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1. ABSTRACT

Pancreatic cancer is a devastating disease with 
proclivity for early metastasis, which accounts for its poor 
prognosis. The clinical problem of pancreatic cancer 
is its resistance to conventional therapies, such as 
chemotherapy or radiation. Based upon these challenges, 
the focus of research on pancreatic cancer has shifted 
gradually towards the tumor microenvironment. The 
cancer microenvironment consists of various components, 
including fibroblasts, endothelial cells, immune cells, 
and endocrine cells, that interact with each other, and 
with the cancer cells in a complex fashion. Evidence is 
accumulating that the cancer microenvironment plays an 
active role in disease progression, and efforts are being 
made to target this interplay between cancer cells and 
host cells, to improve the prognosis of the disease. In the 
present review, we describe the cellular microenvironment 
of pancreatic ductal adenocarcinoma (PDA), the major 
type of pancreatic cancer. Our hope is that a better 
understanding of the cellular microenvironment of PDA 
will eventually lead to better treatments for this disease.

2. INTRODUCTION

Recent studies have reported significant 
advances in the treatment for many types of tumors, 
including melanoma, lung cancer, and colorectal cancer, 
based on the rational design of targeted therapies 
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directed at molecular alterations arising in the cancer 
cells (1). Unfortunately, similar success has not been 
achieved for pancreatic ductal adenocarcinoma (PDA). 
Of all the solid tumors, pancreatic cancer has one of the 
worst prognoses, with a median overall survival duration 
of approximately 6  months following diagnosis, and an 
overall survival rate at 5 years of less than 5% (2). The 
reasons include tumor resistance to chemotherapy and 
radiotherapy, lack of specific early symptoms resulting 
in advanced disease upon diagnosis, and the ability of 
pancreatic cancer cells to metastasize early in disease 
development (3). Indeed, for the approximately 15%–
20% of patients with seemingly operable disease at 
presentation, micrometastases have usually already 
occurred (4), and 85% of these patients will eventually 
experience relapse and subsequent cancer-related 
death  (5). However, the majority of patients are 
diagnosed at a late stage in disease development, with 
approximately 30% and 50% having locally, advanced, or 
unresectable and metastatic disease, respectively, upon 
presentation (6).

Since gemcitabine was established in 1997 as 
the standard of care for advanced pancreatic cancer (7), 
there has been limited progress in the development of 
systemic treatments for PDA. The mainstream treatment 
remains using chemotherapy, including gemcitabine, 
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FOLFIRINOX, and nab-paclitaxel. Erlotinib is the only 
approved biological therapy. However, current therapies 
are usually ineffective in controlling the disease course. 
Pancreatic cancer tumors are highly heterogeneous, 
which may partially explain the resistance of pancreatic 
cancer to both chemotherapy, and to targeted therapies 
to specific tumor mutations (i.e.,  tumor suppressor 
genes such as KRAS, CDKN2A, BRCA2, TP53, and 
SMAD4)  (8). Because of the continued lack of early 
diagnosis and treatment options for pancreatic cancer, 
and because the tumor microenvironment may play an 
active role in disease progression (9), further investigation 
of this microenvironment should be performed.

3. THE PDA TUMOR MICROENVIRONMENT

The tumor microenvironment is the internal 
environment in the progression from preneoplastic to 
invasive PDA. PDA is a type of cancer rich in stroma, 
which in some cases can make up to 80% of the tumor 
mass (10). It consists of various cellular and acellular 
components. The cellular components include pancreatic 
stellate cells, fibroblasts, immune cells, macrophages, 
and mast cells, and the acellular components include 
blood vessels, extracellular matrix (ECM), and soluble 
proteins such as cytokines and growth factors (11). 
The tumor microenvironment tumor microenvironment 
is not a static entity rather, it is constantly changing 

in composition, especially in the progression from 
preneoplastic pancreatic intraepithelial neoplasia to 
invasive PDA (12) (Figure 1).

