. EBV BHRF1-3 miRNAs target chemokine CXCL-11/I-TAC mRNA for suppression, which 
encodes the IFN-inducible T-cell-attracting chemokine. EBER1 and EBER2 are recognized by the cytosolic double-strand RNA sensor, RIG-I, and 
the plasma membrane receptor for double-strand RNA, TLR3, recognizes EBER1, leading to induction of the type I IFN response. EBERs, however, 
inactivate PKR, the major IFN response gene product and antiviral effector, resulting in inhibition of apoptosis. KSHV miR-K12-9 and -K12-5 evade host 
immunosurveillance by suppressing the expression of IRAK1 and MYD88 mRNAs. KSHV miR-K12-11 downregulates IKBKE mRNA expression, causing 
the deactivation of IRF3/7 in infected cells. The dashed line indicates a possible commitment. EBV miRNAs and EBERs are in blue font and KSHV 
miRNAs are in red font.
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apoptosis proteins), GADD45 beta (growth arrest and 
DNA-damage-inducible 45beta), BCL2A1 (B-cell-
lymphoma-2-related protein A1) and SOD2 (superoxide 
dismutase 2) (40). NF-kappaB also acts as a prominent 
mediator of inflammation, by regulating the expression 
of pro-inflammatory cytokines, such as IL-1, IL-6, IL-8 
and TNF-alpha (tumor necrosis factor-alpha) (Figure 
4) (39, 40). Furthermore, EBV encodes small ncRNAs, 
EBER1 (EBV-encoded small RNA 1) and EBER2 
that upregulate the expression of tumor-promoting 
inflammatory cytokines such as IL-6 and IL-10 (Figure 4) 
(52, 53) (see also chapter 4.1.). 

The chronic state of inflammation induced 
by these cytokines, and by the chemokines discussed 
above, can act to promote tumorigenesis. Chronic 
inflammation induces cell proliferation, recruits 
inflammatory cells, increases production of reactive 
oxygen species leading to oxidative DNA damage, 
and reduces DNA repair. Subversion of cell death 
and/or repair programs occurs in chronically inflamed 
tissues, resulting in DNA replication and proliferation 
of cells that have lost normal growth control (41). 
As such, inflammation can be considered to enable 
the acquisition of core cancer capabilities (Table 2,  
10 of cancer hallmarks). More specifically, the 
virally encoded miR-BART3 plays a role in EBV-
dependent oncogenesis by suppressing DICE1/

EBV miR-BART2 downregulates the viral DNA 
polymerase, BALF5, and inhibits transition from latent 
to lytic viral replication (33), thereby maintaining the 
latent stage (Figure 3). In a more direct manner, miR-
BART6-5p suppresses EBNA2 (EBV nuclear antigen 
2) expression, which is required for transition from 
immunologically less responsive type I and II latency to 
the more immunoreactive type III latency. miR-BART6-
5p also suppresses expression of the EBV immediate-
early gene product, ZTA, and RTA (replication and 
transcription activator) proteins for lytic replication 
through silencing of dicer mRNA (Figure 3) (51). 

In the latent stage of infection, EBV expresses 
the LMP1 (latent membrane protein-1) which upregulates 
expression of a number of factors, including tumor-
promoting inflammatory cytokines and chemokines, 
such as IL-6 (Interleukine-6), IL-1beta, IL-1alpha, 
CXCR4 (C-X-C chemokine receptor type 4), RANTES 
(Regulated on Activation, Normal T Cell Expressed and 
Secreted), MCP1 (Monocyte Chemotactic Protein-1), 
IL-8 and IL-10 (38). Upregulation of some of these 
factors by LMP1 is mediated through its ability to 
activate NF-kappaB signaling (38). NF-kappaB has a 
dual role in oncogenesis; its expression in potentially 
malignant cells can prevent cell death by targeting 
a number of inhibitors of apoptosis, including Bcl-XL 
(B-cell lymphoma XL), cIAPs (cellular inhibitors of 

