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1. ABSTRACT

Thyroid cancer is a common endocrine 
malignancy. The tumorigenesis of thyroid tumours has 
been identified in recent years, including numerous 
genetic alterations and several major signalling 
pathways. However, the molecular mechanisms involved 
in thyroid cancer metastasis remain controversial. 
Studies in thyroid cancer metastasis suggested that 
reactivation of several pathways, including epithelial 
to mesenchymal transition and microenvironment 
change, may be involved in thyroid cancer migration. 
The previously identified thyroid oncogenes, BRAF, 
RET/PTC and Ras, play important roles in regulating 
the metastatic process. Here, we review the recent 
knowledge eon molecular mechanisms involved in 
thyroid cancer metastasis.

2. INTRODUCTION

Thyroid cancer is a common endocrine 
malignancy with an increasing incidence in the past 
decades worldwide (1). Many countries have two-fold 
increase incidence of thyroid tumor since the late 1990s. 
In some regions, like Hong Kong, New Zealand, and UK, 
thyroid cancer has the most progressive prevalence (1). In 
China, the Ministry of Health of China reported thatthyroid 
cancer was the third most malignant tumor in female in 
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2012. The cases of thyroid cancer increased by 225.2% 
in the last nine years in Beijing (2).

The histological types of thyroid cancer are 
papillary thyroid cancer (PTC), follicular thyroid cancer 
(FTC), poorly differentiated thyroid cancer (PDTC) and 
anaplastic thyroid cancer (ATC). PTC and FTC are 
collectively classified as differentiated thyroid cancer 
(DTC). Parafollicular C cell-derived medullary thyroid 
cancer (MTC) counts a small proportion of thyroid 
malignancies.

The majority of DTC patients have better 
prognosis. However, patients with extensive local ordistant 
metastasis frequently fail to respond to the standard 
treatments and tend to have a worse prognosis with a 
50% five-year survival rate (3,4). Metastasis is the most 
common cause of death in thyroid cancer. Bone metastasis 
often predicts a significantly worse prognosis (5). Distant 
metastatic disease is present in only 3–15% of patients 
with thyroid cancer and 6-20% of patients develop 
metastasis (6). Some study reported that lymph node 
metastasis has little relation with survival, but it may cause 
serious complications and recurrence. Generally, follicular 
thyroid cancer spreads via the blood stream, whereas 
papillary thyroid tumor spreads via the lymphatic system (7).
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To identify the mechanisms of metastasisin 
thyroid cancer may throw light ondevelopingtherapeutic 
targets for patients with progressive metastatic disease.

3. ONCOGENES, METASTASIS 
SUPPRESSORSAND MICRORNAS: COMMON 
GENETIC ALTERATIONS IN THYROID 
CANCER

Numerous genetic alterations that playa 
fundamental role in the tumorigenesis of thyroid tumours 
have been reported,such as BRAF, RET/PTC, RAS, 
TRK in papillary thyroid cancer and RAS, PTEN, and 
PAX8/PPAR gamma mutations in follicular thyroid 
cancers (8-10), However, the molecular mechanisms 
involved in thyroid cancer metastasis remain unclear.

3.1. Oncogenes
Various oncogenes expressed in thyroid cancer 

are potentially associated with invasion and metastasis. 
Oncogenes can induce chromosomal instability and 
epithelial-mesenchymal transition (EMT), activate pathways 
that lead to degradation of local intracellular matrix proteins, 
and also induce recruitment of bone marrow progenitor cells 
that may facilitate angiogenesis (11).

The BRAFT1799A (V600E) mutation is the most 
common oncogenic event identified in PTC (12). PTCs 
withBRAFT1799A (V600E) are often invasive and tend 
to proceed to an advanced stage (13). Kim et al (14) 
reported that 76% of patients with a BRAF mutation 
and PTC had lymph node metastasis. As noted above, 
BRAFT1799A (V600E) could be associated with local 
invasion and nodal metastases.