4. TUMOR-ASSOCIATED PANCREATIC 
STELLATE CELLS

Using density centrifugation, pancreatic stellate 
cells (PSCs) were identified in 1998 as a rare stromal 
cell type in the healthy pancreas (13). A similar method 
to isolate human PSCs from histologically normal human 
pancreas was later reported by the same group (14). 
Bachem et al. (15,16) reported isolation of human PSCs 
from fibrotic pancreatic tissue of patients with chronic 
pancreatitis and pancreatic cancer using an explant 
technique. Their periacinar star-shaped morphology, 
characteristic marker protein expression, and storage of 
fat droplets rich in vitamin A resembled hepatic stellate 
cells and inspired the name.

With the availability of methods to isolate and 
culture PSCs, researchers have been able to make 
significant advances in the understanding PSC biology. 
Under homeostatic conditions, PaSCs are quiescent, 
but their physiological role has yet to be identified. 
Acute and chronic inflammatory conditions cause 
activation of PaSCs, which were characterized by 
morphologic changes, increased proliferation, deposition 

Figure  1. The tumor microenvironment cellular components in PDA include PSC, CAF, TAM, MC and T cell. The tumor microenvironment cellular 
components in PDA have different role in the progression of cancer by release of various proteins, growth factors and cytokines. PSC, MC and CAF 
promote pancreatic cancer cell proliferation; PSC inhibit cancer cell apoptosis; PSC, CAF, TAM, MC and T cell promote pancreatic cancer cell invasion 
and metastasis; T cell promote PDA cell sensitivity to chemotherapy, CAF inhibit cancer cell sensitivity to chemotherapy.
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of ECM, and expression of alpha-smooth muscle actin 
(α-SMA), as well as the loss of fat droplets (17,18). 
PSCs synthesized ECM proteins such as collagen, 
fibronectin, and laminin. They also expressed the 
matrix metalloproteinases (MMPs), MMP2, MMP 9, and 
MMP13, that degraded ECM, and expressed the tissue 
inhibitors of metalloproteinases (TIMPs), TIMP 1 and 
TIMP 2, that inhibited the activity of MMPs (19). PSCs are 
therefore thought to play an important role in maintaining 
a balance between ECM synthesis and degradation, in 
the maintenance of normal pancreatic architecture  (18). 
Recent evidence suggested that in addition to 
synthesizing ECM proteins, PSCs may function as 
progenitor cells (20). When injected into hepatectomized 
recipient rats, they were able to migrate to the liver 
and were able to reconstitute large parts of the liver by 
differentiating into hepatocytes and cholangiocytes. This 
observation differentiated them from muscle fibroblasts, 
which did not show any such transformations (21).
The stellate cells in normal and diseased tissues have 
some differences, with multiple genes found to be 
differentially expressed. Validation studies confirmed that 
MMP3 was upregulated 32.2.5-fold, collagen type α1 
(a basement membrane component) was downregulated 
2.2.5-fold, and syndecan-2 (a transmembrane heparan 
sulphate proteoglycan that plays a role in cell binding, 
cytoskeletal organization, migration, and invasion) was 
downregulated 2.0.4-fold (22). These three genes are 
postulated to be involved in ECM remodeling function 
and motility of PSCs (22).

4.1. PSCs promote pancreatic cancer cell 
proliferation and inhibit cell apoptosis

Cocultures of PSCs and PDA cells have generally 
shown an enhancement of pancreatic cancer cell 
proliferation and migration, caused by release of growth 
factors and cytokines (23). Studies using neutralizing 
antibodies have indicated that cancer cell-induced PSC 
proliferation and migration were mediated by platelet 
derived growth factor (PDGF), while the increase in 
synthesis of collagen and fibronectin was modulated by 
the profibrogenic factor, basic fibroblast growth factor-2 
(FGF-2,) and transforming growth factor-β1 (TGF-β1) 
from cancer cells (24,25). In vivo studies confirmed these 
findings, revealing that the coinjection of PaSCs with 
tumor cells in orthotopic models of PDA increased tumor 
size and caused a higher incidence of metastasis, and at 
the same time, inhibited cancer cell apoptosis (25).

