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1. ABSTRACT

Hemophilia is an X-linked inherited bleeding 
disorder consisting of two classifications, hemophilia 
A and hemophilia B, depending on the underlying 
mutation. Although the disease is currently treatable 
with intravenous delivery of replacement recombinant 
clotting factor, this approach represents a significant 
cost both monetarily and in terms of quality of life. 
Gene therapy is an attractive alternative approach 
to the treatment of hemophilia that would ideally 
provide life-long correction of clotting activity with a 
single injection. In this review, we will discuss the 
multitude of approaches that have been explored for 
the treatment of both hemophilia A and B, including 
both in vivo and ex vivo approaches with viral and 
nonviral delivery vectors.

2. INTRODUCTION

Hemophilia is an X-linked inherited disorder 
resulting in a deficiency in the clotting functionality of 
blood. Depending on which clotting factor the patient 
is deficient in, the disease is classified as hemophilia 
A (deficiency in factor VIII, F.VIII) or hemophilia B 
(deficiency in factor IX, F.IX). Hemophilia A has a 
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higher prevalence, occurring in about 1:5,000 male 
births, while hemophilia B occurs in about 1:25,000. 
The loss of function of either F.VIII or F.IX results in 
a defect in the intrinsic clotting cascade (Figure 1). 
In the intrinsic pathway, exposure of circulating 
F.XII to a damaged surface causes its activation. 
Activated F.XII (F.XIIa) activates F.XI, which then 
in conjunction with extrinsically activated tissue 
factor-F.VIIa complex (extrinsic factor Xase) 
proceeds to cleave the zymogens F.IX and F.X 
into their active forms, F.IXa and F.Xa. F.IXa is a 
serine protease whose function depends on the 
post-translational γ-carboxylation of F.IX by vitamin 
K. Meanwhile, activation by the extrinsic pathway 
also results in cleavage of the glycoprotein F.VIII 
into activated F.VIIIa. F.VIIIa (cofactor) and F.IXa 
(enzyme) come together to form the intrinsic factor 
Xase. This complex cleaves F.X into F.Xa at a rate 
much higher than the extrinsic factor Xase, such 
that in the end about 90 percent of F.Xa is produced 
by the intrinsic complex. The activity of the intrinsic 
factor Xase is dependent on binding to phospholipid 
membranes on endothelial cells or platelets as well 
as free Ca2+. Activated F.Xa facilitates the conversion 
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of prothrombin into thrombin, which then catalyzes 
the formation of the fibrin clot. Thus, a genetic defect 
in F.VIII or F.IX prevents the assembly of the intrinsic 
factor Xase, significantly impairing the ability to 
activate F.X and induce formation of the fibrin clot.

While the determination of which factor 
is missing is important for treatment, the clinical 
symptoms of hemophilia A and B are essentially 
comparable. The severity of X-linked hemophilia 
is dependent on the degree of residual clotting 
activity. Mild cases (5-40% activity) are typically 
asymptomatic outside of major trauma or surgery, 
whereas moderate cases (1-5% activity) are 
somewhat more vulnerable, and may evidence 
prolonged bleeding even from minor injuries. 
However, severe hemophilia (<1% activity) brings 
additional complications. In addition to the difficulty 
responding to injury, these patients frequently 
develop spontaneous bleeds in capillary beds, 
particularly within joints. Over time, this causes 
significant chronic deterioration of the joints if not 
properly managed. Currently, hemophilia is treated 
by intravenous delivery of replacement clotting factor, 
either plasma-derived or recombinant. This therapy 
can be performed on demand, though it has been 
suggested that prophylactic management (typically 
3 injections per week) can reduce joint damage over 

time (1). Longer-lasting clotting factors that would 
reduce the required frequency of injections are 
currently in development (2).

In addition to the inconvenience of these 
frequent injections, protein replacement therapy also 
carries the risk of deleterious immune responses 
against the therapeutic protein. As patients are 
not naturally producing clotting factor, the immune 
system can recognize the exogenous protein as 
a foreign antigen and form antibodies against the 
protein that prevent its function; these neutralizing 
antibodies are also known as inhibitors. The 
frequency of inhibitor formation varies by disease: 
about 25-30% of hemophilia A, but only about 5% 
of hemophilia B patients develop inhibitors. The risk 
for inhibitor formation varies depending on a number 
of factors, including the severity of the underlying 
mutation; both preclinical and clinical studies indicate 
that more residual protein expression reduces 
inhibitor formation in both hemophilia A and B (3-7). 
Although the frequency of inhibitors in hemophilia 
B is reduced, they are typically more severe, with 
the potential for anaphylaxis as well as nephrotic 
syndrome due to circulating antigen-antibody 
complexes (5). Currently, the only treatments for 
inhibitor formation are immune tolerance induction 
(ITI) protocols. These procedures are both costly 

Figure 1. Diagram of the coagulation cascade. Activation of F.XII by exposure to a damaged surface causes sequential activation of F.XI and 
F.IX. Similarly, activation of the extrinsic factor Xase (F.VIIa and tissue factor) leads to limited activation of F.X. This limited activation induces 
a feedback loop by activating F.VIII, which combines with F.IXa to form the intrinsic factor Xase. The intrinsic factor Xase then cleaves high 
levels of F.X, which induces the activation of prothrombin to thrombin, leading to formation of the cross-linked fibrin clot.
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and time-consuming, and during the procedure 
bypass reagents must be employed which are 
both less effective and more risky. Additionally, the 
treatment is typically effective in only around two-
thirds of patients (8, 9).

Gene therapy represents an appealing 
alternative to protein replacement therapy. Instead 
of repeated injections of protein, it would ideally 
involve a single injection that would induce long-
term production of the defective clotting factor. 
Expression at only 5% of endogenous levels can 
improve the disease to a mild phenotype and 
essentially eliminate the risk of spontaneous 
bleeding events as well as the need for prophylactic 
protein therapy. Although a variety of mechanisms 
to introduce the transgene have been investigated, 
some of the most popular are recombinant viral 

vectors. In particular, adeno-associated virus 
(AAV), a small and non-pathogenic parvovirus with 
an episomal genome, has been used extensively, 
including in multiple clinical trials for the treatment 
of hemophilia B (10). Additionally, lentiviral vectors 
(LV) based on HIV-1 that integrate into the host’s 
genome have also been employed in a multitude of 
preclinical studies both for in vivo and ex vivo gene 
transfer (11). Finally, in addition to these gutted 
viral vectors, research is also being performed on 
non-viral gene transfer (12). Some examples of 
sustained correction via liver-directed AAV-mediated 
gene transfer are demonstrated in Figure 2. These 
include correction of whole blood clotting time in 
canine studies and activated partial thromboplastin 
time (aPTT) in mice for hemophilia B, as well as 
aPTT correction in a murine model of hemophilia A 
(Figure 2A-C).