RAS mutations rank the second in the 
prevalence to BRAF mutations in thyroid cancer (15). 
RAS mutations could be markers for aggressive cancer 
and RAS genotyping can identify thyroid cancer subsets 
together with prognosis (16). RAS expression can also 
be associated with aggressiveness and poor prognosis 
in thyroid cancer (17). Although RAS is a classical 
dual activator of MAPK and PI3K-AKT pathways, RAS 
mutations preferentially activate the PI3K–AKT pathway 
where AKT is phosphorylated in thyroid cancers (18,19).

Rearrangement of the RET gene, also known as 
RET/PTC rearrangement, is the most common genetic 
alteration identified in thyroid papillary cancer. RET/
PTC is more commonly seen in children and young 
adults. RET/PTC in papillary cancer is associated with 
radiation exposure (20). PTCs harboring the RET/
PTC3rearrangement demonstrates a high metastatic 
potential (21). RET/PTC is a classical oncoprotein that 
activates the MAPK and PI3K–AKT pathways (22,23).

Another oncogene, c-Met, has been found 
to play critical roles in neoplastic diseases (24). c-Met 

expression may correlate with poor prognosis of PTC, 
lymph node metastasis and pathological stage (25). The 
paired box 8 (PAX8)–peroxisome proliferator activated 
receptor-γ (PPARG) fusion gene (PAX8–PPARG) is 
another prominent recombinant oncogene in thyroid 
cancer, occurring in up to 60% of FTC (26-28) with 
indications of invasion and poor prognosis.

3.2. Metastasis suppressors
Metastasis suppressor genes encode proteins 

that inhibit metastasis without altering malignant 
transformation (29,30). Studies showed that the 
expression of metastasis suppressors were reduced 
in metastatic tumour cells, compared with tumorigenic 
but non-metastatic tumour cells (30). More than twenty 
metastatic suppressor genes have been identified (31). 
Revealing the mechanism of how metastatic suppressors 
are delivered may provide potential therapeutic targets.

A number of genes that encode metastasis-
suppressing transcripts have been identified, including 
NM23, CAD1, MKK4, KAI-1 (CD82), TXNP, CRSP3, 
BRMS1, KiSS-1, and etc. (29,30). Several of these 
genes have been studied in thyroid cancer, including 
NM23  (32,33), CAD1 (34,35), KAI-1, KiSS-1  (36), 
GPR54  (36,37), and RCAN1-4  (38). NM23, CAD1, and 
KAI-1 are downregulated in invasive and metastatic cancer.

KAI-1 is a prominent metastatic suppressor 
gene that was originally identified in prostate carcinoma 
and mapped to human chromosome 11p11.2 (17). KAI-1 
is significantly downregulated in progressive papillary 
carcinoma, including lymphnode metastasis, and its 
anaplastic transformation (39).

Carles et al. (32) used monoclonal antibody to 
observe NM23-H1 in patients with follicular carcinoma. 
Results showed a significant inverse association between 
metastatic disease and the expression of NM23-H1 
product. The NM23-H1 protein immunoreactivity was 
inversely associated with the metastatic potential of tumors 
and the mortality of patients with follicular thyroid carcinoma 
(32). Arai et et al (33,40) and Okuboet al. (41) reported that 
NM23-H1 was lower in metastatic lymph node tissue than 
in the primary tumor indifferentiated thyroid cancer.

Lee et al. described the product of KiSS-1 as an 
inhibitor of tumor metastases inhuman melanoma and breast 
carcinoma cell lines (42,43). Matthew et al. demonstrated 
that metastin, the KiSS-1 gene product receptor, is 
overexpressed in PTC, but is rarely expressed in FTC, 
as papapillary cancer are less likely to develop distant 
metastases than follicular cancers (36). The KiSS-1gene 
products have been identified as the endogenous ligands 
for a heptahelical G protein-coupled receptor (GPR54).
The expression of GPR54 was maintained in primary 
PTC and was reduced in FTC, consistent with the greater 
tendency of FTC to metastasize hematogenously (36).
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3.3. MicroRNA
Several studies analyzed the expression of 

