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1. ABSTRACT

Hepatocellular carcinoma (HCC) is the third most 
lethal cancer and resistant to common chemotherapy. 
Tumor-initiating cells (T-ICs) that are thought to be 
responsible for tumorigenesis share surface markers 
and signaling pathways similar to normal tissue stem 
cells. Identification of T-ICs and elucidation of aberrant 
epigenetic modulation and self-renewal pathways 
may provide new insights into hepatic carcinogenesis, 
metastasis and chemotherapeutic resistance. Histone 
modification, DNA methylation and microenvironmental 
changes are considered as key elements to promote the 
derivation and function of T-ICs. In this review, we intend 
to compare the similarity and difference between normal 
liver stem cells and T-ICs, and to define the intrinsic and 
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micro-environmental factors that lead to the transformation 
from normal liver stem cells to hepatic T-ICs. We believe 
that etiology, microenvironmental alteration, epigenetic 
modification and epithelial-mesenchymal transition 
play a fundamental role in initiating the transformation. 
Strategies targeting signaling molecules critical in 
modulating these processes may offer a personalized 
therapy for HCC in the future. 

2. INTRODUCTION

The stochastic and the hierarchic models 
are two hypotheses of carcinogenesis. Different from 
the traditional stochastic model, the hierarchic model 
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postulates that a subpopulation of tumor-initiating 
cells (T-ICs), also called cancer stem cells (CSCs), 
gives rise to heterogeneous populations in a tumor 
mass. Discovery of stem cells within primary intestinal 
adenomas, an intestinal precancerous lesion by lineage 
tracing, provides direct evidence for the presence of 
T-ICs (1). T-ICs possess many fundamental similarities 
to tissue stem cells, including self-renewal, differentiation 
and proliferation capacity. In addition to these properties, 
T-ICs may evolve to subpopulations which are capable of 
metastasis and resistance to conventional chemotherapy. 
Over the past decade, T-ICs have been identified in the 
hematopoietic malignancies, neural, breast and other 
solid tumors (2). Therapeutic strategies targeting T-ICs 
not only promise to eliminate cancers more efficiently, but 
also reduce the risk of tumor relapse and metastasis. 

Hepatocellular carcinoma (HCC) is the third 
most lethal cancer in the world (3), while most of patients 
are inoperable as detected at an advanced stage. It is 
conceivable that approaches that could eradicate hepatic 
T-ICs in combination with conventional therapies will 
effectively improve the outcomes of HCC treatment. 
Several cell types in the liver have a long life-span, 
including liver stem/progenitor cells, hepatocytes and 
cholangiocytes. Evidence from human mammary 
epithelial cells demonstrated that differentiated normal 
and neoplastic non-stem cells could spontaneously 
convert to a stem-like state under circumstances such 
as inflammation, chemotherapy or irradiation, and that 
the conversion without genetic manipulation may involve 
epigenetic modifications (4). Epigenetic modulations 
include histone modification, DNA methylation and 
chromatin remodeling, and may alter promoter activity and 
transcription status of individual genes; and even result 
in reprogramming with activation of specific transcription 

factors, such as pluripotent genes without any changes 
in the DNA sequence. It is hypothesized that once liver 
cells overcome specific epigenetic barriers, they may 
gain “stemness” or a pluripotent trait. Thus, hepatic 
T-ICs may originate from liver stem/progenitor cells or 
dedifferentiation of mature hepatocytes (5, 6). However, 
how epigenetic modulations manipulate the fate of 
liver stem cells towards malignancy remains unknown. 
In-depth elucidation of epigenetic regulation in hepatic 
T-ICs will aid in understanding the pathogenesis of HCC 
and formulating potential remedies. This review focuses 
on the role of epigenetic regulation in the transformation 
from normal stem cells to T-ICs. 

3. COMMON EPIGENETIC REGULATIONS OF 
HCC

Key epigenetic modifications include histone 
modifications, DNA methylation and chromatin 
remodeling, which could result in activation or repression 
of specific genes, reprogramming at a transcriptional level 
or modifications at a post-translational stage (Table 1). 
Genetic and epigenetic elements interact in multiple steps 
during a progressive process in liver carcinogenesis. 
Half of primary HCC is estimated to undergo chromatin 
remodeling and epigenetic modifications (7). 

3.1. Histone modifications
As long linear DNA forms chromosomes 

by wrapping histone and other proteins, histone 
modifications directly affect chromatin structure and 
function. Eight kinds of post-translational modifications 
including acetylation, methylation, phosphorylation, 
sumoylation, ubiquitination, biotinylation and ADP-
ribosylation may occur in histones (8). Histone acetylation 
or de-acetylation is the modification of multiple lysine 

Table 1. Epigenetic modification of histones and DNA
Kinds of modification Catalytic enzymes Biologic effects

Histone acetylation Histone acetyltransferase (HAT) Reducing nucleosome stability and DNA accessibility (9)

Histone deacetylation Histone deacetylase (HDAC) Overexpression of HDAC was found in HCC tissue, and 
HDAC inhibitors suppress oncogenic potential (12)

Histone methylation Histone methyltransferase (HMT) Net consequence of methylation depends on the specific 
lysine residues to be methylated

Histone demethylation Histone demethylase (HDM), such as JmjC family, 
which removes methyl group in lysine residues

Demethylase LSD1 in HCC tissue is negative (120)

Histone phosphorylation Protein kinase Phosphorylation of histone 3 leads to chromosome 
condensation & segregation (16)

Histone dephosphorylation Phosphatase For the balance of histone phosphorylation status

DNA methylation DNA methyltransferase (DMNTs) Hypermethylation leads to inactivation of TSGs

Methylation of CpG islands DMNTs In general, methylation of CpG islands results in the silence 
of specific gene involved.