Figure 2. Examples of sustained correction of hemophilia in animal models by hepatic AAV gene transfer. A. Sustained correction of the whole 
blood clotting time after hepatic AAV2-canine F.IX gene transfer in 2 hemophilia B dogs with F9 null mutation (Niemeyer et al., Blood 2009). 
B. Sustained correction of the activated partial thromboplastin time (aPTT) after hepatic AAV2-human F.IX gene transfer in hemophilia B mice 
(n=4) with F9 gene deletion (Dobrzysnki et al., Proc Natl Acad Sci 2006). Arrows in A and B indicate challenge with/immunization against 
FIX protein. C. Sustained correction of the aPTT after hepatic AAV8-human FVIII gene transfer in hemophilia A mice (of 2 different strain 
backgrounds, n=8 per strain) with F8 exon 16 gene deletion (Sack et al., PLoS One 2012). Mice were challenged with F.VIII protein injections 
at the indicated time interval. D. Lack of inhibitor formation in the hemophilia A mice treated with gene therapy and challenged with F.VIII 
protein (insert shows inhibitor titers in BU/ml in response to FVIII in control mice that had not received gene transfer).
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However, beyond merely introducing the 
transgene, it is also important to maintain production 
of the clotting factor by avoiding the deleterious 
impact of the immune system on gene transfer, either 
against the delivery vector or the transgene itself. 
For instance, preclinical studies with LV vectors have 
revealed that innate immune responses involving 
type I interferon (IFN) production can lead to impaired 
transgene expression and CD8+ T cell responses 
against the transgene (13, 14). Clinical trials of 
AAV-mediated gene transfer have also revealed the 
detrimental impact of pre-existing immunity to the 
AAV capsid, both in regards to neutralizing antibodies 
(NAB) preventing transduction as well as a memory 
CD8+ T cell response to the viral capsid that can 
eliminate transduced hepatocytes (15). Finally, 
there is always the risk of an immune response 
against the clotting factor itself (particularly in the 
case of hemophilia A), which would inhibit the gene 
therapy itself as well as obstructing further efforts 
to treat with recombinant protein (16). Beyond 
merely avoiding the immune response, though, it is 
preferable to actually induce immune tolerance to 
the transgenic protein, ensuring that endogenous 
production is not eliminated as well as allowing for 
the administration of supplemental clotting factor 
(e.g.  during trauma or surgery) without provoking 
an inhibitor response (16, 17). Immune tolerance in 
preclinical studies is typically demonstrated by the 
intravenous administration of recombinant F.VIII or 
F.IX. This normally provokes an inhibitor response 
in hemophilic mice for both diseases; however, 
following gene transfer, mice that have been 
tolerized maintain clotting correction and fail to form 
inhibitory antibodies, as opposed to naïve control 
animals (Figure 2B-D). A variety of animal models of 
hemophilia are available for preclinical studies, and 
clinical trials for both diseases have been attempted 
as well (Figure 3). In this review, we will provide a 
comprehensive overview of viral and non-viral gene 
therapy approaches for both hemophilia B and 
hemophilia A, with an additional focus on the ability 
of these approaches to avoid destructive immunity 
or induce transgene-specific tolerance.

3. GENE THERAPIES FOR HEMOPHLIA B

Of the two diseases, gene therapy for 
hemophilia B has been more successful, having 
advanced to multiple recent clinical trials. Primarily, 
this is due to the simplicity of F.IX compared to 
F.VIII. The F9 coding region is only about 1.4. kb, 
and it encodes a single domain protein of 461 amino 
acids. This small size allows it to be easily packaged 

in a recombinant adeno-associated virus, a gene 
therapy vector that has provided promising results 
for a variety of genetic disorders (18). Additionally, 
the posttranslational modification of F.IX can be 
effectively carried out in skeletal muscle, allowing 
early studies to be carried out in a target tissue 
less risky than a critical organ such as the liver, the 
natural site of F.IX synthesis (19).

3.1. Adeno-associated virus
Adeno-associated virus (AAV) is a 

parvovirus with a single-stranded DNA genome of 
about 4.7. kb. It is a dependovirus that is unable to 
replicate in the absence of a helper virus such as 
adenovirus; thus, although it is a common natural 
infection, AAV is not associated with any known 
pathogenic infections in humans. Recombinant AAVs 
are modified by the removal of any DNA encoding for 
viral protein. Only the inverted terminal repeats (ITRs) 
required for packaging are retained from the viral 
genome, giving AAV vectors a packaging capacity 
of about 5 kb for the promoter and gene of interest. 
Several factors make AAV an attractive vector for in 
vivo gene therapy, including its ability to infect non-
dividing cells, the maintenance of vector genomes 
as episomal concatemers (minimizing the risk of 
insertional mutagenesis), its low immunogenicity, 
and the wide variety of capsid serotypes that allow 
gene delivery to numerous target tissues (20-24).

Early studies for gene therapy for 
hemophilia B with AAV focused on delivery to skeletal 
muscle, both in animal models (mice and dogs) and 
humans (25-30). Although more recent clinical trials 
for gene transfer to skeletal muscle have used AAV 
serotype  1 (AAV1) vectors due to their superior 
transduction capacity in myocytes, these early 
studies used AAV2 vectors (29-34). It was found 
that expression of functional human factor IX (hF.
IX) was possible in skeletal muscle, though potential 
complications from an immune response against 
hF.IX could occur in some situations, particularly in 
cases with more severe mutations (3, 27, 35). The 
local F.IX expression and anti-F.IX immune response 
were found to be critically important during muscle-
directed gene transfer, and this consequence could 
be avoided by carefully titering the vector dose per 
site or with transient immunosuppression (35-39). 
In a clinical trial, intramuscular delivery of hF.IX 
to patients with missense mutations met safety 
requirements and demonstrated that in vivo gene 
therapy with AAV could be a viable treatment strategy; 
however, although the persistence of transduced 
fibers was observed for ten years, expression never 
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reached therapeutic levels at any of the doses tested 
(30, 40). Although some preclinical studies are still 
studying intramuscular gene therapy, most research 
for hemophilia B—including clinical trials—has 
shifted to hepatic gene transfer (41, 42).

