Information
References
Contents
Download
[1]R. D. Brown, S. K. Ambler, M. D. Mitchell and C. S. Long: The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol, 45, 657-87 (2005)
[2]K. E. Porter and N. A. Turner: Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther, 123(2), 255-78 (2009)
[3]G. R. Crabtree: Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell, 96(5), 611-4 (1999)
[4]I. A. Graef, F. Chen and G. R. Crabtree: NFAT signaling in vertebrate development. Curr Opin Genet Dev, 11(5), 505-12 (2001)
[5]J. D. Molkentin, J. R. Lu, C. L. Antos, B. Markham, J. Richardson, J. Robbins, S. R. Grant and E. N. Olson: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93(2), 215-28 (1998)
[6]E. N. Olson and R. S. Williams: Remodeling muscles with calcineurin. Bioessays, 22(6), 510-9 (2000)
[7]P. J. Schwartz, E. Vanoli, A. Zaza and G. Zuanetti: The effect of antiarrhythmic drugs on life-threatening arrhythmias induced by the interaction between acute myocardial ischemia and sympathetic hyperactivity. Am Heart J, 109(5 Pt 1), 937-48 (1985)
[8]Y. Himura, S. Y. Felten, M. Kashiki, T. J. Lewandowski, J. M. Delehanty and C. S. Liang: Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Circulation, 88(3), 1299-309 (1993)
[9]P. C. Simpson, B. J. Trudinger, A. Walker and P. J. Baird: The intrauterine treatment of fetal cardiac failure in a twin pregnancy with an acardiac, acephalic monster. Am J Obstet Gynecol, 147(7), 842-4 (1983)
[10]A. B. Sprenkle, S. F. Murray and C. C. Glembotski: Involvement of multiple cis elements in basal-and alpha-adrenergic agonist-inducible atrial natriuretic factor transcription. Roles for serum response elements and an SP-1-like element. Circ Res, 77(6), 1060-9 (1995)
[11]B. Bhambi and M. Eghbali: Effect of norepinephrine on myocardial collagen gene expression and response of cardiac fibroblasts after norepinephrine treatment. Am J Pathol, 139(5), 1131-42 (1991)
[12]N. Takahashi, A. Calderone, N. J. Izzo, Jr., T. M. Maki, J. D. Marsh and W. S. Colucci: Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes. J Clin Invest, 94(4), 1470-6 (1994)
[13]D. M. Eble, M. Qi, S. Waldschmidt, P. A. Lucchesi, K. L. Byron and A. M. Samarel: Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy. Am J Physiol, 274(5 Pt 1), C1226-37 (1998)
[14]M. Leicht, N. Greipel and H. Zimmer: Comitogenic effect of catecholamines on rat cardiac fibroblasts in culture. Cardiovasc Res, 48(2), 274-84 (2000)
[15]S. Goruppi, R. D. Patten, T. Force and J. M. Kyriakis: Helix-loop-helix protein p8, a transcriptional regulator required for cardiomyocyte hypertrophy and cardiac fibroblast matrix metalloprotease induction. Mol Cell Biol, 27(3), 993-1006 (2007)
[16]B. B. Hoffman and Z. W. Hu: Alpha(1)-adrenoceptors (alpha(1)-AR) and vascular smooth muscle cell growth. Prostate Suppl, 9, 29-33 (2000)
[17]D. A. Siwik and R. D. Brown: Regulation of protein synthesis by alpha 1-adrenergic receptor subtypes in cultured rabbit aortic vascular smooth muscle cells. J Cardiovasc Pharmacol, 27(4), 508-18 (1996)
[18]H. Zhang, C. S. Facemire, A. J. Banes and J. E. Faber: Different alpha-adrenoceptors mediate migration of vascular smooth muscle cells and adventitial fibroblasts in vitro. Am J Physiol Heart Circ Physiol, 282(6), H2364-70 (2002)
[19]Z. W. Hu, X. Y. Shi, R. Z. Lin and B. B. Hoffman: Alpha1 adrenergic receptors activate phosphatidylinositol 3-kinase in human vascular smooth muscle cells. Role in mitogenesis. J Biol Chem, 271(15), 8977-82 (1996)