Demethylation Demethylase Hypomethylation leads to genomic instability (25)
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residues catalyzed by histone acetyltransferase (HAT) 
and histone deacetylase (HDAC), respectively. As 
acetylation removes the positive charge on the histones; 
hence, the affinity between histone and negatively 
charged DNA is weakened. Therefore, the degree of 
histone acetylation may affect nucleosome stability and 
DNA accessibility (9). HDAC-4 expression was often 
up-regulated in HCC specimens compared with adjacent 
noncancerous liver tissues (10). Overexpression of 
HDAC-1 in HCC is associated with a high incidence of 
invasion, chemo-resistance and poor prognosis (11); 
whereas, inhibition of HDAC-1 suppressed cell growth, 
induced autophagic cell death, and reduced tumorigenic 
potential of hepatoma Hep3B cells (12). Histone 
methylation is the modification of arginine or lysine 
residues in histone by the addition of methyl groups. 
Histone methylation status is determined by the 
balanced action of histone methyltransferase (HMT) 
and histone demethylase (HDM). The net consequence 
of histone methylation depends on the modification at 
specific lysine residues. For instance, histone H3 lysine 
27 (H3K27) tri-methylation and histone H3 lysine 9 
(H3K9) methylation result in transcriptional repression; 
whereas methylation at histone H3 lysine 4 (H3K4) 
causes transcriptional activation (13). High expression 
of H3K27me3 was observed in 63.2 percent of HCC 
tissues by immunohistochemistry, and the expression 
levels positively or negatively correlated with poor 
differentiation, advanced clinical stage, vascular invasion 
and shortened survival duration (14). In a different 
study tissue microarrays exhibited that high expression 
of H3K4me3 was observed in 45~50 percent of HCC 
specimens and was a valid predictor of reduced overall 
survival (15). Histone phosphorylation occurs at serine, 
threonine or tyrosine residues catalyzed by a number of 
protein kinase, and dephosphorylated by phosphatases. 
Phosphorylation of histone 3 is associated with 
chromosome condensation and segregation (16). 
In a diethylnitrosamine (DEN)-induced rodent HCC 
model, DEN increased phosphorylation of histone 
H3 at serine 10 residue within the promoter region of 
RNA polymerase III-dependent genes to modulate their 
transcription, which led to hepatocellular proliferation 
and transformation (17). 

3.2. DNA methylation
DNA methylation occurs at the 5’-promoter 

region containing cytosine-guanine dinucleotide (CpG) 
islands in a specific gene. The demethylated status 
of these genes switches them into a transcriptional 
activation state; whereas the methylated status in 
general refers to transcriptional silence (18). The major 
DNA methyltransferases (DNMTs) consist of DNMT-1, 
DNMT-3a and DNMT-3b. DNMT-1 maintains the DNA 
methylation status during DNA replication; whereas 
DNMT-3a and DNMT-3b are involved in establishing 
de novo DNA methylation (19). Hypermethylation in 
CpG islands at the promoter region of tumor suppressor 

genes (TSG) may lead to their inactivation. In order to 
identify specifically altered DNA methylation, quantitative 
methylation analyses at the promoter regions and in a 
genome-wide fashion have been employed in HCC, 
cirrhotic and normal livers. A number of hypermethylated 
TSGs were selected to predict the emergence of HCC, 
including GSTP1, p16INK4-alpha (20), SHP (21), HIC1, 
SOCS1, RASSF1, CDKN2A, APC, RUNX3, PRDM2 (22), 
Lefty (23), SMPD3 and NEFH (24). On the contrary, DNA 
hypomethylation increases genomic instability and occurs 
in the regions where it is normally hypermethylated. For 
instance, the human telomerase reverse transcriptase 
(hTERT) promoter was heavily methylated in normal 
liver tissue; whereas it was hypomethylated in most HCC 
specimens. The status of DNA methylation and histone 
modifications affected the ability of c-myc binding to 
the hTERT promoter, and regulated hTERT expression 
levels. Epigenetic reactivation of hTERT, which was 
seen in nearly 70 percent of HCC tissues, promoted the 
occurrence and progression of HCC (25). Therefore, 
it appears that both global DNA hypomethylation and 
TSG hypermethylation play crucial roles in hepatic 
carcinogenesis by governing specific gene expression 
levels, such as activation of hTERT or inactivation of 
tumor suppressive genes.

Polycomb group protein (PGP) forms polycomb 
repressive complexes (PRCs) to silence differentiation-
triggering genes, and maintains pluripotency of 
embryonic stem cells (ESCs) through H3K27me3. 
These developmental genes are repressed in ESCs and 
activated during differentiation (26). On the other hand, 
PRC target genes (such as pluripotency factors) were 
hypermethylated in HCC as compared to non-cancerous 
tissues, which implied that aberrant methylation is a 
mechanism for hepatic T-ICs to maintain the “stemness” 
(27, 28). It is known that hypermethylation may occur in 
an aging liver; whereas methylation in HCC exhibits in a 
gene-specific and disease-specific manner (29). 