4.2. PSCs promote pancreatic cancer cell 
invasion and metastasis

Vonlaufen et al. (25) reported that mice injected 
with a mixture of pancreatic cancer cells and human 
pancreatic stellate cells (hPSCs) into the tail of the 
pancreas exhibited significantly larger tumors within 
the gland, compared with mice injected with cancer 
cells alone. No tumors were found in mice injected with 
hPSCs alone, suggesting that PSCs themselves did not 

have tumorigenic potential. Importantly, the incidence of 
distant metastasis (liver nodules) was significantly higher 
in mice injected with both MiaPaCa-2 cells and hPSCs 
(50%) compared with those injected with MiaPaCa-2 
alone (10%). Xu et al. (26) used a gender mismatch 
approach, showing that male PSCs from primary tumors 
were able to (1) intravasate into blood vessels, (2) be 
transported in the circulation, and (3) extravasate from 
blood vessels at the metastatic sites. These results 
were supported by an in vitro study showing that PSCs 
migrated through an endothelial cell monolayer in vitro, 
which was upregulated by PDGF from cancer cells.

It has long been known that PDA is characterized 
by an extremely high frequency of perineural invasion 
(PNI) (27), and PSCs may play a regulatory role in the 
interaction between cancer cells and nerves. PSCs can 
directly induce proliferation, migration, and invasion of 
pancreatic cancer cells, by release of stimulation factors, 
and provide an appropriate microenvironment. PSCs 
can also regulate the expression of pancreatic cancer 
peripheral nerve metastasis-associated molecules 
such as nerve growth factor, and PSCs can induce 
neural remodeling, making the nerve more vulnerable 
to invasion (28). In addition, PSCs have been reported 
to increase the stem cell characteristics of cancer cells, 
by inducing the expression of cancer stem cell-related 
genes ABCG2, Nestin, and LIN28  (29). Together, the 
results have suggested that these surviving cancer 
stem cells may be important factors in pancreatic cancer 
recurrence (30,31).

5. TUMOR-ASSOCIATED FIBROBLASTS

One characteristic feature of PDA is an extensive 
desmoplastic stromal reaction, mainly comprised of 
morphological fibroblast-like cells. Knowledge of the 
origin and biology of these cancer-associated fibroblasts 
(CAFs) is still limited. Researchers have provided 
evidence for several possible CAF origins, including 
pancreatic stellate cells, local or bone marrow-derived 
mesenchymal stem cells, and cancer cells that have 
undergone epithelial-mesenchymal transition (EMT). By 
secretion of paracrine factors and extracellular matrix 
components that support cancer cell proliferation, 
EMT, and resistance to therapy and metastasis, CAFs 
can significantly contribute to the malignant traits of 
cancer (10,32).

CAFs consist of both fibroblasts and 
myofibroblasts Bronsert et al. (33) confirmed that zinc 
finger E-box binding homeobox 1 (ZEB1) expression 
in cancer cells and in stromal fibroblasts were strong 
prognostic factors in PDAC, and therapies targeting ZEB1 
and its downstream pathways could target both cancer 
cells and supporting cancer-associated fibroblasts. 
Ozdemir et al. (34) reported that specific depletion of 
myofibroblasts, using compound genetic mouse models 
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of PDAC, led to aggressive tumors with diminished 
animal survival. In addition, detailed studies showed 
that loss of myofibroblasts decreased the ability of the 
immune system to control cancer associated with the 
persistence of regulatory T cells. Myofibroblast depletion 
did not improve the effectiveness of gemcitabine, but 
immunotherapy to revive the immune attack prolonged 
the survival of mice. This study demonstrated a 
protective role of myofibroblasts, and suggested that 
targeting carcinoma-associated fibroblasts in pancreatic 
cancer should be approached with caution. Hu et al.  (35) 
suggested that activated fibroblasts extracted from the 
inflamed synovium of a rheumatoid arthritis patient, 
when injected along with human breast cancer cells 
into a recipient mouse, promoted carcinoma growth 
by elevating the expression of cyclooxygenase-2 
(COX‑2) by carcinoma cells, an enzyme responsible for 
inflammation-associated tumorigenesis. Previous studies 
demonstrated that patients with carcinomas exhibited a 
greater myofibroblastic stromal reaction, resulting in a 
so-called “desmoplastic stroma”, and usually developed 
higher grade malignancies associated with poor 
prognostic outcomes (36).