The liver represents a superior target for 
F.IX expression for several reasons. In healthy 
individuals, F.IX is naturally produced in the 
liver. Hepatocytes have more efficient secretion 
machinery than myocytes, allowing them to produce 
higher transgene levels. Most interesting, though, 
is the fact that liver-directed gene transfer has been 
shown to induce transgene-specific tolerance that 
prevents subsequent antibody and CD8+ T cell 
responses (43, 44). Further studies have shown 
that this tolerance is mediated by antigen-specific 

regulatory T cells (Treg) (45-47). Tregs are a subset 
of CD4+ helper T cells that are typically defined as 
CD4+ CD25+ FoxP3+ lymphocytes, and are regarded 
as one of the most important regulators of peripheral 
tolerance. Through a variety of mechanisms, 
including cytokine release and contact-dependent 
interactions, they can prevent immune responses 
in an antigen-specific manner, though they have 
also been reported to have polyclonal suppressive 
effects (reviewed in (48)). Though the mechanism 
of Treg induction is not entirely clear, it can occur 
for both secreted and cytoplasmic transgenes 
expressed in hepatocytes, and it depends on 
both IL-10 and TGF-β (49, 50). In addition to 
suppression of de novo immune responses against 
factor IX, hepatic gene transfer can reverse 
an active high-titer inhibitor response (4). This 

Figure 3. Animal models of hemophilia. Preclinical studies of gene therapy for hemophilia have access to a variety of animal models. Models 
of both hemophilia A and B are available in mice, whereas dogs typically serve as the large animal model for both diseases. Although studies 
are performed in nonhuman primates, there are not hemophilic models of these animals available. Though not used very often, there is a 
model for hemophilia A in sheep. Finally, humans obviously suffer from both hemophilia A and B, and studies for both have been performed 
in clinical trials. An average range of weights for each animal is given below, and the average AAV vector dose that would be required for 
delivering 2 x 1012 vg/kg (a typical dose in clinical trials) to each animal indicates how rapidly the vector titers required can increase with 
larger animals.



Gene therapy for hemophilia

	 561� © 1996-2015

mechanism depends on the induction of Tregs, and 
the continued presence of these cells is required 
to maintain tolerance. The high expression of 
F.IX in mice following hepatic gene transfer (~20-
40% of normal) may also be responsible for this 
rapid clearance of F.IX-specific antibodies due to 
suppression of memory B cells (4, 51). Though this 
phenomenon is understandably difficult to verify 
in human studies, it is encouraging that, to date, 
none of the patients treated with a liver-directed 
AAV vector have formed a F.IX-specific immune 
response (52, 53).

However, clinical trials have revealed an 
additional complication that was not predicted by 
preclinical studies: the impact of capsid-specific 
memory CD8+ T cells (54, 55). The first clinical 
trial of hepatic gene transfer with AAV vectors 
for hemophilia B using an AAV2 vector delivered 
by injection through the hepatic artery revealed 
a couple of important findings (52). Contrary to 
previous expectations, it was found that even 
low-titer anti-capsid neutralizing antibodies could 
prevent successful transduction. Additionally, in one 
patient at the highest dose cohort, an initial rise in 
circulating hF.IX was detected; however, by 4 weeks 
post-injection, this expression began to decline with 
a concomitant rise in liver enzymes indicative of 
hepatic damage (albeit at asymptomatic levels). By 
8 weeks, circulating hF.IX was no longer detectable. 
Further studies revealed that this decline occurred 
due to a capsid-specific memory CD8+ T cell 
response (52, 56).

Several advances in AAV vector design 
were made that were incorporated into the second 
hepatic gene therapy clinical trial. Rather than using 
AAV2, this study used an AAV8 vector, a serotype 
derived from rhesus macaques that has greater 
liver specificity than AAV2  (31). This allows for 
elevated transgene expression from an equivalent 
vector dose, and expression was comparable 
when the vector was delivered via tail vein or portal 
vein injection; these greater expression levels 
also enhanced the F.IX-specific tolerance induced 
by hepatic gene transfer (57). The prevalence 
of neutralizing antibodies against AAV8 is lower 
than AAV2 among the human population, allowing 
more patients to potentially be treated with AAV8 
vectors (58, 59). Additionally, a self-complementary 
AAV (scAAV) vector rather than a single-stranded 
AAV (ssAAV) was utilized. This modification, 
performed by mutating one of the viral ITRs, forces 
the vector to package double-stranded DNA rather 

than the single-stranded genome found in the wild-
type virus (60). These vectors bypass the need for 
second strand synthesis, a rate-limiting step during 
AAV transduction, allowing them to produce higher 
transgene levels (61, 62). Expression of hF.IX in 
mice and non-human primates was elevated with 
scAAV vectors (63-65).

Somewhat worryingly, recent studies have 
shown that scAAV vectors induce stronger innate 
immune responses through toll-like receptor 9 
(TLR9) than ssAAV that can enhance transgene-
specific immune responses during transfer to 
skeletal muscle (66-68) (reviewed in (69)). Similarly, 
the removal of CpG motifs sensed by TLR9 from 
the vector genome can allow expression in skeletal 
muscle by preventing the formation of a CD8+ T cell 
response against LacZ (70). In hemophilic mice 
with a null mutation, we found that scAAV enhances 
CD8+ T cell but not antibody responses to hF.IX 
following intramuscular gene transfer (71). However, 
in transgenic hemophilic mice that are partially 
tolerant to hF.IX due to expression of truncated, non-
functional hF.IX, no immune response was observed 
regardless of the vector genome, suggesting that 
the enhanced immunogenicity of scAAV vectors 
may not break tolerance when administration with 
ssAAV is tolerated. This was also true during hepatic 
gene transfer, where the enhanced innate immune 
response to scAAV did not result in transgene-
specific immune responses (67). Unlike adenoviral 
vectors, the innate immune response from scAAV 
was not sufficient to induce type  I interferon-
dependent transgene silencing (72). However, 
the innate immune response may not always be 
deleterious, as activation of the alternative NF-κB 
pathway has been shown to enhance transgene 
expression from AAV vectors (73).