microRNAs (miRNAs or miRs) in thyroid carcinoma 
andevaluated a possible role of the deregulation in the 
process of carcinogenesis (44). MicroRNAs (miRNAs or 
miRs) constitute a class of small endogenous noncoding 
RNAs of 19  -  23 nucleotides that negatively regulate 
gene expressions (45). MicroRNAsare an abundant 
class of gene regulatory molecules in multicellular 
organisms and modulate the expression of many protein-
coding genes (45). Functioning as either oncogenes or 
tumor suppressors, miRNAs contribute to tumorigenesis. 
The collective studies have revealed that the most 
differentially expressed miRNAs in PTC, including 
miRNA-146b,  -221,  -187,  -30d (46) and MiR-155  (47) 
are up-regulated. Mazeh et al. comparatively analyzed 
twenty-seven fine needle aspiration Biopsy (FNAB) 
samples from twenty PTC patients. The results showed 
that a 95% sensitivity of miRNA-221 in detecting PTC (48).

Eleven miRNAs were identified as putative 
markers of invasion and metastasis of PTC by transwell 
invasion experiments in vitro. The miRNA microarray 
technique was used to validate the differential expression 
of these eleven miRNAs between invasive cancer cell 
lines and their respective non-invasive controls (49). 
MiR-146b was significantly overexpressed in PTCs with 
extrathyroidal invasion and associated with high-risk 
PTC with BRAF mutation (50). MiR-146b expression 
isan independent risk factor for poor prognosis in PTC 
together with cervical lymph node metastasis.

4. PATHWAYS AND METASTASIS IN 
THYROID CANCER

4.1. The MAPK signalling pathway
Mitogen-activated protein kinases (MAPK) 

are well-conserved enzymes connecting cellsurface 
receptors to intracellular regulating targets. There are 
three well-known MAPK subfamilies: extracellular signal-
regulated kinases (ERK), c-Jun NH2-terminal kinases 
(JNK), and p38 MAPK isoforms (51).

This pathway has been well studied in thyroid 
tumorigenesis and is very important in PTC (52,53). In 
thyroid cancer, the MAPK pathway is driven by activated 
mutations, including BRAF and RAS mutations by RET/
PTC and ALK mutation s (54). The activation of BRAF-
V600E-mediated MAPK pathway promotes the release 
of thrombospondin 1(TSP1) into the extracellular matrix 
(ECM), where TSP1interacts with and modulates 
other proteins, including integrins and non-integrin 
cell-membrane receptors, matrix proteins, cytokines, 
VEGFA and MMPs. In turn, these modulated proteins 
activate downstream signaling in thyroid cancer cells 
and promote tumour progression and metastasis (55,56).
Studies have also demonstrated increased expression of 
MMP-2 in metastatic thyroid cancer (57). The expression 

of phosphorylated JNK (p-JNK) correlates with the 
aggressive clinicopathological features inPTC. Indeed, 
the presence of lymph node metastases and advanced 
TNM stages both positively correlated with the level of 
p-JNK (58).

4.2. The PI3K-AKT signalling pathway
Akt is a critical mediator of growth factor-

activated PI3k signaling, which is central to the regulation 
of benign thyroid cell growth (59-62). The PI3K–AKT 
pathway has a fundamental role in thyroid tumorigenes is 
as a regulator of cell migration and a critical modulator of 
invasion in both human thyroid cancer and thyroid cancer 
cell lines (63).

Akt activation is associated with the 
pathogenesis of inherited thyroid cancer and in sporadic 
thyroid cancers (63). Human studies suggested that the 
invasiveness and metastasis of FTC were promoted by 
the PI3K–AKT pathway, particularly in the activation and 
nuclear localization of Akt 1(63). Nuclear translocations 
of Akt1 and p-Akt were associated with cell invasion 
and migration in human thyroid cancer cells (63), which 
correlate with the presence of Akt1mutations in metastatic 
thyroid cancers (64). The thyroid hormone receptor β PV/
PV knock-in (PV) mice was developed to further study 
the metastasis in differentiated thyroid cancer in vivo 
and pathways involved in the metastatic progression 
in vitro (65). Saji et al. demonstrated that Akt1 ablation 
delayed tumor progression, vascular intravasation and 
distant metastasis inβPV/PV-Akt1 KO mice. Therefore, 
the MAPK pathway has a central role in PTC, while the 
PI3K–AKT pathway has a crucial role in the invasion and 
metastasis of FTC (15). Follicular thyroid cancer cells 
invading the tumour capsule or blood vessels, or other 
areas, were characterised by Akt activation in a nuclear 
pattern, suggesting an association of Aktactivity and 
tumor aggressiveness and metastasis.