Collectively, CAF secreted various cytokines and 
growth factors that promoted neoangiogenesis and tumor 
cell invasion (37). Further research is therefore required 
to fully understand the molecular mechanisms underlying 
the potential role of CAFs in promoting invasion and 
metastasis. It is also necessary to investigate how CAFs 
retain their ability to promote carcinoma growth in a cell 
autonomous fashion, and if particular somatic genetic 
alteration is not only responsible for the maintenance of 
this stable phenotype, but also capable of mediating the 
differentiation of cells into myofibroblasts.

6. TUMOR-ASSOCIATED MACROPHAGES

Macrophages belong to the myeloid cell 
lineage, and are derived from myeloid progenitor cells. 
These precursor cells are located in the bone marrow, 
and upon maturation, monocytes are released into the 
bloodstream. Circulating blood monocytes migrate into 
tissues where they differentiate into resident tissue 
macrophages. Macrophages are then activated in 
response to environmental signals, including microbial 
products and cytokines. Activated macrophages can be 
divided into M1 (classical activated) and M2 (alternative 
activated) phenotypes (38). The macrophages in tumors 
were usually named “tumor-associated macrophages” 
(TAMs), and often expressed the M2 phenotype (39). 
However, recent evidence suggested that the phenotype 
of TAMs varied with the stage of tumor progression. 
M1 macrophages were usually abundant in chronic 
inflammatory sites, where tumors were initiated and 
started to develop (40,41). During cancer progression, 
macrophages switched to an M2-like phenotype, as the 
tumor began to invade, vascularize, and develop (42‑44). 

In agreement with these findings, analysis of human 
samples using CD68 as a pan-macrophage marker 
and the macrophage scavenger receptor CD204 
as an M2 macrophage marker revealed that more 
M2-converted macrophages were found in patients with 
pancreatic cancer compared with patients with chronic 
pancreatitis (45). High numbers of M2 macrophages were 
also associated with larger tumor size, early recurrence 
in the liver, local recurrence, and shortened survival in 
patients with pancreatic cancer (45).

TAMs play a critical role in the 
immunosuppressive capacity of PDA. Reduction of TAM 
numbers in the pancreatic tumor microenvironment, by 
the use of CCR2 or CSF1R inhibitors in combination 
with gemcitabine, significantly increased numbers of 
CD8+ T cells, and reduced FOXP3+ Treg infiltration 
and tumor progression, compared with treatment only 
with gemcitabine, suggesting an elevated anti-tumor 
immune response in pancreatic cancer due to reduced 
macrophage numbers (46). Besides macrophages, 
the immune suppressive capacity of myeloid-derived 
suppressor cells (MDSCs) was recently reported to play 
a significant role in pancreatic cancer progression (47). 
Because MDSCs and tumor-exposed macrophages both 
have the capacity to suppress a cytotoxic T-lymphocyte 
(CTL) immune response, it raises the possibility that 
immune suppressive TAMs are descendants of MDSCs. 
Although the relationship of these two cell populations 
is not fully understood, in the presence of tumor-derived 
factors, MDSCs could differentiate either in vitro, or after 
adoptive transfer into tumor-bearing mice, into immune 
suppressive macrophages (48,49).

TAMs secreted proangiogenic factors, 
including endothelial growth factors and extracellular 
matrix remodelling proteases (50,51). However, in 
pancreatic cancer, macrophages can also regulate tumor 
vascularization. Inhibition of macrophage recruitment 
to the tumor microenvironment by targeting adhesion 
molecule integrin α4β1 or myeloid PI3Kγ resulted 
in a marked decrease of blood vessel formation in 
pancreatic cancer models, as well as reduced tumor 
burden (52,53). In contrast, conversion of macrophages 
to a more pronounced proangiogenic phenotype by 
depleting histidine rich glycoprotein (HRG) resulted in 
increased pancreatic tumor growth. Accelerated tumor 
formation in HRG deficient mice was in part associated 
with increased infiltration of M2 marker expressing 
macrophages and their increased proangiogenic gene 
expression profile, resulting in additional stimulation of 
tumor angiogenesis (54) 

TAMs promoted metastasis at the primary tumor 
site by providing factors that enhanced the invasion of 
malignant cells into ectopic tissues, and by secreting ECM 
remodelling proteases and cathepsins (55). In human 
pancreatic cancer, the macrophage inflammatory protein-3 
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alpha (MIP-3a) has been implicated as a regulator of 
tumor cell invasion. MIP-3a is expressed by pancreatic 
cancer cells, as well as tumor-associated macrophages. It 
induced MMP9 expression of pancreatic cells through its 
CCR6 receptor, and consequently increased pancreatic 
cancer cell invasion in collagen Type IV (56,57).