4. LIVER STEM CELLS AND PUTATIVE 
HEPATIC TUMOR-INITIATING CELLS

4.1. Normal liver progenitor cells and surface 
markers

During an embryonic development stage, 
the liver bud from the definite endoderm develops to 
bipotential liver progenitor cells (LPCc). LPCs and rodent 
oval cells express stem cell markers, such as epithelial 
cell adhesion molecule (EpCAM), oval cell marker 6 
(OV-6) and neural cell adhesion molecule (NCAM), as 
well as hepatocyte-specific (albumin) and cholangiocyte-
specific markers, such as cytokeratin-19 (CK-19) (30). 
As a continuation of LPCs, hepatoblasts further mature 
to hepatocyte and cholangiocyte lineages. Hepatoblasts 
uniquely express the combination of EpCAM, intercellular 
cell adhesion molecule (ICAM-1), CK-19, albumin 
and alpha-fetoprotein (AFP). Mature hepatocytes and 
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cholangiocytes no longer express stem cell markers, but 
only their lineage-specific markers (31). Four main (Wnt, 
Notch, Hedgehog and transforming growth factor-beta 
(TGF-beta)) signaling pathways are involved during the 
liver developmental stage, and they are responsible for 
hepatic lineage specification and morphogenesis (32). In 
adult human, multipotent stem/progenitor cells exist in the 
periductular space within the biliary tress. They express 
classic endodermal transcription factors (SOX-17, SOX-
9, HNF-6 and SALL-4) and stem/progenitor surface 
markers (EpCAM, NCAM, CD133 and CXCR4) (33). 
These intermediate hepatobiliary cells proliferate primarily 
in regenerative responses when acute or chronic liver 
damage occurs or there is a loss of liver mass (34).

4.2. Definition of tumor-initiating cells (T-ICs) 
or cancer stem cells (CSCs)

To define a T-IC subpopulation from HCC tissue 
or a hepatoma cell line, it is crucial to have reliable 
cell surface markers which can be used for separating 
them from bulk of cancer cells. Throughout the recent 
studies, a group of surface markers have been selected 
based on following criteria: First, the expression of 
selected surface markers is observed in human HCC 
specimens or circulating tumor cells (CTCs)(35), and 
the selected surface markers overlap with those for 
putative LPSc (36). Second, cells from hepatoma with 
positive markers exhibit higher tumorigenicity ability 
in vitro and in vivo than those with negative markers. 
Moreover, further serial transplantation of hepatoma cells 
with the positive markers from tumor xenografts could 
continuously generate tumors in the second and third 
batch of immunodeficient mice. Third, hepatoma cells 
with the positive markers not only possess self-renewal 
capacity, but also are capable of differentiating into both 
positive and negative marked cells. Fourth, hepatoma 
cells with the positive markers express genes important 
for the proliferation, self-renewal and differentiation of 
stem cells (37). Fifth, blockage of these markers could 
significantly inhibit cellular invasion, spheroid formation 
and tumorigenicity. According to these standards, 
CD133 (38), CD90 (39, 40) and EpCAM (41, 42) have 
been chosen as useful markers of liver T-ICs. However, 
the origins and definition of T-ICs are not well specified, 
and studies with different patient specimens, hepatoma 
cell lines or primary tumors from animal models may have 

a variety of cell sources which could potentially become 
the origins for T-ICs under particular circumstances as 
listed in Table 2. 

4.3. Side subpopulation
Another subpopulation not in full accordance 

with above criteria is side population (SP) cells. These 
cells are defined by their ability to efflux the DNA-binding 
dye Hoechst 33342 through an adenosine triphosphate 
(ATP)-binding cassette (ABC) membrane transporter 
associated with multidrug resistance (43). SP cells were 
found to display higher proliferation activity, apoptotic 
tolerance and oncogenic capacity in serial NOD-SCID 
xenograft transplantation than non-SP cells (44). 
Hepatic progenitor markers (CD44, EpCAM and Bmi) 
were upregulated in these SP cells. SP cells isolated 
from a myc-driven mouse HCC model were resistant 
to chemotherapy (doxorubicin and paclitaxel) through 
multidrug resistance gene 1 (MDR1) transporter (45). 
It is claimed that T-ICs are a subset of the SP cells and 
contribute to resistance and relapse after chemotherapy 
or irradiation (45). However, SP cells that have stem cell 
potential and generate all cell types in a tumor usually 
do not have the same surface marker profile as T-ICs. 
Whether they are the same subpopulation as those 
selected by T-ICs markers need to be verified.

5. ROLE OF ETIOLOGY AND 
MICROENVIRONMENTAL CHANGES IN 
EPIGENETIC MODIFICATIONS

HCC is heterogeneous in terms of oncogenic 
pathways, molecular regulation, progressive and 
metastatic capability due to the fact that it derives 
from various base diseases. Therefore, tumors from 
various individuals may arise from a different cell of 
origin. Undoubtedly, etiology plays an important role 
in epigenetic modulation of hepatocytes from which 
HCC may be derived. Viral infection, inflammation and 
oxidative stress could change the microenvironment 
niche and induce epigenetic instability, and the latter in 
turn fosters the appearance of tumor-initiating cells.