Figure 2. Inhibition of apoptosis by pathogen-associated ncRNAs. EBV miR-BART5 reduces the levels of PUMA mRNA, which encodes a modulator of 
apoptosis for promoting host cell survival. EBV miR-BART4/15, miR-BART16 and miR-BART6-3p target mRNAs of Bim, TOMM22 and PTEN, respectively, 
leading to the inhibition of apoptosis. EBV EBER1 and EBER2 upregulate the apoptosis inhibitor, Bcl-2. EBV-encoded miRNAs from the BHRF1 locus 
also manage to inhibit apoptosis and favor cell cycle progression. BCLAF1 mRNA, encoding a pro-apoptotic protein, is the target of KSHV miR-K12-5, 
-9, -3 and -10b. KSHV miR-K12-10a targets TWEAKR mRNA, thereby protecting KS cells from TWEAK-induced apoptosis. KSHV miR-K12-1, 3 and 
4-3p target caspase 3 mRNA, resulting in resistance to apoptosis. miR-K12-11 targets LDOC mRNA, which encodes a factor responsible for apoptosis 
regulation. Bcl-2 is an integral outer mitochondrial membrane protein and is inhibited by PUMA and Bim. Bcl-2 inhibits pro-apoptotic protein, Bax, which 
is activated by BCLAF1. Bcl-2 and Bax are considered to contribute to the release of cytochrome C, which activates caspases, leading to apoptosis. EBV 
miRNAs and EBERs are in blue font and KSHV miRNAs are in red font.
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hypoxia caused by the tumor outgrowing the vascular 
supply (59). Hypoxia induces the HIF transcription 
factors in these cells, whose targets include genes 
for many angiogenic factors, such as VEGF (vascular 
endothelial growth factor), which enhance angiogenesis 
in these avascular areas (60).

EBV encodes miR-BART9 to promote 
the migration of NPC (nasopharyngeal carcinoma) 
cells by specifically inhibiting E-cadherin to induce 
a mesenchymal-like phenotype (61). The virus also 
encodes BART miRNA cluster 2 to promote tumor 
invasion and metastasis by targeting NDRG1(N-myc 
downstream regulated gene 1) mRNA, which encodes 
a suppressor of metastasis (Figure 6) (62). NDRG1 
protein inhibits the TGF-beta-induced EMT (epithelial-
mesenchymal transition) by maintaining E-cadherin 
at the plasma membrane (63). NDRG1 also inhibits 
the nuclear translocation of beta-catenin, leading to 
the expression of metastasis-associated genes such 
as cyclin D1 (Figure 6) (64). These results strongly 
suggest that EBV encodes miRNAs that are, at least 
in part, responsible for the aggressive phenotype of 

INTS6 (Deleted in cancer cells 1/Integrator complex 
subunit 6) expression (54). Indeed, consistent with 
low expression levels of DICE1 in EBV-positive NPC 
(nasopharyngeal carcinoma), tumor cell proliferation 
was observed (Figure 5A) (54). 

Tumor-promoting inflammation recruits 
inflammatory cells, including TAMs (tumor-associated 
macrophages), which constitute a large portion of 
the tumor mass (55). While TAMs in the mass cause 
cancer initiation and promotion by secreting cytokines 
for chronic inflammation, these macrophages may also 
be obligatory for invasion, metastasis and angiogenesis 
(56). In the progressive stage of oncogenesis, TAMs are 
localized to points of basement-membrane breakdown 
during the transition to malignancy and to the invasive 
front of more advanced tumors. This suggests that 
tumors exploit the normal matrix remodeling capacities 
of macrophages, enabling them to egress into and 
migrate through the surrounding stroma (56, 57). Thus, 
TAMs are endowed with exaggerated extracellular-
matrix remodeling activity and invasive properties (58). 
Tumor-derived signals for TAM-recruitment include 

Figure 3. Maintenance of latency by pathogen-associated ncRNAs. EBV miR-BART2 downregulates the expression of viral DNA polymerase BALF5, 
resulting in inhibition of transition from the latent stage to the lytic stage of infection. EBV miR-BART6-5p suppresses EBNA2 viral oncogene expression, 
which is required for transition to immunoreactive type III latency. miR-BART6-5p also silences dicer mRNA, leading to suppression of RTA expression, 
which acts on viral lytic replication. KSHV miR-K12-1 reduces IkappaBalpha mRNA expression, resulting in the suppression of lytic gene transcription. 
KSHV miR-K12-4 inhibits the expression of Rbl2 mRNA, which encodes a repressor of DNMT function. KSHV miR-K12-7 and -K12-9 reduce expression 
of RTA mRNA. The dashed line indicates transition between the latent and lytic stages. EBV miRNAs are in blue font and KSHV miRNAs are in red font.
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Figure 4. Tumor-promoting inflammation by pathogen-associated ncRNAs. EBV EBER1 induces IL-10 expression through RIG-I-mediated IRF3 
signaling. IL-10 upregulates the apoptosis inhibitor, Bcl-2, resulting in cell proliferation. KSHV miR-K12-3-5p and miR-K12-7 target LIP mRNA, resulting 
in upregulation of IL-6 and IL-10 expression in infected human myelomonocytic cells. EBV LMP1 and EBER1 are in blue font and KSHV miRNAs are in 
red font.