Endoneurial macrophages can facilitate the 
invasion of pancreatic cancer cells along the nerves. 
Compared with normal nerves, tissue analyzed from 
patients with PDA showed a significant increase in the 
number of endoneurial macrophages that were present 
around nerves invaded by cancer. These macrophages 
secreted high levels of glial-derived neurotrophic factor 
(GDNF), which induced the activation of the GDNF 
receptor α1 (GFRα1) and its co-receptor RET. In addition, 
phosphorylation of RET induced ERK activation and the 
migration of pancreatic cancer cells (58).

7. TUMOR-ASSOCIATED MAST CELLS

Mast cells (MCs) are derived from a unique 
bone marrow precursor, and mature in tissues. They 
are commonly known for their role in allergic and 
anaphylactic reactions, during which they secreted 
numerous vasoactive, chemoattractant, and inflammatory 
molecules, as well as growth factors (59). Increasing 
evidence has indicated that inflammation around 
tumors, including infiltration by mast cells, facilitated 
cancer growth, especially that of PDA (60). Theoharides 
et al. (61) reported that pancreatic cancer cells secreted 
chemoattractants that recruited mast cells to their 
vicinity. Mast cells were then activated either by direct 
contact or by cancer cell-derived triggers, to selectively 
release “procancer” mediators. These mediators induced 
angiogenesis, promoted tumor proliferation, inhibited 
immune responses, and digested the surrounding stroma 
to permit metastases. Soucek et al. (62) reported that the 
activation of the Myc oncogene protein in mice induced 
rapid development of pancreatic islet tumors that were 
dependent on the recruitment of mast cells. Myc is a 
pleiotropic transcriptional factor that contributes to tumor 
angiogenesis, tumor growth, tumor proliferation, and 
stromal remodeling. Myc activation led to rapid mast cell 
recruitment through CC chemokine ligand 2 (CCL2), and 
mast cells were required for the angiogenesis and growth 
of pancreatic tumors. Furthermore, inhibition of mast cell 
activation was sufficient to result in tumor death (63).

MCs are involved in neovascularization in 
experimentally-induced tumors, accumulate near tumor 
cells before the angiogenesis onset, and participate in 
the metastatic spreading of primary tumors. MCs also 
intervened in angiogenic processes, releasing classical 
proangiogenic factors, such as vascular endothelial 
growth factor (VEGF), thymidine phosphorylase (TP), 
fibroblast growth factor-2 (FGF-2), and the nonclassical 
proangiogenic factor, with tryptase stored in their secretory 

granules (59,63‑66). Recent studies have shown that 
the MC density is correlated with angiogenesis and 
progression of patients with pancreatic cancer (67,68). 
Ammendola et al. (69) reported on MCs and angiogenesis 
in primary tumor tissue from patients with PDA, as well 
as MCs positive for tryptase (MCDPT). Areas occupied 
by MCs positive for tryptase (MCAPT), microvascular 
density (MVD), and endothelial area (EA) were related to 
each other, and to the main clinical pathological features. 
The results suggested that MCs positive for tryptase may 
play a role in PDA angiogenesis, and that they could be 
further evaluated both as a novel tumor biomarker and as 
a target of antiangiogenic therapy.

8. TUMOR-ASSOCIATED LYMPHOCYTES

The role of the immune system during PDA 
progression has long been debated. PDA expresses a 
variety of cancer-associated antigens that can potentially 
be recognized by T cells. Among infiltrating T lymphocytes, 
CD8+ T cells were rare, whereas CD4+ T cells were 
abundant (70). Recent studies reported that functionally 
competent CD4+ and CD8+ T cells with specificity for 
cancer antigens were spontaneously induced in the bone 
marrow of all PDA patients (71,72).