5.1. Hepatitis B viral infection
Hepatitis B viral infection is the leading cause 

of HCC in the Asian and African regions and the 
mechanisms of HBV-associated HCC have been studies 
for decades, however they largely remain to be poorly 
understood. Recent studies revealed that the HBV X 
protein (HBx) is responsible for the aberrant epigenetic 
regulation, and resulted in a malignant transformation. 
HBx not only functioned as a transcription factor to 
enhance the expression of DNMT-1, DNMT-3A1 and 
DNMT-3A2, which in turn repress host tumor suppressor 
genes by hypermethylation of their promoters (46), 
but also upregulated tumor-initiating genes through 
hypomethylation, such as aldehyde dehydrogenase 
1 (ALDH-1), plasma retinol-binding protein precursor 

Table 2. Origins of hepatic T‑ICs

•  Reprogramming of normal liver progenitor cells
•  Dedifferentiation of matured hepatocyte or cholangiocytes
•  Transformation from hepatoblasts, hepatocytes or cholangiocytes
•  �Deviation from bulk tumor cells into T‑ICs or CTCs for tumor relapse 

or metastases
•  �Originated from stromal or mesenchymal cells by reprogramming or 

transformation
•  Side population with a unclear origin of cell types
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(RBP), and cellular retinol-binding protein 1 (CRBP1) (47). 
Moreover, HBx downregulated the chromatin remodeling 
protein suppressor of zeste 12 homolog (Suz12) and 
zinc finger protein, MYM-type 2 (Znf198) (48). Suz12 is a 
component of the polycomb repressive complexes PRC2 
which mediates H3K27 trimethylation (49); whereas 
Znf198 stabilizes the lysine-specific demethylase 
1-corepressor of RE1-silencing transcription factor 
histone deacetylase-1 (LSD1-CoREST-HDAC-1) 
complex, and the latter removes histone modifications 
affecting transcriptional activation (50). Repression of 
Suz12 enhanced the EpCAM expression and promoted 
cell proliferation (51). Immunohistochemical analysis 
of HBV-infected HCC tissue showed that HBx was 
associated with upregulation of “stemness” transcription 
factors: Oct-4, Nanog and KLF-4, as well as “stemness” 
marker: EpCAM. Consistent with stem cell behavior, 
HBx-transfected HepG2 cells displayed pronounced 
tumorigenic ability in vitro and in vivo. Thus, HBx-
induced epigenetic alterations, including aberrant histone 
modifications, DNA methylation and critical transcription 
factors, such as Suz12 and Znf98 or a repressor, facilitate 
the differentiation of HBV-infected cells towards hepatic 
T-ICs.

5.2. Hepatitis C viral infection
Hepatitis C virus is the second to HBV that 

causes chronic hepatitis and an increased risk for 
HCC. In a chimeric mouse model, a long period of HCV 
infection elicited methylation of 237±110 genes, some 
of which were increased in HCC specimens compared 
to noncancerous tissues (52). Wnt/beta-catenin 
signaling plays an important role in the development, 
cell differentiation or proliferation and metabolism of 
the liver. Epigenetic modification of a Wnt antagonist, 
secreted frizzled related proteins (SFRP), may result 
in abnormal activation of Wnt signaling. The HCV core 
protein directly increased the expression and binding of 
DNMT-1 and HDAC-1 to the transcriptional start site of 
the SFRP-1 promoter, which led to hypermethylation of 
SFRP-1 and silence of its expression, and eventually 
the accelerated growth and aggressiveness of 
HCC (53). In HCV core gene transgenic mice fed 
alcohol model, enhanced DNA hypomethylation, 
histone acetylation and demethylation elicited the 
generation of TLR4-Nanog dependent T-ICs (54). 
Thus, the HCV core protein directly or indirectly affects 
epigenetic alterations that may expedite the oncogenic 
transformation in the host cells.

5.3. Chronic inflammation
Chronic inflammation enables hepatic 

carcinogenesis by induction of mutations and 
chromosomal instability, and by the release of a wide range 
of cytokines, such as TNF-alpha, interleukins and TGF-
beta, that mediate interactions between inflammatory 
pathways and epigenetic modifications (55). Among 
these cytokines, TGF-beta is responsible for suppressing 

the proliferation of LPCs to acquire characteristics of 
T-ICs (56). In human cirrhotic liver, increased TGF-beta 
levels were correlated with OV-6-positive LPCs that 
co-express CD133, CD90 and EpCAM. After treatment 
with TGF-beta, rat pluripotent LPC-like WB-F344 cells 
constantly exhibited mesenchymal characteristics and 
expressed more CD90 and CD133 than control cells. 
Moreover, TGF-beta-1-treated cells generated xenograft 
tumors in NOD-SCID mice. TGF-beta-1 increased CD133 
expression by inducing demethylation of the CD133 
promoter-1. After TGF-beta-1 bound to the TGF-beta 
receptor, both Smad2 and Smad3 were phosphorylated, 
and they formed a hetero-complex. The latter was 
translocated into the nucleus and suppressed DNMT1 
and DNMT-3-beta expression. Decreased DNMT-1 and 
DNMT-3-beta finally led to demethylation of the CD133 
promoter-1(57). In albumin-cre transgenic mice lacking 
p53 (Trp53KO) model, inactivation of p53 and TGF-beta 
receptor II reduced the phosphorylation of downstream 
Smad3 and extracellular signal-regulated kinase 
(ERK)1/2, which in consequence down-regulated TGF-
beta target genes. Thus, it is not difficult to understand 
that the disruption of the TGF-beta pathway triggered the 
emergence of T-IC, and accelerated HCC progression 
through p53 inactivation (58). 