Figure 5. A) Cell proliferation and release from cell cycle arrest by pathogen-associated ncRNAs. EBV miR-BART3 suppresses DICE1 mRNA 
expression, leading to the promotion of cell proliferation and transformation. EBV miRNAs from the BHRF1 locus also promote cell proliferation. KSHV 
miR-K12-1 targets p21 mRNA, which encodes an inducer of cell cycle arrest. EBER1 and EBER2 activate STAT3 expression through upregulation of IL-6 
expression. The activated STAT3 downregulates expression of cell cycle inhibitors, p21 and p27, leading to release from cell cycle arrest. B) Induction 
of angiogenesis by pathogen-associated ncRNAs. A group of KSHV miRNAs, including miR-K12-1, -K12-3-3p, -K12-6-3p and -K12-11, accelerate 
anchorage-independent proliferation and angiogenesis by inhibiting THBS1 mRNA expression. TSBH1 acts through its receptors, CD47 and CD36, to 
inhibit angiogenesis. EBV miRNAs and EBERs are in blue font and KSHV miRNAs are in red font.
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lytic reactivation, thereby maintaining latent infection. 
This leads to the production of tumor-promoting 
inflammatory cytokines, as discussed for EBV (section 
3.1.) (42, 43) (Table 2, 10 of cancer hallmarks). 

To commence the oncogenesis process, 
immunosurveillance is evaded by KSHV miR-K12-9 
and -K12-5, which suppress the expression of IRAK1 
(interleukin-1 receptor-associated kinase 1) and MYD88 
(myeloid differentiation primary response protein 88) 
(67), respectively (Figure 1). These target molecules are 
essential for TLR7/8 (Toll-like receptor 7/8)- and TLR9-
dependent recognition of viral ssRNA and unmethylated 
CpG oligonucleotides of microbial origin, respectively; 
therefore, they effectively downregulate type I IFN 
production in the infected cells (Figure 1). Furthermore, 
miR-K12-11 downregulates the expression levels of 
IKBKE (inhibitor of NF-kappaB kinase subunit epsilon) 
mRNA (also known as IKKepsilon (IkappaB kinase 
epsilon)), causing the deactivation of IRF3/7 (interferon 

EBV-positive NPC cells by activating invasion and 
metastasis. 

It is thus concluded that following induction 
of chronic, tumor-promoting inflammation by EBV 
miRNAs, another set of EBV miRNAs downregulate the 
expression of anti-tumor suppressor genes and induce 
EMT activation, leading to the acquisition of cancer 
hallmarks relevant to tumor progression (Figure 6) 
(Table 2, 3 to 5 of cancer hallmarks). 

3.2. KSHV miRNAs and oncogenesis

KSHV encodes 12 viral miRNA precursors, 
most of which are from a large intron in the KSHV 
latency-associated region (46, 65, 66). Like EBV, KSHV 
expresses miRNAs in latently infected B cells. These 
miRNAs contribute to viral oncogenesis by similar 
strategies to those of EBV; likewise, KSHV evades 
host immunosurveillance and inhibits apoptosis and 

Figure 6. Activation of invasion and metastasis by pathogen-associated ncRNAs. EBV miR-BART9 promotes the migration of NPC cells by specifically 
inhibiting E-cadherin, resulting in a mesenchymal-like phenotype. EBV BART miRNA cluster 2 promotes tumor invasion and metastasis by targeting 
NDRG1 mRNA, which encodes a suppressor of metastasis. Reduced expression of NDRG1 allows nuclear translocation of phosphorylated beta-catenin, 
resulting in EMT with invasion and metastasis. EBV EBER1 and EBER2 induce the activation of pro-metastatic molecules, FAK and PAK1, along with 
downregulation of anti-metastatic molecules, RhoGD1 and KAI-1, which promote cell migration. Furthermore, EBER1 and EBER2 inhibit host miR-200, 
leading to inhibition of E-cadherin expression and EMT. By targeting GRK2 mRNA, KSHV miR-K12-3-5p promotes cell migration and invasion, which 
result from transduction of CXCR2 signaling that activates Akt phosphorylation. HCV vmr11 targets HNF4alpha mRNA, which causes expression of EMT 
regulatory genes: TGFB, Snail and HMGA2. Upregulated expression of these genes results in EMT. EBV miRNAs and EBERs are in blue font, KSHV 
miRNAs are in red font and the HCV miRNA is in green font.
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encodes a repressor of DNMT (74). Thirdly, miR-K12-7 
and -K12-9 target MRE-K12-7 and -K12-9 in the 3′-UTR 
of RTA mRNA, resulting in destabilization of the mRNA 
and inhibition of RTA mRNA expression (75). Thus viral 
miRNAs contribute to the maintenance of KSHV latency 
by repressing lytic gene expression. 