Thus, the second clinical trial of hepatic 
gene therapy for hemophilia B used a scAAV8 
vector delivered via peripheral vein injection (53). 
As previously observed, a rise in liver enzymes 
was detected only in subjects treated at the highest 
dose, though at around 8 weeks rather than 4 weeks 
post-injection. Administration of prednisolone at this 
time was able to suppress the CD8+ T cell response 
against the AAV capsid, allowing F.IX activity to 
persist at around 2% of normal. In a subsequent 
subject, more careful monitoring around this 
time point allowed the prednisolone treatment to 
preserve F.IX expression at ~5% normal. These data 
represent the first successful clinical gene therapy 
for hemophilia B. Although this treatment appears to 
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have been successful, there are still problems that 
limit its applicability.

First, many hemophilia patients, 
particularly those infected with hepatitis C, are not 
eligible for general steroidal immune suppression. 
To this end, several alternatives are being studied 
in animal models. Targeting of hepatocytes by 
capsid-specific cytotoxic T lymphocytes (CTLs) 
requires the degradation of input viral capsid, as 
the recombinant vectors do not encode for any viral 
proteins. This process occurs primarily through 
proteasomal degradation, which is provoked by 
phosphorylation and subsequent ubiquitination of 
the AAV capsid (74, 75). The role of the proteasome 
is supported by a recent study demonstrating that 
presentation of AAV capsid epitopes in MHC class I 
(allowing the cell to be targeted by capsid-specific 
CTLs) requires endosomal escape into the cytoplasm 
but is independent of nuclear uncoating, suggesting 
that this degradation occurs in the cytoplasm (76). 
To avoid this process, mutant AAV2 capsids have 
been developed in which tyrosine residues have 
been mutated to phenylalanine (77). Specifically, a 
combination of three mutations (Y444+500+730F) 
allows for greatly enhanced transgene expression 
both in vitro and in vivo (78). In addition to enhancing 
transduction, these vectors reduce the ability for 
capsid-specific CD8+ T cells to target transduced 
hepatocytes (79). Adoptive transfer of ex vivo 
expanded capsid-specific CTLs to immune-deficient 
mice resulted in more residual hF.IX expression and 
less elevation in liver enzymes in mice transduced 
with AAV2(Y-F) vectors than wild-type  AAV2. This 
effect could be further enhanced with a proteasome 
inhibitor. Interestingly, AAV8 vectors showed 
prolonged vulnerability to CTL targeting, and 
additional studies have suggested that, depending 
on the vector genome, CD8+ T cells can detect 
AAV8 for as long as 6 months in mice (79, 80). This 
difference in the kinetics of antigen presentation 
between AAV2 and AAV8 may explain the delay in 
CTL response observed in the second clinical trial 
for hepatic gene transfer relative to the first.

The other limitation of the current approach 
is its inability to treat patients with pre-existing 
neutralizing antibodies (NAB) to AAV8 (reviewed 
in (81)). Following the first hepatic clinical trial, 
it was discovered that NAB titers as low as 1:5 
could severely impact transgene expression 
in  vivo (82-84). Additionally, even if patients 
initially lack NAB, after the vector injection they 
will develop an anti-capsid antibody response that 

will prevent readministration of the vector. Several 
approaches have been investigated to negate 
the impact of NAB. Attempts have been made to 
modify the AAV capsid itself, both by rational design 
and directed evolution, to negate its susceptibility 
to NAB binding (85, 86). Plasmapheresis has 
shown some success at removing NAB from sera, 
particularly with repeated cycles, though the ability 
to reach titers sufficiently low to allow transduction 
may be restricted to individuals with initially low 
titers (<1:100) (87, 88). Isolation of the liver using 
balloon catheters and delivering the vector via 
portal vein injection may also increase the success 
of gene transfer in the presence of NAB (89). 
Pharmacological approaches have primarily focused 
on the use of rituximab, a monoclonal antibody 
against CD20 that is currently approved for B cell 
depletion in several autoimmune diseases and B cell 
cancers. Rituximab alone was able to partially reduce 
AAV NAB titers in patients with rheumatoid arthritis, 
though most subjects did not drop below a titer of 
1:5  (90). These residual NAB are likely due to an 
incomplete depletion of B cells by rituximab, as well 
as the fact that plasma cells do not express CD20, 
rendering them immune to the cytotoxic activity of 
rituximab (91). In nonhuman primates, a combination 
of rituximab and cyclosporine A was more effective 
at eliminating NAB (92). Additionally, a non-depleting 
anti-CD4 antibody prevented the development of 
NAB following AAV gene transfer, though the effects 
on pre-existing anti-capsid antibodies remain to be 
seen (93). Finally, the second hepatic clinical trial 
revealed an interesting phenomenon: although 
expression levels at the highest dose in both trials 
were similar, circulating hF.IX expression was 
observed at low doses in the second trial but not 
the first. Interestingly, the vector formulation in the 
second trial contained empty AAV capsids lacking 
DNA, a byproduct of rAAV production that was 
removed during the previous trial. Thus, Mingozzi et 
al. have found that the addition of empty capsids can 
serve as a decoy for pre-existing NAB, with higher 
titers requiring a greater excess of empties relative 
to the DNA-containing capsids (94). These empty 
capsids have been modified to remove the binding 
site that allows entry into hepatocytes, though it 
remains to be seen whether this will prevent these 
decoy capsids from enhancing the CD8+ T cell 
response in human studies (95). As these various 
approaches each seem to be partially effective, it 
is possible that some combination of them (or a yet 
undiscovered therapy) will allow us to bypass NAB 
and make AAV gene therapies available for patients 
with pre-existing immunity.
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Great strides have already been made 
in clinical trials for AAV-mediated gene therapy for 
hemophilia B. Earlier intramuscular studies provided 
a proof of concept and safety information, while liver-
directed gene delivery has seen greater success, 
though it can still be limited by both NAB and anti-
capsid CTL responses (Figure  4). However, there 
are still problems to solve to improve this strategy, 
as indicated by the fact that, in addition to the two 
completed trials, there are currently three active 
clinical trials using AAV vectors to treat hemophilia B 
(Table 1).