[20]T. Nakaki, M. Nakayama, S. Yamamoto and R. Kato: Alpha 1-adrenergic stimulation and beta 2-adrenergic inhibition of DNA synthesis in vascular smooth muscle cells. Mol Pharmacol, 37(1), 30-6 (1990)
[21]R. Vashisht, M. Sian, P. J. Franks and M. K. O’Malley: Long-term reduction of intimal hyperplasia by the selective alpha-1 adrenergic antagonist doxazosin. Br J Surg, 79(12), 1285-8 (1992)
[22]J. E. Faber, N. Yang and X. Xin: Expression of alpha-adrenoceptor subtypes by smooth muscle cells and adventitial fibroblasts in rat aorta and in cell culture. J Pharmacol Exp Ther, 298(2), 441-52 (2001)
[23]C. G. Brilla, C. Scheer and H. Rupp: Renin-angiotensin system and myocardial collagen matrix: modulation of cardiac fibroblast function by angiotensin II type 1 receptor antagonism. J Hypertens Suppl, 15(6), S13-9 (1997)
[24]B. Swynghedauw: Molecular mechanisms of myocardial remodeling. Physiol Rev, 79(1), 215-62 (1999)
[25]A. B. Gustafsson and L. L. Brunton: beta-adrenergic stimulation of rat cardiac fibroblasts enhances induction of nitric-oxide synthase by interleukin-1beta via message stabilization. Mol Pharmacol, 58(6), 1470-8 (2000)
[26]J. G. Meszaros, A. M. Gonzalez, Y. Endo-Mochizuki, S. Villegas, F. Villarreal and L. L. Brunton: Identification of G protein-coupled signaling pathways in cardiac fibroblasts: cross talk between G(q) and G(s). Am J Physiol Cell Physiol, 278(1), C154-62 (2000)
[27]N. A. Turner, K. E. Porter, W. H. Smith, H. L. White, S. G. Ball and A. J. Balmforth: Chronic beta2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. Cardiovasc Res, 57(3), 784-92 (2003)
[28]F. Yin, Z. Z. Lu, Q. D. Han and Y. Y. Zhang: (Expression of beta2-adrenergic receptor and its effect on the proliferation of neonatal rat cardiac fibroblasts). Sheng Li Xue Bao, 55(3), 251-4 (2003)
[29]D. Cervantes, C. Crosby and Y. Xiang: Arrestin orchestrates crosstalk between G protein-coupled receptors to modulate the spatiotemporal activation of ERK MAPK. Circ Res, 106(1), 79-88
[30]R. S. Farivar, D. C. Crawford, A. V. Chobanian and P. Brecher: Effect of angiotensin II blockade on the fibroproliferative response to phenylephrine in the rat heart. Hypertension, 25(4 Pt 2), 809-13 (1995)
[31]K. B. Lai, J. E. Sanderson and C. M. Yu: Suppression of collagen production in norepinephrine stimulated cardiac fibroblasts culture: differential effect of alpha and beta-adrenoreceptor antagonism. Cardiovasc Drugs Ther, 23(4), 271-80 (2009)
[32]A. Burger, M. Benicke, A. Deten and H. G. Zimmer: Catecholamines stimulate interleukin-6 synthesis in rat cardiac fibroblasts. Am J Physiol Heart Circ Physiol, 281(1), H14-21 (2001)
[33]J. S. Karliner, T. Kagiya and P. C. Simpson: Effects of pertussis toxin on alpha 1-agonist-mediated phosphatidylinositide turnover and myocardial cell hypertrophy in neonatal rat ventricular myocytes. Experientia, 46(1), 81-4 (1990)
[34]A. T. Serafini, R. S. Lewis, N. A. Clipstone, R. J. Bram, C. Fanger, S. Fiering, L. A. Herzenberg and G. R. Crabtree: Isolation of mutant T lymphocytes with defects in capacitative calcium entry. Immunity, 3(2), 239-50 (1995)
[35]G. R. Crabtree: Calcium, calcineurin, and the control of transcription. J Biol Chem, 276(4), 2313-6 (2001)
[36]F. Rusnak and P. Mertz: Calcineurin: form and function. Physiol Rev, 80(4), 1483-521 (2000)