As was discussed above for EBV oncogenesis, 
latent infection of KSHV can be followed by chronic, tumor-
promoting inflammation (32, 41). Virally encoded miRNAs 
induce IL-6 and IL-10 secretion from infected human 
myelomonocytic cells (Figure 4) (76). This phenotype 
was mediated by miR-K12-3-5p and miR-K12-7, which 
target LIP (liver-enriched inhibitory protein) mRNA, 
encoding a negative transcriptional regulator of IL-6 and 
IL-10 genes (76). These data support a role for KSHV 
miRNAs in programming cytokines to establish a chronic 
inflammatory status in the host microenvironment (Table 
2, 10 of cancer hallmarks) (41). 

Apart from acting on the mRNAs encoding 
caspase 3 and IkappaBalpha (Figures 2 and 3, 
respectively) miR-K12-1 also targets p21 (cyclin-
dependent kinase inhibitor) mRNA, which encodes 
a key inducer of cell cycle arrest (Figure 5A) (77). 
Indeed, ectopically expressed miR-K12-1 specifically 
inhibits the expression of endogenous p21 mRNA in 
KSHV-negative cells and strongly attenuates the cell 
cycle arrest that normally occurs upon p53 activation. 
Furthermore, stable knockdown of this miRNA in 
a latently KSHV-infected PEL (primary effusion 
lymphoma) cell line resulted in derepression of p21 
expression and increased the efficiency of cell cycle 
arrest following p53 activation (77). 

These data thus demonstrate that miR-K12-1 
represses the expression of p21, a protein with known 
tumor suppressor function, and further suggest 
that this KSHV miRNA is likely to contribute to the 
oncogenic potential of KSHV, leading to evasion of 
growth suppressors (Table 2, 2 of cancer hallmarks). 

Once miR-K12-1 together with -K12-3-5p and 
-K12-7 promote oncogenic proliferative signaling and 
induce tumor-promoting inflammation, respectively, in 
the KSHV infected host, a group of miRNAs, including 
miR-K12-1, -K12-3-3p, -K12-6-3p and -K12-11 further 
accelerate anchorage-independent proliferation and 
angiogenesis by inhibiting THBS1 (Thrombospondin 1) 
mRNA (Figure 5B) (78). This mRNA encodes a potent 
inhibitor of cell adhesion, migration and angiogenesis 
(78). Furthermore, by directly targeting GRK2 (G 
protein-coupled receptor kinase 2) mRNA, miR-K12-3-
5p promotes cell migration and invasion, which result 
from transduction of CXCR2 signaling and activation 
of Akt phosphorylation (Figure 6) (79). 

Although KSHV and EBV follow identical 
paths to execute viral oncogenesis, the miRNAs of 

regulatory factor 3/7) in infected cells. These results 
reveal that KSHV infection can attenuate type I IFN 
responses, resulting in evasion of host antiviral innate 
immunity (68). 

Resistance to apoptosis is another strategy 
evolved by EBV to enable persistence in host cells. 
Likewise, KSHV employs miRNAs for downregulating 
the apoptotic pathways. Using a microarray-based 
approach to identify target mRNAs, BCLAF1 (Bcl-2-
associated factor) mRNA, which encodes a pro-apoptotic 
protein, was identified as a target of miR-K12-5, -9, -3 
and -10b. The repression of BCLAF1 mRNA expression 
by these KSHV miRNAs enabled cells to overcome 
etoposide-induced caspase activation, resulting in 
inhibition of apoptosis (Figure 2) (69). 

Virally encoded miRNAs can also prevent 
apoptosis in KS (Kaposi sarcoma) tumor-derived 
endothelial cells in response to TWEAK (tumor necrosis 
factor-like weak inducer of apoptosis) stimulation. 
For example, miR-K12-10a-mediated knockdown of 
TWEAKR (TWEAK receptor) mRNA protected KS 
cells from TWEAK-induced apoptosis (Figure 2) (70). 
In another study, Suffert and colleagues showed that 
multiple KSHV miRNAs; miR-K12-1, 3 and 4-3p, target 
caspase 3 mRNA, resulting in resistance to apoptosis 
(71). Furthermore, miR-K12-11 targets LDOC (leucine 
zipper down-regulated in cancer 1) mRNA, which 
encodes a factor responsible for apoptosis regulation 
(72). Thus, these KSHV miRNAs are relevant for 
inhibiting the induction of apoptosis, which constitutes 
one of the cancer hallmarks listed in Table 2, 6 of 
cancer hallmarks. 

Following evasion of host immunosurveillance 
and inhibition of apoptosis, another set of KSHV 
miRNAs maintains viral latency. Deletion of a cluster 
of miRNAs in the KSHV genome (but not miR-K12-10 
and -12) resulted in enhanced viral lytic replication 
as indicated by the increased levels of RTA mRNA 
and MCP (major capsid protein) mRNA as well as 
increased virion production (73). Because RTA and 
MCP mRNAs encode proteins responsible for KSHV 
lytic infection, these results suggest that viral miRNAs 
are enrolled to maintain viral latency in host cells. 