3.2. Retrovirus and lentivirus
Although the most clinical success to 

date has been seen with AAV, numerous studies 
have also been performed using integrating viral 
vectors to treat hemophilia B. Unlike AAV, where 
the maximum duration of expression and stability of 
episomal concatemers is not yet known, expression 
from an integrating vector would persist as long as 
cells from the transfected lineage remain. However, 
integration also comes with the risk of insertional 
mutagenesis. Initially, studies focused on the use 
of γ-retroviral vectors based on Moloney murine 

Figure 4. AAV-mediated gene therapy for hemophilia B. A recombinant AAV vector is produced, whose genome includes the viral ITRs, as well 
as a promoter, intron, F.IX cDNA, and polyA tail. AAV has been used for intramuscular gene transfer, which was limited by nonphysiological 
expression levels in human trials, as well as anti-transgene immunity during some preclinical studies. Circulatory delivery of AAV for hepatic 
gene transfer, either via the hepatic artery or peripheral vein, has seen more success. However, this route can still be limited by anti-capsid 
NAB as well as reactivation of a memory CD8+ T cell response to the input viral capsid.
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leukemia virus (MMLV); however, the inability of 
these viruses to transduce nondividing cells as well 
as their propensity for oncogenesis, as seen in a 
clinical trial for SCID-X1, has caused these vectors 
to be looked on less favorably (96, 97). Rather, 
research has shifted focus towards lentiviral vectors 
(LV). LV is based on HIV-1 (reviewed in (98)). Like 
γ-retroviral vectors, LV is an integrating ssRNA 
vector with a packaging capacity of ~10 kb. Unlike 
the former, though, LV can transduce non-dividing 
cells (99). Pseudotyping the virus with various 
envelope proteins allows for significant alterations 
to tissue tropism and biodistribution. LV is most 
commonly pseudotyped with the VSV-G protein 
from vesicular stomatitis virus, though proteins from 
other viruses—including filovirus, Ebola, LCMV, and 
rabies virus—have also been employed (100-102). 
VSV-G pseudotyping allows for transduction of a 
wide variety of cell types both in vitro (e.g. CD34+ 
stem cells) and in vivo (e.g. liver, brain, and muscle). 
The integration pattern of LV is somewhat random, 
though biased towards transcriptional units. 
Compared to γ-retroviral vectors, which preferentially 
integrate into transcription start sites, LV prefers 
to integrate further into the active transcription 
unit (103, 104). Additionally, some LV incorporate a 
mutation that eliminates the transcriptional activity of 
the long terminal repeats; these LV are termed self-
inactivating (SIN) (105). Although this modification 
can also reduce the oncogenicity of γ-retroviral 
vectors, studies in a cancer-prone mouse model 
have suggested that integration levels as much as 
10-fold higher may be required for LV to reach similar 
oncogenic potential to γ-retroviral vectors (106-108). 
Overall, although it is clear that there are risks 
associated with integrating vectors, the exact degree 
of risk is currently unclear (109).

One significant advantage of an integrating 
vector is that it can be applied to cells ex vivo, and the 
transduced cells can then be reintroduced, bypassing 
any interference from an immune response against 

the virus (Figure 5). While this strategy is more often 
applied to gene therapy for hemophilia A, some 
research has also been done with ex vivo gene 
transfer for hemophilia B. The most common target 
for this type of therapy is hematopoietic stem cells 
(HSCs), due to the ease of both harvesting and 
reintroducing these cells. Following up on earlier 
studies performed with F.VIII, it was shown that gene 
transfer to bulk HSCs using LV resulted in sustained 
F.IX expression that tolerized recipient mice to hF.IX 
and could be transferred to secondary and tertiary 
recipients (110, 111). A similar outcome was achieved 
by targeting expression to cells of the erythroid 
lineage (112). However, in both studies, mice were 
lethally irradiated in order to allow engraftment of 
the transfected HSCs (111, 112). To enhance the 
clinical relevance of this approach, a dual expression 
LV expressing both hF.IX and a drug resistance 
gene was used to achieve correction following 
engraftment with a moderate busulfan conditioning 
that was nonmyeloablative (113, 114). In addition 
to erythroblasts, F.IX expression has also been 
investigated in platelets following the success seen 
with that strategy for F.VIII (115). A transgenic mouse 
expressing F.IX in platelets demonstrated correction 
of the bleeding phenotype (116). However, unlike 
with F.VIII, the activity of F.IX expressed in platelets 
was still adversely affected by inhibitory antibodies. 
This effect can also be achieved with gene transfer 
using LV, and this strategy induces tolerance to hF.IX 
in treated mice as well (117). More recently, studies 
have begun to explore expression in alternative types 
of stem cells. Treatment of murine adipose tissue-
derived stem/stromal cells (mADSCs) with LV can 
induce sustained hF.IX expression in vitro, though it 
remains to be seen whether these cells can engraft 
into a recipient and provide sustained correction (118). 
Similarly, mesenchymal stem cells (MSCs) derived 
from human cord blood can be transduced with 
retroviral or LV vectors to produce F.IX in vitro and in 
vivo, though efforts are still underway to optimize the 
matrix for cell growth and F.IX production (119-122).

Table 1. Clinical trials of AAV‑mediated gene therapy for hemophilia B
Vector Route of 

administration
Institute Status Reference/

Identifier

ssAAV2‑CMV‑hF.IX Intramuscular Children’s Hospital of Philadelphia/Stanford/Avigen Complete (30)

ssAAV2‑hAAT‑hF.IX Hepatic artery Children’s Hospital of Philadelphia/Stanford/Avigen Complete (52)

scAAV8‑LSP‑hF.IXco Peripheral vein St. Jude Children’s Hospital/University College London Ongoing (53)

ssAAV8‑hAAT‑hF.IXco Peripheral vein Children’s Hospital of Philadelphia Ongoing NCT01620801

scAAV‑TTR‑hF.IXco‑Padua Peripheral vein University of North Carolina Ongoing NCT01687608
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In addition to ex vivo gene transfer, LV can 
also be employed for in vivo gene therapy. Although 
some studies have attempted to deliver LV prenatally 
to induce F.IX expression, these approaches have 
mostly focused on inducing the expression of F.IX in 
hepatocytes (123-125). Early studies demonstrated 
that it is possible to induce sustained hF.IX expression 
in hepatocytes using LV, and that proliferation is not 
required for transduction (126-129). F.IX expression 
has also been induced in vivo under the control 
of tetracycline using LV (130). However, as with 