[37]C. F. Welsh, K. Roovers, J. Villanueva, Y. Liu, M. A. Schwartz and R. K. Assoian: Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol, 3(11), 950-7 (2001)
[38]B. Peterkofsky and S. Udenfriend: Conversion of Proline to Collagen Hydroxyproline in a Cell-Free System from Chick Embryo. J Biol Chem, 238, 3966-77 (1963)
[39]L. Lipskaia and A. M. Lompre: Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biol Cell, 96(1), 55-68 (2004)
[40]J. P. Viola, L. D. Carvalho, B. P. Fonseca and L. K. Teixeira: NFAT transcription factors: from cell cycle to tumor development. Braz J Med Biol Res, 38(3), 335-44 (2005)
[41]G. R. Crabtree and E. N. Olson: NFAT signaling: choreographing the social lives of cells. Cell, 109 Suppl, S67-79 (2002)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Phenylephrine promotes cardiac fibroblast proliferation through calcineurin-NFAT pathway
1 Department of Pharmacy, Nantong University Affiliated Hospital, Nantong, P. R. China
2 Department of Pharmacology, Nantong University School of Pharmacy, Nantong, P. R. China
3 Department of Pharmacy, Yan Cheng Institute of Health Science, Nantong University, Nantong, P. R. China
4 Key lab of inflammation and drug target, Jiangsu province, Nantong University, Nantong, P. R. China
Abstract
Ca2+/calmodulin-dependent calcineurin (CaN) plays an important role in various Ca2+ signaling pathways, among which are those involved in cardiac diseases. It has also been shown that a heightened sympathetic tone accelerates the development of heart failure. The present study investigates whether the CaN-mediated nuclear factor of activated T-cells (NFAT) pathway is involved in cultured neonatal rat cardiac fibroblast proliferation induced by phenylephrine. CF proliferation was assessed by a cell survival assay and cell counts. Green fluorescent protein-tagged NFAT3 was used to determine the cellular location of NFAT3. CaN activity and protein levels were also determined by an activity assay kit and Western blotting, respectively. Results showed that phenylephrine promoted CF proliferation, which was abolished by α1-adrenergic receptor antagonist (prazosin), a blocker of Ca2+ influx (nifedipine), an intracellular Ca2+ buffer (BAPTA-AM), CaN inhibitors (cyclosporin A and FK506), and over-expression of dominant negative CaN. Phenylephrine activated CaN and evoked NFAT3 nuclear translocation, both of which were blocked by cyclosporine A (CsA) or over-expression of dominant negative CaN. These results suggest that the Ca2+/CaN/NFAT pathway mediates PE-induced CF proliferation, and this pathway might be a possible therapeutic target in cardiac fibrosis.
Keywords
- Calcineurin
- Phenylephrine
- Nuclear factor of activated T cells
- Proliferation
- Fibroblast
References
- [1] R. D. Brown, S. K. Ambler, M. D. Mitchell and C. S. Long: The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol, 45, 657-87 (2005)
- [2] K. E. Porter and N. A. Turner: Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther, 123(2), 255-78 (2009)
- [3] G. R. Crabtree: Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell, 96(5), 611-4 (1999)
- [4] I. A. Graef, F. Chen and G. R. Crabtree: NFAT signaling in vertebrate development. Curr Opin Genet Dev, 11(5), 505-12 (2001)
- [5] J. D. Molkentin, J. R. Lu, C. L. Antos, B. Markham, J. Richardson, J. Robbins, S. R. Grant and E. N. Olson: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93(2), 215-28 (1998)
- [6] E. N. Olson and R. S. Williams: Remodeling muscles with calcineurin. Bioessays, 22(6), 510-9 (2000)