5.4. Oxidative stress
Sustained HBV or HCV infection, alcohol liver 

toxicity or NAFLD causes chronic liver damage and 
oxidative stress, and eventually HCC develops in these 
base diseases. Excess of endogenous and exogenous 
reactive oxygen species (ROS) results in DNA damage 
and alteration of the methylation status. H2O2 induced 
hypermethylation of the E-cadherin promoter through 
upregulation of snail expression. Snail elicited E-cadherin 
hypermethylation through recruiting DNMT-1 and 
HDAC-1 (59). Besides inactivation of TSGs through DNA 
hypermethylation, ROS activates a positive feedback 
loop that exacerbates a chronic state of inflammation. 
As mentioned above, chronic liver inflammation initiates 
epigenetic instability and in turn results in abnormal 
hepatocellular proliferation and oncogenic transformation 
in an inflammatory microenvironment where oxidant 
stress is constantly overwhelmed, such as NASH, 
alcoholic liver injury, ion-over load and drug toxicity, even 
without cirrhosis (60).

6. EPIGENETIC MODIFICATION FACILITATES 
THE TRANSFORMATION TOWARDS T-ICS

Overexpression of four transcription factors (Oct-
4, Sox-2, KLF-4 and C-myc) could reprogram fibroblasts 
into induced pluripotent stem cells (iPSC) (61). Similarly, 
introduction of these four factors into gastrointestinal cells 
may reprogram them into a pluripotent state and sensitize 
them to a malignant transformation (62). In a carcinogen-
induced AH130 hepatoma model, o-aminoazotoluene 
exposure accomplished a series of reprogramming and 
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tumorigenesis step-wisely. Eventually 100 percent of 
AH130 cells expressed immature marker CD133, and 
three transcription factors: Nanog, KLF-4 and c-myc (63). 
Expression of these stemness and oncogenic genes 
was probably the primary intrinsic force driving the 
oncogenic transformation. Thus, an initiating event such 
as viral infection, inflammation or drug toxicity, may 
activate the “epigenetic switch” that resets the long-term 
memory of hepatocytes or liver stem cells, and provoke 
their transformation to hepatic T-ICs. The following 
are examples of how epigenetic modifications lead to 
oncogenic reprogramming towards T-ICs.

6.1. Histone ubiquitination and acetylation
As a core element of PRC1, B lymphoma 

moloney murine leukemia virus insertion region 1 
homolog (Bmi-1) plays an important role in the self-
renewal of LPCs. Forced over-expression of Bmi-1 
by lentiviral vectors enhanced self-renewal capacity 
of LPCs. Transplantation of Bmi-1-transduced 
single cells into NOD-SCID mice resulted in hepatic 
carcinogenesis (64). Chromatin immunoprecipitation 
(ChIP) assays and microarray analyses demonstrated 
that LPCs achieve their tumorigenic potential through 
reducing the specific promoter activity, by suppressing 
Ink4a/Arf tumor suppressor gene and Sox-17 gene 
expression, and increasing levels of monoubiquitinylated 
histone H2A (65).

Levels of histone 3/4 acetylation were higher 
in Nanog-negative Huh7 and patient-derived primary 
HCC T115 cells than Nanog-positive CSC cells. High 
expression of HDAC-3 significantly correlated with poor 
prognosis of HCC patients and expression of Nanog and 
CD133 in primary human HCC tissues. Either HDAC 
inhibitors (TSA) or knock-down of HDAC-3 suppressed 
cell growth and self-renewal of CD133+ and Nanog+ 
T-ICs cells. Meanwhile, the same treatment induced 
differentiation of Nanog+ T-ICs cells through increasing 
levels of histone-3/4 acetylation, and decreased 
expression of pluripotent transcription factors, such as 
Nanog, Sox-2 and Oct-4 (66). Therefore, modification of 
HDAC-3 activity may enhance pluripotency of Nanog+ 
T-ICs. 

SALL-4 is one of classic endodermal transcription 
factors, and causes upregulated expression of LPC 
markers (EpCAM, CK19 and CD44), and enhanced 
spheroid formation capacity of EpCAM+ cells. It was 
found that its activity was mediated through modification 
of HDAC activity, because HDAC inhibitors suppressed 
the proliferation of SALL-4+ cells (67). In addition to 
interaction with HDAC-1, SALL-4 could suppress target 
gene expression through direct interaction with DNMTs 
and mediate activity of the gene product, HDAC-1 (68). 

In summary, it appears that pluripotent 
transcription factors, such as Nanog, Sox-2, Oct-4 or 

SALL-4, affect the fate of genetic reprogramming by 
regulating activity of specific target genes via the activity 
change of HDAC-1 or DNMTs at epigenetic levels. 