AAV, in  vivo gene transfer revealed barriers to 
transduction set up by the immune system. Unlike 
with AAV vectors, hepatic gene therapy with LV 
did not initially induce tolerance to the transgene. 
It was discovered that, due to their broad tropism, 
VSV-G-pseudotyped vectors could transduce 
antigen-presenting cells (APCs) (131). Since then, 
a number of steps have been taken to enhance the 
specificity of expression from LV. The use of a liver-
specific promoter allowed for sustained expression 
of F.IX, but still did not completely eliminate off-target 

Figure 5. Ex vivo gene transfer. Gene transfer to cells ex vivo is typically initiated by isolation of the relevant cell population (such as CD34+ 
HSCs, iPS precursors, BOECs, MSCs, etc.) from the patient. Modification with LV or other integrating gene transfer system is performed, 
followed by a selection for transduced cells. If necessary, a conditioning regimen is given to the patient prior to reintroduction of the transduced 
autologous cells to ensure efficient engraftment. Finally, in the patient, these precursors are distributed and differentiated into the cells desired 
for expression, whether these are megakaryocytes, platelets, B cells, endothelial cells, MSCs, or some other cell type of interest.
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transduction (132). Nonspecific expression in APCs 
could be further reduced by adding target sequences 
for a hematopoietic-specific microRNA (miR-142) to 
the transcript. Mice treated with miR-142-regulated 
LV showed sustained expression of hF.IX and 
remained nonresponsive following immunogenic 
challenge, suggesting that they had been tolerized 
to hF.IX via a mechanism mediated by regulatory 
T cells (133, 134). Similar to what was found with 
AAV vectors, hepatic expression of F.IX via LV was 
also able to reverse an active inhibitor response, 
suggesting that hepatic gene transfer can be both 
therapeutic and tolerogenic even in the presence of 
an active immune response (135).

As with AAV, eliminating barriers to 
transduction posed by the adaptive immune system 
revealed deleterious effects of innate immunity 
on LV gene transfer. In vivo administration of 
LV triggers type  I interferon (IFN) responses 
that restrict gene transfer and promote vector 
clearance (13). Consistent with previous in 
vitro findings, this mechanism was shown to be 
partially dependent on TLR7, which senses the 
ssRNA genome of LV (14, 136, 137). However, 
TLR-independent innate immune responses 
were detected as well (14). Through the use of a 
reverse-transcriptase inhibitor, it was suggested 
that these responses were due to the cytoplasmic 
sensing of viral DNA. Recently, cyclic GMP-AMP 
synthetase (cGAS) has been implicated as a sensor 
of cytoplasmic DNA with crucial roles both in vitro 
and in vivo (138-142). Interestingly, cGAS has been 
reported to induce type  I IFNs in response to HIV 
and other retroviruses, suggesting that it may be 
responsible for this TLR-independent innate immune 
response to LV (143).

Aside from concerns of immunogenicity, 
the most important safety concern for LV remains the 
risk of insertional mutagenesis. Although the degree 
of risk remains a matter of debate, the potential for 
tumorigenesis following LV gene therapy has not been 
eliminated (144). To this end, integrase-defective 
lentiviral vectors (IDLV) have been developed; 
expression occurs from these viruses without 
integration at a rate above random (145-148). The 
viral genome is stable in episomal form, persisting 
in nondividing cells but not actively dividing cells 
(149-151). These findings were confirmed by in 
vivo studies with F.IX. Although the transduction 
efficiency of IDLV was lower than integrating LV, 
hepatic expression of F.IX using IDLV is able to 
induce antigen-specific tolerance and reverse an 

active inhibitor response (135, 152). However, 
expression subsided precipitously following partial 
hepatectomy, indicating a lack of integration. 
Additionally, in normal mice, F.IX levels declined 
significantly by 1 year post-injection, suggesting that 
transgene expression would not be persistent (152). 
Thus, while F.IX expression can be induced by 
IDLV, it seems likely that further development of 
these vectors to achieve persistent expression will 
be required for them to be a potential therapy for 
hemophilia B.

3.3. Integrases and non-viral approaches
In addition to the viral gene therapies we 

have discussed previously, nonviral gene therapy 
has also been investigated for hemophilia B. At its 
simplest, this involves the delivery of naked plasmid 
DNA to target cells. Although modern viral vectors 
do not produce any viral proteins in target cells, 
the delivery of naked DNA would also eliminate 
the immunogenicity of the input viral proteins (such 
as the CD8+ T cell response to the AAV capsid). 
However, the problems with this approach are 
twofold. Firstly, transgene expression from nonviral 
delivery is typically lower than seen with viral vectors, 
and without selective pressure or incorporation of 
the exogenous DNA, expression is short-lived (153). 
Secondly, it can be challenging to get the DNA 
into the target cells of interest. In vitro, membrane-
disrupting procedures such as electroporation 
and liposome transfection can be employed. For 
in vivo targeting, although a number of targeting 
approaches are currently under development, 
hepatic gene transfer is most commonly achieved 
by hydrodynamic injection of a high volume of 
DNA solution intravenously (154-157). Efforts are 
underway to adapt this procedure to larger animal 
models and eventually humans (158-163).

To bypass the transient nature of plasmid 
DNA approaches, investigators have recognized the 
emerging potential of transposons to generate long-
lived expression (164). Transposons are naturally 
occurring DNA elements capable of moving from 
one chromosomal location to another. They do so 
by encoding a transposase, a protein that is able 
to excise the transposon from the donor locus and 
insert it into a target location. Transposases can 
act on any DNA sequence flanked by the specific 
terminal repeat sequences, allowing for integration 
when DNA encoding for the transposase is added 
along with the transgene flanked by terminal repeat 
sequences. Research for gene therapy applications 
have primarily focused on two transposons: piggyBac 
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(derived from the cabbage looper moth Trichoplusia 
ni) and Sleeping Beauty (SB; a Tc1-like transposon 
from fish), as well as its hyperactive mutant, termed 
SB100X (165-170). The relative activity of these two 
transposons remains controversial, though it is likely 
that the rate of integration depends on the cell type 
being transduced (171, 172). However, it is known 
that these transposons have distinct integration 
patterns. SB appears to integrate randomly, 
whereas piggyBac is biased towards transcriptional 
start sites, similar to the integration pattern of viral 
vectors (173-175). By incorporating SB into IDLV, it is 
possible to replicate this random integration pattern 
with a viral vector (176). Like LV, the untranslated 
regions of SB possess transcriptional activity, and 
incorporation of insulator sequences into this region 
can reduce the risk of transcriptional activation of 
host genes proximal to the insertion site (177).