- [7] P. J. Schwartz, E. Vanoli, A. Zaza and G. Zuanetti: The effect of antiarrhythmic drugs on life-threatening arrhythmias induced by the interaction between acute myocardial ischemia and sympathetic hyperactivity. Am Heart J, 109(5 Pt 1), 937-48 (1985)
- [8] Y. Himura, S. Y. Felten, M. Kashiki, T. J. Lewandowski, J. M. Delehanty and C. S. Liang: Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Circulation, 88(3), 1299-309 (1993)
- [9] P. C. Simpson, B. J. Trudinger, A. Walker and P. J. Baird: The intrauterine treatment of fetal cardiac failure in a twin pregnancy with an acardiac, acephalic monster. Am J Obstet Gynecol, 147(7), 842-4 (1983)
- [10] A. B. Sprenkle, S. F. Murray and C. C. Glembotski: Involvement of multiple cis elements in basal-and alpha-adrenergic agonist-inducible atrial natriuretic factor transcription. Roles for serum response elements and an SP-1-like element. Circ Res, 77(6), 1060-9 (1995)
- [11] B. Bhambi and M. Eghbali: Effect of norepinephrine on myocardial collagen gene expression and response of cardiac fibroblasts after norepinephrine treatment. Am J Pathol, 139(5), 1131-42 (1991)
- [12] N. Takahashi, A. Calderone, N. J. Izzo, Jr., T. M. Maki, J. D. Marsh and W. S. Colucci: Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes. J Clin Invest, 94(4), 1470-6 (1994)
- [13] D. M. Eble, M. Qi, S. Waldschmidt, P. A. Lucchesi, K. L. Byron and A. M. Samarel: Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy. Am J Physiol, 274(5 Pt 1), C1226-37 (1998)
- [14] M. Leicht, N. Greipel and H. Zimmer: Comitogenic effect of catecholamines on rat cardiac fibroblasts in culture. Cardiovasc Res, 48(2), 274-84 (2000)
- [15] S. Goruppi, R. D. Patten, T. Force and J. M. Kyriakis: Helix-loop-helix protein p8, a transcriptional regulator required for cardiomyocyte hypertrophy and cardiac fibroblast matrix metalloprotease induction. Mol Cell Biol, 27(3), 993-1006 (2007)
- [16] B. B. Hoffman and Z. W. Hu: Alpha(1)-adrenoceptors (alpha(1)-AR) and vascular smooth muscle cell growth. Prostate Suppl, 9, 29-33 (2000)
- [17] D. A. Siwik and R. D. Brown: Regulation of protein synthesis by alpha 1-adrenergic receptor subtypes in cultured rabbit aortic vascular smooth muscle cells. J Cardiovasc Pharmacol, 27(4), 508-18 (1996)
- [18] H. Zhang, C. S. Facemire, A. J. Banes and J. E. Faber: Different alpha-adrenoceptors mediate migration of vascular smooth muscle cells and adventitial fibroblasts in vitro. Am J Physiol Heart Circ Physiol, 282(6), H2364-70 (2002)
- [19] Z. W. Hu, X. Y. Shi, R. Z. Lin and B. B. Hoffman: Alpha1 adrenergic receptors activate phosphatidylinositol 3-kinase in human vascular smooth muscle cells. Role in mitogenesis. J Biol Chem, 271(15), 8977-82 (1996)
- [20] T. Nakaki, M. Nakayama, S. Yamamoto and R. Kato: Alpha 1-adrenergic stimulation and beta 2-adrenergic inhibition of DNA synthesis in vascular smooth muscle cells. Mol Pharmacol, 37(1), 30-6 (1990)
- [21] R. Vashisht, M. Sian, P. J. Franks and M. K. O’Malley: Long-term reduction of intimal hyperplasia by the selective alpha-1 adrenergic antagonist doxazosin. Br J Surg, 79(12), 1285-8 (1992)
- [22] J. E. Faber, N. Yang and X. Xin: Expression of alpha-adrenoceptor subtypes by smooth muscle cells and adventitial fibroblasts in rat aorta and in cell culture. J Pharmacol Exp Ther, 298(2), 441-52 (2001)