6.2. DNA methylation and demethylation 
Global genomic DNA hypomethylation has 

been observed as a frequent event in various cancers. 
Methylation of long interspersed nucleotide element-1 
(LINE-1) was reported to represent as a surrogate 
marker for the global DNA methylation and a molecular 
marker of prognosis for many solid tumors (69, 70). It 
is demonstrated in the tamoxifen-induced rat hepatic 
carcinogenic model that exposure to tamoxifen 
resulted in LINE-1 hypomethylation and increased 
expression of LINE-1 and c-myc. Tamoxifen-containing 
diet up-regulated regenerative cell proliferation of rat 
hepatocytes (71). In human HCC specimens, LINE-1 
demethylation correlated to elevated CD133 expression 
and shorter cumulative survival (72). Therefore, it is 
speculated that LINE-1 demthylation could be a trigger for 
the transformation of mature hepatocytes to oncogenic 
T-ICs in this model.

6.3. Epigenetic modification of transcription 
factors affecting pluripotency

Epigenetic regulation of transcription factors, 
such as Nanog, Oct-4, Sox-2, c-Myc and KLF-4 provokes 
pluripotency of cancer cells. Hypomethylation of the 
Nanog promoter was observed in primary HCC specimens 
and CD133+high colorectal carcinoma cells. In accordance 
with this, the upregulation of Nanog was associated with 
demethylation of the Oct-4 promoter and enhanced Oct-4 
mRNA expression (73). Oct-4 overexpression in turn 
activated the Oct-4-AKT-ABCG2 pathway, and the latter 
eventually led to chemo-resistance. Furthermore, these 
chemo-resistant HCC cells displayed stem cell features 
(74). Thus, demethylation of pluripotent genes contributed 
to epigenetic reprogramming and initiation of T-ICs.

6.4. Aberrant hedgehog signaling in hepatic 
T-ICs

Hedgehog (Hh) signaling governs the 
fate of progenitor cells during embryogenesis, and 
helps orchestrate liver development and repair. 
Reactivation of Hh in adulthood occurs during liver 
regeneration, inflammation, fibrogenesis and vascular 
remodeling (75-77). In NAFLD, the level of Hh 
signaling activation in the liver tissue paralleled with 
the extent of steatohepatitis and fibrosis. The level of 
Hh signaling activity was also strongly correlated with 
clinical parameters of metabolic syndrome (age, BMI, 
waist circumference, log HOMA-insulin resistance 
and hypertension) (78). A retrospective analysis 
demonstrated that 65 percent (20/31) of individuals with 
metabolic syndrome developed HCC without significant 
fibrosis (79), which implied that the Hh signaling may 
be of paramount importance in carcinogenesis in these 
patients. The Hh signaling had been identified to be 
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crucial for the maintenance of T-ICs in multiple myeloma 
and myeloid leukemia (80,81). In HBV/HCV-associated 
HCC, Hh-responsive cells, including T-ICs, expanded 
during cirrhosis and HCC (82). Hypermethylation of 
the Hh-interacting protein (HHIP) gene, the negative 
regulator of Hh signaling, led to down-regulation of the 
HHIP at a transcriptional level in hepatoma cells and HCC 
tissues. Based on growing evidence, it appears to be 
most likely that hypermethylation elicited activation of the 
Hh pathway, which in turn stimulated liver transformation 
and HCC development (83).

6.5. Abnormal activation of Wnt-beta-catenin 
signaling activity

In active necrotic inflammation, a strong 
activation of the Wnt signaling stimulated the proliferation 
of LPCs (84). In Huh7 cells and primary HCC tissues, OV6-
positive progenitor cells expressed high levels of β-catenin 
and displayed increased proliferation capacity. General 
activation of the Wnt/beta-catenin pathway has been 
observed in one third of HCCs, and activation of the Wnt/
beta-catenin pathway provoked expression of EpCAM, 
enhanced self-renewal potential and chemotherapy 
resistance (85, 86). The increased Wnt/beta-catenin 
signaling in HCC samples and hepatoma cell lines was 
caused by hypermethylation and histone H3 lysine 27 
trimethylation of Wnt antagonists, which lead to reduced 
expression of Wnt antagonists (87, 88). Epigenetic 
down-regulation of the Wnt signaling antagonists would 
in turn lead to hyperactivation of the Wnt/beta-catenin 
pathway into a positive feedback loop, and consequently 
enhanced proliferation of HCC.

7. ROLE OF MICRORNAS IN MODULATING 
EPIGENETIC STATUS

miRNAs are a class of non-coding RNAs that 
regulate gene expression by binding to 3’-untranslated 
regions (UTR) of target mRNAs. Tremendous efforts 
have been dedicated to identify specific miRNAs that 
play oncogenic or suppressive roles in HCC (89, 90). 
Up to date, miRNAs that have been referred as tumor-
suppressors of HCC included miRNA-101 (91), miRNA-
152 (92), miRNA-125b (93, 94), miRNA-503 (95), 
miRNA-200b (96) and let-7c (97). In contrast, miRNA-
519d (98), miRNA-224 (99), miRNA-21 and miRNA-17-
92 are considered as oncogenic for HCC (100, 101).