4.3. The WNT-β-catenin signalling pathway
The expression of β-catenin was higher in 

ATC than in DTC. Thus, the WNT-β-catenin pathway 
is believed to have a primary role in thyroid tumour 
aggressiveness (66).The activation of PI3K-Akt pathway, 
where glycogen synthase kinase 3β (GSK3β) is directly 
phosphorylated and then inactivated by Akt, lead to 
the aberrant activation of WNT-β-catenin signaling 
pathway (67,68)

4.4. Other signalling pathways
nuclear factor-κB (NF-κB) activation is 

increased in thyroid cancer cell lines and tissues (69,70).
HIF1α is expressed in thyroid cancers, particularly 
in aggressive types, such as ATC, promoting cancer 
progression (71,72). The oncogene MET, another target 
of HIF1α, is also over-expressed due to the upregulated 
HIF1α in thyroid cancer (72). Lymphatic metastases 
were highly positive (>93%) for both signal transducer 
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and activator of transcription 3(STAT3) and p-STAT3. 
The STAT3 pathway is ubiquitous in PTC and p-STAT3 
is significantly upregulated in metastatic PTC (73)
(Figure 1).

5. EPITHELIAL–MESENCHYMAL 
TRANSITION AND THYROID CANCER 
METASTASIS

EMT was first recognized as a differentiation 
process in early embryogenic morphogenesis (74). It is a 
coordinated molecular and cellular process of reduction 
incell to cell adhesion, apical-basolateral polarity, epithelial 
markers, an acquisition of motility, spindle-cell shape, and 
mesenchymal markers (75). The inclusive EMT process 
indicates a potential mechanism that enhances the 
detachment of cancer cells from the primary tumors (75). 

Besides TGFβ and RTK/Ras signaling, autocrine factors 
and Wnt-, Notch-, Hedgehog-  and NF-κB-dependent 
pathways were reported to contribute to EMT (11). 
Transforming growth factor-h (TGF-h), epidermal growth 
factor (EGF) family members, fibroblast growth factors 
(FGF), hepatocyte growth factor (HGF), and insulin-like 
growth factor (IGF) can induce EMT in an autocrine or 
paracrine manner (11). Furthermore, miR-200 plays a 
key role in EGF/EGFR-mediated thyroid cell invasion and 
in EMT in vitro (76).

E-cadherin, one of the caretakers of the epithelial 
phenotypes, is involved in EMT (77).The downregulation of 
E-cadherin was first reported more than a decade ago by 
Graff and his colleagues (78).Their results showed that the 
DNA methylation of the E-cadherin gene, CDH1, promoter 
varies at different stages in the metastatic process (79).

Figure 1. Main pathways involved in metastatic progression in thyroid cancer.The MAPK pathway is driven by activated mutations, including BRAF 
and RAS mutations, promotes matrix proteins, cytokines, VEGFA and MMPs.Extracellular signals activate receptor tyrosine kinases (RTKs) in the 
cell membrane, leading to theactivation of RAS and PI3K and consequently leads to phosphorylation (P) and activation of AKT. PhosphorylatedAKT 
inducestumour-promoting genes.The activation of PI3K-Akt pathway, where GSK3β is directly phosphorylated and then inactivated by Akt, lead to the 
aberrant activation of WNT-β-catenin signaling pathway.The NF-κB pathway, stimuliactivatedby receptors in the cell membrane, lead to downstream free 
NF-κB entering the nucleus to promote the expression of tumour-promoting genes.As a result, thease signalings are activated leading to migrationand 
cell proliferation.
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Recent studies suggested that EMT has 
an important role in thyroid cancer cell migration. 
E-cadherin expression could be associated with 
the de-differentiation, progression, and metastatic 
spread of thyroid carcinomas (34). The expression of 
E-cadherin is significantly lower in PTC with lymph node 
metastasis than in non-metastatic cases (36). Brabant 
et al. (78) concluded that both gene expression and post-
transcriptional control of E-cadherin may be impaired 
in human thyroid cancers. Vimentin, a mesenchymal 
cell marker, is frequently over-expressed in metastatic 
PTCs (80).