Gene therapy with transposons can 
be performed directly in vivo, or applied ex vivo 
to cells that are then reintroduced into the host. 
However, likely due to the greater success 
seen by in vivo approaches in gene therapy for 
hemophilia B, transposon research has focused 
on that approach. Using hydrodynamic injection, 
delivery of a SB-containing plasmid along with 
a plasmid containing F.IX transgene resulted in 
robust long-term hF.IX expression in mice (178). 
Similarly, hydrodynamic gene transfer using the 
ΦC31 integrase (derived from a bacteriophage) 
induced persistent F.IX expression in hemophilic 
mice (179-181). However, as previously mentioned, 
this procedure is currently not applicable to larger 
animal models. Ironically, in order to achieve 
targeted delivery of transposon/integrase systems, 
some investigators have returned to viral vectors. 
For instance, engineered adenoviral vectors 
incorporating SB transposons have been used to 
achieve sustained F.IX expression in mice and in 
hemophilic dogs (182-184).

Although these approaches have shown 
some success in pre-clinical models, even the 
random integration profile of SB transposons is not 
ideal, as it still carries the potential for insertional 
mutagenesis. Ideally, targeted integration into ‘safe 
harbor’ sites in the genome that are not oncogenic 
would be employed to eliminate this risk. PiggyBac 
transposons have been shown to tolerate N-terminal 
fusion of DNA-binding domains that should constrain 
its activity to that specific region of the chromosome, 
whereas a molecular bridge can be employed with 
SB to fuse it to a DNA-targeting protein (171, 185). 

Alternatively, targeted gene delivery has been 
achieved using artificial DNA-recognizing proteins 
(reviewed in (186)). Zinc-finger nucleases (ZFNs) 
based on naturally occurring DNA-binding motifs can 
be engineered to recognize specific DNA sequences 
by linking together domains that bind specific 3 base 
pair sequences, allowing for a sequence of 9-18 bp 
to be identified that should be unique within the 
human genome (187-189). Similarly, transcription 
activator-like effector nucleases (TALENs), 
composed of 33-35 amino acid repeat domains, are 
able to recognize single base pairs to construct a 
DNA recognition sequence (190, 191). Finally, the 
recently discovered clustered regularly interspaced 
short palindromic repeats (CRISPR)/CRISPR-
associated (Cas) systems, which are normally 
used by bacteria as an adaptive immune system 
to specifically target phage DNA sequences, use 
RNA base pairing to DNA to target their cleavage 
activity (192-197). These targeted DNA integration 
strategies can approach gene correction in two ways. 
In addition to the traditional approach of introducing 
an intact transgene to a safe harbor locus, it is 
also possible to directly target to mutated gene, 
replacing it with the corrected sequence (198-200). 
This second approach may be superior in that it 
allows the corrected gene to utilize all of the natural 
regulatory elements of the gene, such as upstream 
enhancers that likely would not act on the transgene 
otherwise. However, it also requires specific design 
and validation of the targeting nuclease for each 
disease, whereas insertion into a safe harbor locus 
could employ the same nuclease while only changing 
the gene within the delivery vector.

Delivery of these DNA-targeting nucleases 
remains an issue, as with transposons. Thus, in the 
treatment of hemophilia B, AAV vectors have been 
used to deliver a ZFN in conjunction with the hF.IX 
transgene (201). This genome editing approach 
cleaved the endogenous F.IX gene after exon 1 (the 
excised portion encompasses 95% of mutations) 
and replaced the defective gene with the corrected 
sequence. Due to the limited packaging capacity of 
AAV, a dual-vector approach had to be employed in 
which two AAV vectors were injected simultaneously, 
one containing the transgene while the other 
encoded for the ZFN. Although this approach should 
lead to sustained expression of the ZFN, no adverse 
consequences (off-target mutations, excision of the 
transgene, etc.) were observed. This study was 
initially performed in neonatal mice. Due to their 
actively growing liver, neonates were anticipated 
to be capable of homology-directed repair in 
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hepatocytes rather than favoring non-homologous 
end joining as in quiescent cells (202, 203). However, 
further investigation determined that this genome 
editing approach is also effective in adult mice (204).

Finally, a novel approach for nonviral gene 
therapy involves the oral delivery of plasmid DNA 
coding for F9 encased in chitosan nanoparticles (205). 
In a mouse model of hemophilia B, this approach 
could induce circulating F.IX and correction of 
the coagulation defect, particularly when using 
hyperactive F.IX mutants (206). F.IX expression was 
restricted to the small intestine. However, despite the 
tolerogenicity of oral protein delivery, this oral DNA 
delivery approach was not able to prevent inhibitor 
formation following protein challenge or reverse pre-
existing inhibitors (206-208).

3.4. Optimization of factor IX
A more recent development in gene 

therapy for hemophilia B involves alterations to the 
F9 transgene itself rather than the delivery vector, a 
strategy that is applicable regardless of the delivery 
mechanism chosen. There are a couple potential 
strategies to achieve this. First, and already in 
use in the second hepatic clinical trial, is codon 
optimization (53, 64). This technique is based on the 
fact that, despite multiple trinucleotide sequences 
encoding for a single amino acid, certain codons 
are preferred over others depending on the host 
organism (mostly due to tRNA frequencies) (209). 
By making silent mutations within the transgene, 
it is thus possible to increase translation efficiency 
by optimizing codon usage for the target cell; this 
strategy also allows for other changes, such as the 
removal of negative regulatory cis-acting features, 
to enhance expression (210). Codon optimization 
of F.IX was reported to increase expression 3-4-fold 
compared with the unaltered sequence (63). More 
specific to F.IX, though, is the discovery of mutants 
with increased clotting activity. Alanine substitution 
mutation resulted in the artificial generation of 
F.IX-triple, which has ~10-fold greater specific 
activity than wild-type  F.IX (211, 212). Additionally, 
a naturally occurring F.IX mutation (R338L), 
termed F.IX Padua, was discovered that has 5-10-
fold higher activity (42, 213-215). Although these 
hyperactive F.IX variants can cause thrombosis at 
physiological expression levels, the fact that F.IX 
circulates in plasma in an inactive form makes them 
apparently safe at the expression levels achieved 
by gene therapy (~5-10% of normal). Interestingly, 
both variants possessed a mutation at amino acid 
338: alanine in F.IX-triple and leucine in F.IX Padua. 