In addition to functioning as translational 
repressors, miRNAs may regulate the expression of target 
genes through interaction with epigenetic components. 
Enhancer of zeste homolog 2 (EZH2), the H3K27 tri-
methylating enzyme, was upregulated in 69.5 percent 
(41/59) of primary HCCs, and multiple tumor-suppressor 
miRNAs were epigenetically silenced by EZH2. miRNAs 
that were silenced in this fashion included miR-139-5p, 
miR-125b, miR-101, let-7c and miR-200b (102). In 
addition to interaction with the H3K27 tri-methylating 

enzyme, miR-152 targeted 3’UTR of DNMT-1 and caused 
increased hypermethylation of two tumor suppressor 
genes (GSTP1 and CDH1) in HBV-related HCC (92). 
Thus, miRNAs not only modulate target gene expression 
at translational levels, but also affect oncogenes or tumor 
suppressive genes at transcriptional levels via epigenetic 
modification. The following is a list of miRNAs which 
alter expression of target oncogenic or pluripotent genes 
through epigenetic modulation.

7.1. miR-148a
MiR-148a is identified as a liver-specific miRNA 

highly expressed in mature hepatocytes, and frequently 
down-regulated in human HCC lines and tissues. In 
mouse fetal hepatoblasts, miR-148a facilitated hepatic 
differentiation through DNMT-1 inhibition. MiR-148a 
directly regulated DNMT-1 expression by complementary 
binding to its 3’-UTR element. In Hepa 1-6 hepatoma 
cells, miR-148a suppressed invasive properties of 
HCC cells by indirectly inhibiting hepatocyte growth 
factor receptor (c-Met) (103). As IL-6 increased the 
expression of DNMT-1 through miR-148a in human 
cholangiocarcinoma cell lines, miR-148a provides a 
link between inflammation-associated cytokine and 
oncogenesis in cholangiocarcinoma (104).

7.2. miR-122
MiR-122 is a critical miRNA abundant in the 

liver, and is involved in hepatic carcinogenesis, lipid 
metabolism and HCV replication. MiR-122 was highly 
enriched in differentiated human hepatocytes, but its 
expression decreased in hESCs and HCC. miR-122 
functions as a modulator to suppress self-renewal and 
proliferation of hESCs and HCC through inhibiting the 
expression of Pkm2. In human primary hepatocytes, 
the promoter of miR-122 was hypo-methylated, which 
facilitated RNA polymerase II to bind and initiate 
transcription. Whereas, hypermethylation of the same 
region in hESCs and HCC made it impossible for RNA 
polymerase II to bind and in turn inhibited miR-122 
transcription (105). Treating the HepG2 and Hep3B cells 
with a DNA methylation inhibitor (5’aza-2’deoxycytidine) 
restored the expression of miR-122. In addition, 
peroxisome proliferator activated receptor-gamma 
(PPAR-gamma) and retinoid X receptor alpha (RXR-
alpha) complex could bind to the miR-122 promoter and 
enhance its transcription (106).

7.3. miR-214
The attenuated expression of miR-214 was 

often observed in HCC tissue and highly associated 
with tumor early recurrence. miR-214 directly targeted 
3’-UTR sequence of EZH2 and β-catenin mRNA, and 
inhibited their protein expression. Knockdown miR-
214 expression increased EpCAM+ stem-like HLE cells 
through activating β-catenin signaling. Thus, miR-214 
induced stem-like features of HCC, and may be closely 
involved in early tumor recurrence (107). 
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In summary, a group of miRNAs are oncogenic 
and their expression is often suppressed in hepatic 
malignancy, whereas other miRNAs act as tumor-
suppressors by inhibiting expression of genes involved 
in oncogenesis. These tumor-suppressive miRNAs are 
often down-regulated in HCC. The influence of miRNAs 
on epigenetic changes depends on the target gene 
specificity of individual miRNAs, and their effects range 
from differentiation, aggressive behavior, drug resistance 
to metastasis. The dissection and verification of each 
miRNA function in these processes will enhance our 
understanding of critical but complicated interplay of 
multiple miRNAs in oncogenesis, metastasis or relapse. 

8. EPITHELIAL MESENCHYMAL TRANSITION 
AND EPIGENETIC MODIFICATIONS 

Epithelial-mesenchymal transition (EMT) is 
defined as a process by which epithelial cells lose cell 
adhesion and baso-apical polarity, meanwhile acquire 
mesenchymal features. The molecular characteristic of 
EMT is the down-regulation of E-cadherin and upregulation 
of mesenchymal markers, including N-cadherin, vimentin 
and fibronectin. EMT occurs in such cases as normal 
organ development and embryogenesis, tissue damage, 
inflammation, fibrosis and tumor metastasis (108-110). 
Expression of EMT-related transcription factors, such 
as snail and twist, was upregulated in scirrhous HCC, a 
rare variant of HCC which is characterized by abundant 
fibrous stroma and expression of several LPC markers 
(such as EpCAM and CK19) (111). In a Pten loxp/loxp/
Alb-Cre+ mouse model, a second round of xenograft 
transplantation expanded from CD133+ cells isolated from 
Pten-/- mice demonstrated epithelial and mesenchymal 
phenotypes. Within fibroblastoid-like cells, E-cadherin 
and keratins were decreased, while mesenchymal 
markers (MMP2/3, snail1 and zeb1/2) were significantly 
increased. Mesenchymal phenotypic cells secreted a 
high level of HGF to stimulate proliferation of epithelial 
cells. In turn, stimulated epithelial cells changed to 
fibroblastoid-like cells and became more aggressive and 
invasive (112). CTCs isolated from a mouse HCC model 
exhibited an EMT status, and increased expression 
of HGF and its receptor (c-Met) was demonstrated in 
these cells. Demethylation of HGF and c-Met increased 
expression of HGF, which in turn switched CTC to display 
EMT characters, increased tumorigenicity and metastatic 
potential (113). Increasing matrix stiffness drove HCC 
cells to acquire the mesenchymal properties and to be 
resistant to chemotherapy in vitro. On contrary, a soft 
environment enhanced the colony initiating capacity 
of chemotherapy-treated cells, which was associated 
with increased “stemness” gene expression, including 
CD133, CD44, OCT-4 and NANOG (114). In summary, 
EMT facilitates disseminated tumor cells to emigrate from 
the primary tumor microenvironment and to establish 
micrometastases at distal sites. 