Three ways to maintain latency by viral 
miRNAs have been proposed (Figure 3). Firstly, they 
suppress IkappaBalpha mRNA expression, resulting 
in suppression of lytic gene transcription. KSHV miR- 
K12-1 was identified as such an miRNA by neutralization 
using an antagomiR (73). The neutralization experiment 
caused increased levels of RTA and MCP mRNAs  
and of the viral lytic transcripts, ORF57 and PAN (73). 
Secondly, KSHV miR-K12-4 causes activation of 
DNMTs (DNA methyl transferases), resulting in inhibition 
of RTA gene expression. For this, miR-K12-4 inhibits 
the Rbl2 (retinoblastoma-like protein 2) mRNA, which 

Pathogen-associated ncRNAs in infectious oncogenesis

1607 © 1996-2017



cancer and cell lines were first identified by Qian 
and colleagues (82).They established small RNA 
libraries from human HPV-associated cervical cancer 
lesions and HPV-harboring cell lines. They sequenced 
these libraries and discovered putative HPV-encoded 
miRNAs. Gene ontology analyses of the predicted 
cellular targets of HPV16-encoded miRNAs suggest 
that they might have pathological effects on cell cycle, 
cell migration, and cancer development (82). 

4. ANOTHER CLASS OF ncRNAs ENCODED 
BY EBV INVOLVED IN ONCOGENESIS

As discussed in section 3.2., EBV encodes 
another class of ncRNA, EBER1 and EBER2 (167 
and 172 nucleotides long, respectively) to complete 
viral oncogenesis. EBERs are the most abundant viral 
transcripts in latently EBV-infected cells (83), whose 
genes are separated by a 161 base pair intergenic 
segment and are transcribed from the same DNA 
strand (84). 

the two viruses have different modes of action. Almost 
all of the KSHV miRNAs are involved in more than 
one oncogenic process, whereas EBV miRNAs are 
specific for one particular process (Figure 7). The 
contrasting ways of executing oncogenesis between 
KSHV and EBV may reflect the different numbers 
of miRNAs that each herpes virus encodes. While 
EBV encodes 25 miRNA precursors, resulting in the 
production of 48 mature miRNAs, KSHV encodes 12 
miRNA precursors, producing only 25 miRNAs (46, 
80, 81). Furthermore, to assign particular roles to each 
miRNA, EBV employs the small ncRNAs, EBER1 and 
EBER2, which compensate for the EBV miRNAs that 
are involved in oncogenesis but are not sufficient to 
complete the processes (Figure 7) (see below). 

3.3. HPV miRNAs and oncogenesis

HPV is a well-characterized human etiological 
agent that is directly linked to cervical cancer. 
Papillomavirus-encoded miRNAs in human cervical 

Figure 7. The pros and cons of EBV and KSHV miRNAs for viral oncogenesis. Although both KSHV and EBV follow identical processes to execute viral 
oncogenesis, the ncRNAs of the two viruses have different modes of action. Almost all of the KSHV miRNAs are involved in more than one oncogenic 
process, whereas EBV miRNAs are specific for one particular process. Furthermore, EBV employs EBER1 and EBER2 to complete some of the processes. 
The dashed lines indicate possible involvement by KSHV PAN. EBV miRNAs and EBERs are in blue font and KSHV miRNAs and PAN are in red font.
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Secondly, in addition to the induction of 
cytokine expression by LMP1 (see section 3.1.), 
EBER1 but not EBER2 also induced IL-10 expression 
(91), in a manner that depends on the RIG-I-mediated 
IRF3 signaling pathway (Figure 4) (52). IL-10 is a pro-
oncogenic factor, which upregulates the apoptosis 
inhibitor, Bcl-2 (92-94). EBER1, thus, completes the 
apoptosis inhibition processes through two distinct 
targets; PKR and IL-10. IL-10 also exhibits another 
pro-oncogenic effect by promoting BL cell growth 
(91). Furthermore, a recent report by Banerjee et al, 
showed that EBER1 and EBER2 activated STAT3 
expression through upregulation of another cytokine, 
IL-6. The activated STAT3 then downregulated the cell 
cycle inhibitors, p21 and p27 in a gastric carcinoma 
cell line (53). EBER1 and EBER2, thus, cooperatively 
complete cell proliferation processes by modulating 
IL-10 and IL-6 expression in collaboration with miR-
BART3, which suppresses DICE1/INTS6 expression 
(Figures 5A and 7) (54). 