8.1. CD8+ cytotoxic T cells
Cytotoxic CD8+ T lymphocytes are important 

components of tumor-specific cellular adaptive immunity, 
efficiently recognizing their tumor targets and attacking 
tumor cells presenting tumor-associated antigen 
peptides with the major histocompatibility complex class I 
on their surface. CD8+ cytotoxic T cells were capable of 
eliminating tumor cells via IFN-γ-mediated direct effects 
on malignant cells, and via induction of macrophage 
tumoricidal activity (73‑76). In human pancreatic cancer, 
CD8+ T cells represented the predominant T cell subset, 
which was associated with favorable clinical outcomes 
and significantly prolonged survival (77‑79). CD8+ T 
cells (CD8+ CD103) bearing markers analogous to gut 
intraepithelial lymphocytes (CD8+αEβ7+) were found 
to be mainly located in the fibrous stroma distant from 
cancer cells (their potential effector domain) (77). 
These findings, together with the previously reported 
downregulation of the adhesion molecule ligand 
E-cadherin (80) on intercellular junctions, as well as the 
overexpression of TGF-β by pancreatic cancer cells,(81) 
has led to the possibility that pancreatic cancer cells 
may escape the cytolytic effect of cytotoxic T cells by 
promoting their aggregation in fibrous tissue. Moreover, 
downregulation of activation markers on cytotoxic CD8+ 
CD18+ T-lymphocytes may diminish their cytotoxic 
activity toward pancreatic cancer.

8.2. CD4+ T cells and subtypes
8.2.1. Th1/Th17 and Th2 cells

In murine pancreatic cancer, an increase of 
Th17  cells in the tumor microenvironment retarded 
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pancreatic tumorigenesis and contributed to improved 
survival (82), whereas more recently in human pancreatic 
cancer, increased levels of Th17 cells and their related 
cytokines accounted for invasion and metastasis, 
thereby affecting the patient’s prognosis (83,84). 
Th2 responses exhibited a tumor-promoting function 
in pancreatic cancer, thus accelerating disease 
progression and reducing survival  (85). The exact 
pathomechanisms and signaling pathways responsible 
for these observations are not completely understood. 
However, various studies have reported a general 
Th2 shift in pancreatic cancer, and a predominance 
of Th2 cytokines (IL-5, IL-6, IL-10, and especially 
IL-13) were found in the plasma of pancreatic cancer 
patients (86,87).

8.2.2. T regulatory cells (Tregs)
Of all the different types of immune cells, 

Tregs have received the most attention in tumor 
immunology research. They are generally defined 
as CD4+CD25+FoxP3+ cells, and they are found in 
the tumor microenvironment in increased numbers. 
By expression of CTLA-4 and secretion of IL-10 and 
TGF-b, among others, Tregs suppressed exaggerated 
immune responses and were essential in the prevention 
of autoimmune diseases, however, in cancer, they 
produced a local immunosuppressive environment ideal 
for tumor growth (88,89). Patients with pancreatic cancer 
had increased numbers of Tregs, both in the circulation 
and at the tumor site. Moreover, the presence of Tregs 
at the tumor site correlated with a more advanced 
presentation of the disease, a lower chance of surgical 
resection, and a worse survival after resection (8), while 
low Treg percentages in the circulation 1  year after 
resection correlated with improved survival, as levels of 
Treg cells increased while levels of the CD8+ effector 
cells decreased (90‑92). Hence the Treg compartment 
represents an attractive target for the treatment of 
pancreatic cancer.

9. SUMMARY AND FUTURE PERSPECTIVES

The influences of the microenvironment 
in pancreatic cancer are as numerous as its 
components, and the cellular components of the tumor 
microenvironment are significantly different than normal 
tissue, both in phenotype and function. This shift is 
determined by the characteristics of tumor cells and their 
special microenvironment. The various components of 
the matrix and cells in the PDA microenvironment are 
interrelated, and form a complex bidirectional regulation 
network which together supports tumor growth. 
Based upon our extensive studies on the interaction 
between the components of the matrix and the tumor 
microenvironment, to achieve long-lasting therapeutic 
responses, we anticipate that future therapies will be 
tailored to target several of the previously described 
components of the microenvironment.
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