- [23] C. G. Brilla, C. Scheer and H. Rupp: Renin-angiotensin system and myocardial collagen matrix: modulation of cardiac fibroblast function by angiotensin II type 1 receptor antagonism. J Hypertens Suppl, 15(6), S13-9 (1997)
- [24] B. Swynghedauw: Molecular mechanisms of myocardial remodeling. Physiol Rev, 79(1), 215-62 (1999)
- [25] A. B. Gustafsson and L. L. Brunton: beta-adrenergic stimulation of rat cardiac fibroblasts enhances induction of nitric-oxide synthase by interleukin-1beta via message stabilization. Mol Pharmacol, 58(6), 1470-8 (2000)
- [26] J. G. Meszaros, A. M. Gonzalez, Y. Endo-Mochizuki, S. Villegas, F. Villarreal and L. L. Brunton: Identification of G protein-coupled signaling pathways in cardiac fibroblasts: cross talk between G(q) and G(s). Am J Physiol Cell Physiol, 278(1), C154-62 (2000)
- [27] N. A. Turner, K. E. Porter, W. H. Smith, H. L. White, S. G. Ball and A. J. Balmforth: Chronic beta2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. Cardiovasc Res, 57(3), 784-92 (2003)
- [28] F. Yin, Z. Z. Lu, Q. D. Han and Y. Y. Zhang: (Expression of beta2-adrenergic receptor and its effect on the proliferation of neonatal rat cardiac fibroblasts). Sheng Li Xue Bao, 55(3), 251-4 (2003)
- [29] D. Cervantes, C. Crosby and Y. Xiang: Arrestin orchestrates crosstalk between G protein-coupled receptors to modulate the spatiotemporal activation of ERK MAPK. Circ Res, 106(1), 79-88
- [30] R. S. Farivar, D. C. Crawford, A. V. Chobanian and P. Brecher: Effect of angiotensin II blockade on the fibroproliferative response to phenylephrine in the rat heart. Hypertension, 25(4 Pt 2), 809-13 (1995)
- [31] K. B. Lai, J. E. Sanderson and C. M. Yu: Suppression of collagen production in norepinephrine stimulated cardiac fibroblasts culture: differential effect of alpha and beta-adrenoreceptor antagonism. Cardiovasc Drugs Ther, 23(4), 271-80 (2009)
- [32] A. Burger, M. Benicke, A. Deten and H. G. Zimmer: Catecholamines stimulate interleukin-6 synthesis in rat cardiac fibroblasts. Am J Physiol Heart Circ Physiol, 281(1), H14-21 (2001)
- [33] J. S. Karliner, T. Kagiya and P. C. Simpson: Effects of pertussis toxin on alpha 1-agonist-mediated phosphatidylinositide turnover and myocardial cell hypertrophy in neonatal rat ventricular myocytes. Experientia, 46(1), 81-4 (1990)
- [34] A. T. Serafini, R. S. Lewis, N. A. Clipstone, R. J. Bram, C. Fanger, S. Fiering, L. A. Herzenberg and G. R. Crabtree: Isolation of mutant T lymphocytes with defects in capacitative calcium entry. Immunity, 3(2), 239-50 (1995)
- [35] G. R. Crabtree: Calcium, calcineurin, and the control of transcription. J Biol Chem, 276(4), 2313-6 (2001)
- [36] F. Rusnak and P. Mertz: Calcineurin: form and function. Physiol Rev, 80(4), 1483-521 (2000)
- [37] C. F. Welsh, K. Roovers, J. Villanueva, Y. Liu, M. A. Schwartz and R. K. Assoian: Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol, 3(11), 950-7 (2001)
- [38] B. Peterkofsky and S. Udenfriend: Conversion of Proline to Collagen Hydroxyproline in a Cell-Free System from Chick Embryo. J Biol Chem, 238, 3966-77 (1963)
- [39] L. Lipskaia and A. M. Lompre: Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biol Cell, 96(1), 55-68 (2004)
- [40] J. P. Viola, L. D. Carvalho, B. P. Fonseca and L. K. Teixeira: NFAT transcription factors: from cell cycle to tumor development. Braz J Med Biol Res, 38(3), 335-44 (2005)
- [41] G. R. Crabtree and E. N. Olson: NFAT signaling: choreographing the social lives of cells. Cell, 109 Suppl, S67-79 (2002)