Conclusively, the close crosstalk between 
oncogenes-activated signaling pathways and the 
EMT-related signaling pathways contribute to the 
aggressiveness and metastases of thyroid cancer.

6. MICROENVIRONMENT AND THYROID 
CANCER METASTASTIC

There is increasing notice in the stromal 
microenvironment, where the development of neoplastic 
cells influences various steps in cancer progression, 
including tumor cells metastasis and the regulation of 
malignant cell behavior (81). Although tumor cells are the 
driving force of metastasis, new findings suggested that 
the host cells within the tumor microenvironment also 
play a critical role in altering metastatic behavior (82).

The microenvironment is mediated largely 
through bidirectional interactions between epithelial 
tumor cells and neighboring stromal cells, such as and 
endothelial and immune cells (81). The interactions 
include adhesion, survival, proteolysis, migration, 
immune escape mechanisms lymph-/angiogenesis, and 
homing on target organs.

Lymphocyte infiltration commonly occurs 
in PTC, particularly those with RET/PTC mutations. 
Inflammationis associated with the development and 
prognosis of PTC (83,84). Recent report suggested that 
the specific types of infiltrating lymphocytes influence the 
tumor size and local metastatic spread (85).

Single cancer cells or small clusters of cancer 
cells may release small particles, including exosomes 
and microvesicles, to modifytissues to better accept 
cancer cells (82).Tumors secrete large, plasma 
membrane-derived microvesicles, which carry matrix 
metalloproteinases (86,87). Microvesiclescan help 
the migration of tumor cells within a solid tissue (88). 
Exosomesare known to carryproteins, lipids, and RNAs, 
mediate intercellular communication in different cell 
type, and function in both physiologicaland pathological 
conditions (88). Tumor derived exosomes can participate 
in metastatic dissemination of tumor cells by educating 
bone marrow progenitor cells and promoting their 

migration to thefuture sites of metastasis (89), by directly 
seeding tumor-draining lymph nodes before further 
migration of tumor cells themselves (90), or by increasing 
local motility of tumor cells via a complex impact with 
surrounding fibroblasts (91). Exosomes from cultured 
glioblastoma tumor cells contain several angiogenic 
peptides and RNAs that can be transferred and translated 
into recipient brain microvascular endothelial cells, 
respectively. Exosomes can also confer proangiogenic 
properties and then disseminatemalignancy (92). The 
role of exosomes in thyroid cancer metastasis needs to 
be further eludidated.

7. CONCLUSION

In differentiated thyroid cancer, even the 
presence of vascular invasion in small tumors predicts 
distant metastases. These metastatic lesions are often 
located in the lymph nodes, lungs or bones and are 
identified based on thyroglobulin elevations, which 
predictsa poor prognosis. Common genetic alterations, 
oncogenes, metastasis suppressors and microRNAs all 
play critical roles in the progression of thyroid cancer. 
Furthermore, pathways, including MAPK, PI3K-Akt, 
WNT-β-catenin and etc., all cooperate in the promotion 
of cancer metastases. More importantly, the recogniction 
of the role of EMT and microenvironment in the 
metastatic mechanism of thyroid cancer is rising. A firm 
understanding of how thyroid cancer cell progression 
is regulated in different metastatic mechanisms and 
environments will help develop effective therapeutic 
targets in progressive metastatic thyroid cancer.
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