Thirdly, Banerjee and colleagues (53) also 
showed that EBER1 and EBER2 activate the pro-
metastatic molecules, FAK and PAK1, and also 
downregulate the expression of the anti-metastatic 
molecules, RhoGD1 and KAI-1, which promote cell 
migration (Figures 6 and 7). 

Moreover, both EBER1 and EBV latency type 
I gene products (e.g. BARF0, EBNA1 (Epstein-Barr 
nuclear antigen 1), and LMP2A (Latent Membrane 
Protein 2A)) play an additional role in tumor cell 
invasion by synergistically downregulating the miR-
200 family (95). The miR-200 family targets ZEB1 
(zinc finger E-box-binding homeobox transcription 
factor 1) and ZEB2 mRNAs, which encode E-cadherin 
repressors. Upon inhibition of the miR-200 family 
in a gastric carcinoma cell line, the up-regulated 
repressors suppress E-cadherin expression, resulting 
in EMT (95). Indeed, transfection of BARF0, EBNA1, 
and LMP2A expression plasmids downregulated the 
transcription of pri-miR-200 RNAs, whereas EBER1 
post-transcriptionally inhibited miR-200 action (95), 
possibly acting as a ceRNA (competing endogenous 
RNA) to sequester the miR-200 family (96, 97). 

These results strongly suggest that, in 
contrast to KSHV-encoded miRNAs, EBV miRNAs 
require the EBERs to complete the oncogenic process 
(Figures 6 and 7). 

5. KSHV lncRNA PAN AND ONCOGENESIS 

In lytically infected cells, KSHV expresses 
a <1.1. kb lncRNA, PAN, which constitutes nearly 
80% of total polyadenylated RNAs in the infected 
cells (<500,000 copies per cell) (98, 99). Recent 
publications have indicated potential functions of PAN 
in KSHV-mediated oncogenesis, particularly in the 

EBER1 and EBER2 contribute to several 
features of EBV-based oncogenesis. Studies using 
cells derived from BL (Burkitt Lymphoma), revealed 
the functional correlation between EBER1 and EBER2 
expression and their transformation capabilities, 
including oncogenicity in SCID (severe combined 
immunodeficiency) mice, and their ability to inhibit 
apoptosis via resistance to apoptotic inducers, such 
as cycloheximide, glucocorticoid, hypoxic stress, and 
upregulation of apoptosis inhibitor, Bcl-2 (Figure 2) 
(85). Subsequently, EBER1 was shown to inactivate 
the major IRG (interferon response gene) product, 
PKR (protein kinase R), enabling avoidance of host 
immunosurveillance (Figure 1) (86). A recent report 
further showed that gastric carcinoma cells stably  
expressing EBER1 and EBER2 have increased 
migration and invasion capabilities (53). These 
results thus suggested that EBER1 and EBER2 are 
closely involved in EBV oncogenesis, not only for 
transformation to malignancy, but also for the cancer 
initiation and progression processes, such as immune 
evasion, invasion and metastasis (53, 85, 86). In 
the following sections, we discuss how EBER1 and 
EBER2 contribute to EBV-dependent oncogenesis. 

4.1. Molecular mechanisms of EBER1 and 2 action 
in viral oncogenesis

As discussed above, EBER1 and EBER2 
play roles in various aspects of viral oncogenesis  
(87, 88). Firstly, to complete the immune evasion 
process, both EBV miRNAs and EBERs target IRGs 
but act on different molecules. While BHRF1-3 target 
chemokine CXCL-11/I-TAC mRNA to downregulate 
the CTL cytokine networks (48), EBER1 inactivates 
another and major IRG product, PKR (Figure 1)  
(86). EBER1 occupancy of the PKR dsRBD (double- 
stranded RNA-binding domain), affects its conformation 
and inhibits PKR dimer formation, resulting in failure 
to activate autophosphorylation (86). Although the 
authors did not examine the inhibitory double-strand 
RNA effect of EBER2 (86), another study using a 
dominant-negative PKR showed that both EBER1 
and EBER2 conferred resistance to IFN-alpha-
induced apoptosis via binding to PKR and inhibiting 
its phosphorylation (90). 

Although in acutely infected cells, EBERs 
induce type-I IFN expression through recognition by the 
cytosolic sensor, RIG-I (retinoic acid-inducible gene-I) 
for EBER1 and 2 (52), and the cell surface sensor, 
TLR3, for EBER1 (Figure 1) (89), the EBV-enrolled 
small ncRNAs eventually enable evasion of the immune 
response by attenuating the major antiviral effector, 
PKR (90). These results thus strongly suggest that 
EBV can avoid innate and acquired immunity through 
the cooperation of EBER1 and BHRF1-3, resulting in 
apoptosis inhibition (Figures 1 and 7; Table 2, 6 and 8 
of cancer hallmarks). 
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key functions indicate that the regulatory HBZ mRNA 
might contribute to the oncogenesis of HTLV-1 by 
sustaining proliferative signaling and resisting ATL 
(Adult T cell Leukemia) cell death (Table 2, 1 and 6 of 
cancer hallmarks). 