9. CONCLUSIONS AND PERSPECTIVES 

Pathogenic processes, such as viral infection, 
inflammation, oxidative stress and drug toxicity alter 
the micro-environment in the liver and elicit abnormal 
epigenetic modifications, including histone acetylation 
or deacetalytion, and DNA hyper- or hypomethylation. 
In these processes, miRNAs participate in the regulation 
of their target gene expression in addition to their 
translational repression. The aberrant epigenetic 
modifications facilitate the transformation of normal 
LPCs to hepatic T-ICs in the response to changes of 
the microenvironmental niche; whereas the activation of 
“stemness” transcription factors, such as KLF-4, Nanog, 
Oct-4, Bmi-1 or Sox-2 or 17, as well as oncogenic 
signaling molecules, such as TGF-beta-1, hedgehog, 
beta-catinen, met or c-myc results in a genetic/epigenetic 
reprogramming. These signaling molecules may be 
considered as intrinsic forces in driving the malignant 
transformation and the appearance of T-ICs. Although the 
effects and regulation underlying the complex interplays 
of each epigenetic modification on histone and other 
nuclear proteins, signaling molecules remain largely 
unexplored, the net consequence is the occurrence and 
expansion of T-ICs in various disease bases. These 
T-ICs probably are the origins of many cell types in a 
tumor mass. It is also conceivable that T-ICs may be 
induced during various stages of cancer development 
and treatment, and these T-ICs are mainly responsible for 
chemo- or radiation-resistance, and are believed to be the 
cell origins for relapse (34). EMT has been suggested as 
a critical phenotypic change for cancer cells to be chemo-
resistant and metastatic. Given the fact that the markers 
used for T-IC isolation and characterization are different 
from various studies, it is understandable that T-ICs are 
not the same from different disease bases or at various 
stages of HCC development and progression. Whether 
a unique T-IC population will be identified for HCC 
depends on the success of a large cohort of clinical trials 
by multi-center collaboration with a defined combination 
of surface markers, such as CD133, CD90 or EpCAM, 
etc. (115, 116). It is foreseeable that such a trial aimed at 
defining the most representative “hepatic T-ICs” by multi-
disciplinary investigators is warranted in the near future. 
For a better understanding of this complex interplay, a 
schematic illustration is shown as Figure 1.

On the other hand, the identification of critically 
abnormal epigenetic modificatio`ns in HCC development 
and progression offers molecular targets for fine-tuning 
therapeutics and personalized therapy strategies. 
Increasing evidence demonstrates that a therapeutic 
strategy targeting a single pathway is insufficient to eliminate 
HCC. Due to critical roles of epigenetic modulations on 
hepatic T-IC function and differentiation, the epigenetic 
therapy may point to a novel direction in the development 
of next generation of therapeutics. For instance, as a self-
renewal regulator, EZH2, modulates the self-renewal and 
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differentiation of hepatic stem cells. 3-Deazaneplanocin A 
(DZNep), an EZH2 pharmacological inhibitor, decreased 
EpCAM+ T-IC subpopulation and suppressed tumorigenesis 
in NOD-SCID mice (117). In this context, the use of EZH2 
inhibitors, such as an S-adenosylhomocysteine hydrolase 
inhibitor, DZNep, might be a promising strategy through 
targeting hepatic T-ICs (117). A demethylating agent, 
zebularine, increased self-renewal and tumorigenicity of 
low density HCC cells. But treated HCC cells at high density 
with zebularine decreased self-renewal and tumorigenicity. 
Thus, the dual effect of this DNMT1 inhibitor on T-ICs 
characters depended on HCC cellular density (118). A 
multicenter phase I/II trial assessed the efficacy of a histone 
deacetylase inhibitor, belinostat, on unresectable HCC. The 
rate of partial response and stable disease of 42 patients 
was 2.4 and 45.2 percent, respectively. The progression-free 
and overall survival was 2.6 and 6.6 months, respectively. 
Epigenetic therapy with belinostat displayed well-tolerated 
and disease stabilization, and more studies are needed to 
further determine the efficacy and benefits with belinostat 
treatment in HCC patients (119). Obviously, questions 

remain regarding whether epigenetic therapy alone or in 
combination with conventional chemotherapy will be more 
effective in eradicating T-IC than currently available adjuvant 
therapeutics for the improvement of therapeutic outcome. 
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