7. H. PYLORI INFECTION AND ONCOGENESIS

Infection with cagA (cytotoxin-associated 
gene A)-positive H. pylori is causally associated with 
the development of gastric carcinoma, the third leading 
cause of cancer death (107-110). Dysregulation of 
SHP2 (Src homology 2-domain containing tyrosine 
phosphatase) by H. pylori-delivered CagA is considered 
to play a key role in the neoplastic transformation of 
gastric epithelial cells (111). 

A recent report showed that CagA also targeted 
SHP1, the only homologue of SHP2 (112), resulting 
in the dephosphorylation of CagA that dampens its 
oncogenic action (113). Interestingly, in vitro infection 
of gastric epithelial cells with EBV caused SHP1 
promoter hypermethylation, which strengthened the 
phosphorylation-dependent CagA action by epigenetic 
downregulation of SHP1 expression (113). 

H. pylori and EBV are involved in roughly 
90% and 10%, respectively, of gastric tumorigenesis 
(110, 114), which indicates that a considerable portion 
of EBV-positive patients may be superinfected with H. 
pylori. The in vitro experiment reported by Hatakeyama 
and colleagues (113), indicates that it is conceivable 
for gastric epithelial cells co-infected with the above 
two pathogens, EBV miRNAs and/or EBERs, to 
modulate DMNT action, leading to the promotion of 
neoplastic transformation through activated CagA 
protein function. 

8. HCV miRNA AND ONCOGENESIS

HCV infection is responsible for 70-85% of 
worldwide HCC (hepatocellular carcinoma) (115). For 
the pathogenesis of HCC following HCV infection, a 
recent report showed that HCV vmr11 was sufficient 
to confer infected hepatocytes with invasive properties 
(116). To exert this oncogenic function, vmr11 targets 
HNF4alpha (hepatocyte nuclear factor 4alpha) 
mRNA, resulting in reduced HNF4alpha expression 
levels (116). Sustained loss of HNF4alpha protein 
expression in HCV-infected hepatocytes induces the 
expression of EMT regulatory genes; such as TGFB 
(transforming growth factor beta), Snail and HMGA2 
(high mobility group AT-hook 2), which are associated 
with reduced E-cadherin protein expression (Figure 6)  
(116). TGF-beta, a soluble growth factor having 
multiple functions at EMT, together with HMGA2, 
activates Snail expression (117). Snail is a negative 
transcriptional regulator of CDH1 (Cadherin 1) (118); 

processes of modulating host immune responses and 
cell proliferation. 

Firstly, Rossetto and colleagues investigated 
the functions of PAN by isolating proteins with the 
lncRNA (100, 101). This proteomics study showed that 
PAN interacted with IRF4, which was further confirmed 
by a formaldehyde-based crosslinking assay (101). 
Expression of PAN reduced the activity of an IRF4-
responsive promoter in a luciferase reporter assay, 
suggesting that PAN could negatively regulate IRF4 
activity (101). To further elucidate downstream immune 
response genes under control of the IRF4-responsive 
promoter, Rossetto et al examined the expression 
profiles of the genes encoding human interferon-
signaling and -response factors. RT-PCR analysis of 
a cell line constitutively expressing PAN RNA showed 
reduced levels of IFN-gamma, IFN-alpha16, IL-18 and 
RNase L mRNAs, suggesting that KSHV PAN RNA 
could modulate the expression of genes involved in 
immune regulation (101). 

RNA-Seq analysis of cell lines that express 
PAN RNA further showed that transcription of genes 
encoding factors that regulate the cell cycle, immune 
response and inflammation was dysregulated, which 
caused an enhanced growth phenotype (102). These 
results thus suggest that KSHV PAN RNA may 
complement miRNA function to complete the viral 
oncogenesis processes including immune evasion 
and cell growth (Figure 7). 

6. HTLV-1 BASIC LEUCINE ZIPPER FACTOR 
MRNA AND ONCOGENESIS

The HTLV-1 provirus is 9 kb and encodes 
multiple open reading frames that are flanked by 
two identical 750 bp terminal repeats at the 5′ and 3′ 
ends (103). The complementary strand of the HTLV-1 
provirus also harbors the HBZ (HTLV-1 basic leucine 
zipper factor) gene, which encodes HBZ, a bZIP (basic 
leucine zipper) transcription factor that downregulates 
viral transcription (104). 

Intriguingly, the HBZ mRNA also carries coding-
independent regulatory functions (105, 106). The HBZ 
mRNA supports the proliferation of an IL-2-dependent 
T-cell line, Kit225. Although the precise mechanism 
of this action has not been clarified, the mRNA likely 
exerts its regulatory function by transcriptionally 
upregulating adenovirus E2F1 (E2 promoter-binding 
factor 1) mRNA, which can subsequently activate the 
transcription of downstream target genes to enhance 
cell proliferation (106). A recent study further reported 
that the regulatory HBZ mRNA also inhibits apoptosis 
in mouse CD4 T cells (105). HBZ mRNA increased 
transcription of the anti-apoptotic gene, survivin, which 
likely accounts for its anti-apoptotic effects. These two 
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9. PERSPECTIVES

The development of sequencing technologies 
and the evolution of bioinformatic methodologies 
revealed the presence of large numbers of ncRNAs 
encoded by oncogenic pathogens. This progress has 
deepened our knowledge of the regulatory functions of 
ncRNAs, leading to proposals of new forms of circuitry 
for ncRNA-dependent oncogenesis. 

The inherent nature of pathogen-associated 
regulatory ncRNA circuitry may have important 
sequelae for viral and bacterial oncogenesis. ncRNAs 
deregulate and disrupt the function of a number of 
cellular factors, for example those responsible for the 
immunological monitoring that reduces pathogenic 
burden, for governing the apoptotic program, and 
for controlling the careful production and release of 
growth-promoting signals. Such deregulation ultimately 
leads to the hallmarks of cancer (31) that are generated 
during the multistep development of infectious cancers. 
The proposal by Hanahan and Weinberg, that the 
complexity of cancer can be reduced to six underlying 
principles or hallmarks (see Table 2) that govern the 
transformation of normal cells to cancer cells, has 
changed over the years. They later proposed four 
additional hallmarks: (1) abnormal metabolic pathways, 
(2) evading the immune system, (3) genome instability, 
and (4) inflammation (Table 2) (32). The new form of 

therefore, the downregulation of E-cadherin protein 
results in EMT. 

vmr11 also targets TNPO2 (Transportin-2) 
mRNA, resulting in restricted nuclear translocation 
of PTEN protein in HCV-infected human hepatocytes 
(119). This result was substantiated by the restoration 
of intracellular TNPO2 levels, which rescued the 
expression levels of nuclear PTEN. These results 
thus support a novel mechanism for regulating the 
expression levels of PTEN in the nucleus; a vmr11-
dependent reduction of TNPO2 mRNA levels leads 
to the exclusion of PTEN from the nucleus in virally 
infected hepatocytes (119). 

PTEN might be involved in the transcriptional 
regulation of Rad51 by acting on chromatin or its 
promoter (120). Rad51 is critical for chromosomal 
stability, presumably through controlling DSB (double-
strand break) repair (121). Therefore, the PTEN-
Rad51 DNA repair pathway provides a mechanistic 
basis for a DSB repair defect in the nucleus of 
HCV-infected hepatocytes, which can give rise to 
chromosomal breakage and translocation (Figure 8). 
It is thus plausible that the nuclear exclusion of PTEN 
by vmr11 promotes genomic instability in HCV-infected 
hepatocytes, which would lead to the acquisition of 
invasion and metastasis capabilities (Table 2, 9 and 
4 of cancer hallmarks) and cancer susceptibility (120).

Figure 8. Chromosome breakage and translocation by pathogen-associated ncRNA. The HCV miRNA, vmr11, targets TNPO2 mRNA, which encodes 
a transportin for the nuclear import of PTEN. Nuclear PTEN acts on chromatin or the promoter of Rad51. Rad51 is critical for chromosomal stability 
via the control of DSB repair; therefore, vmr11-dependent nuclear exclusion of PTEN results in failure of DSB repair and chromosome breakage and 
translocation. The HCV miRNA is in green font.
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circuitry for gene regulation by pathogen-associated 
regulatory ncRNAs discussed throughout this review 
generates the genetic diversity or even abnormality 
that underlies the acquisition of processes that form the 
cancer hallmarks. 

ncRNAs are generally expressed in a tissue-
specific manner and exhibit aberrant expression in 
cancers. Therefore, targeting and either downregulating 
or upregulating specific lncRNAs in malignancies may 
not have deleterious side effects on normal cells. 
Although the circuitry requires much investigation 
to fully determine the mechanisms of its action on 
pathogen-associated oncogenesis, it seems plausible 
that key pathogen-associated oncogenic ncRNAs 
and/or host tumor-suppressor ncRNAs, if any, provide 
new therapeutic targets for the treatment of pathogen-
associated cancers. 
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