Adding the leucine mutation to F.IX-triple resulted 
in an even better clotting factor, with activity ~15-
fold greater than normal F.IX (216). A clinical trial is 
currently underway using an AAV8 vector containing 
F.IX Padua (NCT01687608).

4. GENE THERAPIES FOR HEMOPHLIA A

In contrast to hemophilia B, gene therapy 
for hemophilia A has seen significantly less recent 
progress into the clinic, despite it being the more 
common of the two diseases. Although the vector 
platforms and advances within them that we have 
previously discussed for hemophilia B should also 
be applicable for hemophilia A, there are some 
additional factors that make endogenous expression 
of F.VIII more complicated than F.IX. We will 
subsequently examine some of these issues before 
discussing the progress that has been made with 
various vector systems towards a genetic therapy 
for hemophilia A.

4.1. Additional challenges in hemophilia A
The primary difficulties in gene therapy for 

hemophilia A stem from the fact that F.VIII is a much 
more complicated protein than F.IX. As opposed to 
the single domain of F.IX, F.VIII is produced as a 2351 
amino acid protein (encoded by a 9 kb cDNA) that, 
following secretion, is cleaved into a noncovalent 
heterodimer of two chains: the heavy chain 
(A1-A2-B domains) and the light chain (A3-C1-C2 
domains) (217). The size and complexity of F.VIII 
lead to several complications for gene therapy. 
First, a 9 kb transgene is too large for some vector 
systems, such as AAV. Additionally, the synthesis 
and secretion of F.VIII is notoriously inefficient. Using 
a comparable retroviral vector delivery system, the 
levels of F.VIII produced in vitro were about 2 orders 
of magnitude lower than F.IX (218). The inefficiency 
of F.VIII production results from several factors, 
including inefficient expression of the mRNA, 
misfolding and degradation of the translated protein, 
and retention in the endoplasmic reticulum via 
binding to ER chaperones such as immunoglobulin 
binding protein (BiP) (218-225).

The synthesis of F.VIII is further complicated 
by the interaction with von Willebrand factor (vWF), 
which is required for stabilization of F.VIII (226, 227). 
Studies in vitro have suggested that this stabilizing 
effect is enhanced when F.VIII and vWF are 
co-expressed in the same cell, rather than simply 
adding vWF to the media (219, 228). However, while 
vWF is believed to be produced in endothelial cells, 
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platelets, and megakaryocytes, the site of F.VIII 
synthesis is somewhat controversial (229-231). The 
liver has been implicated as a major site of F.VIII 
synthesis due to the ability of liver transplantation 
to cure hemophilia A in canine models as well as 
human patients (232-234). A number of studies have 
reported the presence of F.VIII mRNA and protein in 
hepatocytes in vivo, F.VIII production by hepatocytes 
cultured in vitro, and even the ability to restore clotting 
activity through hepatocyte transplantation (235-239). 
Conversely, others have reported F.VIII synthesis in 
liver sinusoidal endothelial cells (LSECs) but not 
hepatocytes, or even in both cell types (240-246). 
However, the preponderance of recent evidence 
implicates LSECs and by extension endothelial 
cells in other tissues as well, which may explain 
the observations of F.VIII production in extrahepatic 
vascularized tissues such as the kidney, spleen, and 
lung (247-250). In particular, a pair of recent studies 
using conditional knockout mice demonstrate a 
requirement for endothelial cells but not hepatocytes 
in F.VIII synthesis (251, 252). Thus, the combination 
of expression in an unnatural cell type and the lack 
of vWF synthesis in hepatocytes may explain the 
difficulties that have been encountered in inducing 
hepatic expression of F.VIII using techniques that 
have been successful with F.IX.

Although these findings suggest that 
endothelial cells might be a preferred target for F.VIII 
expression, moving gene expression away from 
hepatocytes potentially highlights complications from 
the immune response to the transgene that are not 
a factor following hepatic gene transfer. The strength 
of tolerance induction to F.IX following hepatic gene 
transfer for hemophilia B is proportional to transgene 
expression levels (4, 57). Tolerance to F.VIII following 
gene transfer is likely also mediated by a similar 
Treg-dependent mechanism (253). Thus, in addition 
to the difficulty in achieving therapeutic correction, 
the low expression levels of F.VIII following gene 
transfer also reveal challenges from the immune 
system. The endogenous levels of F.IX in plasma 
(5000  ng/mL) are already significantly higher than 
F.VIII (200 ng/mL). When this gap is further enhanced 
by low expression of F.VIII following hepatic gene 
transfer, hemophilia A mice can generate inhibitors 
against F.VIII or even be potentiated towards stronger 
immune responses to i.v. protein challenge than 
their untreated brethren (254-258). Furthermore, 
F.VIII seems to be naturally more immunogenic than 
F.IX, since hemophilia A patients develop inhibitors 
at about 5-6 times the rate of hemophilia B patients 
during recombinant protein therapy. Conversely, 

other studies have suggested that tolerance to F.VIII 
following hepatic gene transfer with LV may occur or 
persist in the absence of transgene expression (259). 
However, these mice were transduced as neonates; 
the protocol was not tolerogenic in older mice or with 
non-hepatic delivery routes.

While there are many similarities between 
hemophilia A and B, these additional difficulties in 
achieving therapeutic circulating expression and 
dealing with the immune response to F.VIII have 
complicated attempts to develop a gene therapy for 
the former. Keep these challenges in mind as we 
begin our discussion of the specific approaches used 
in gene therapy for hemophilia A, as surmounting 
them has required novel developments and led to 
some unique approaches that are not effective for 
hemophilia B.

4.2. Adeno-associated virus
Given the success that AAV has shown as 

a vector for the treatment of hemophilia B, it is logical 
that a number of approaches have also attempted 
to use it for hemophilia A. When considering AAV-
mediated delivery of F.VIII, the most pressing 
concern is the issue of packaging capacity—AAV 
vectors cannot package the entirety of the F8 gene. 
Two strategies to circumvent this limitation have been 
explored. Firstly, the heavy and light chains of F.VIII 
can be split into separate vectors, and co-injection of 
these AAVs can induce the expression of biologically 
active F.VIII in circulation (260). However, the utility 
of this approach is limited by the fact that the F.VIII 
light chain can interact with the heavy chain within 
the cell, significantly enhancing secretion (261, 262). 
Thus, only cells that are transduced by both vectors 
are likely to be involved in F.VIII production. 
Alternatively, the use of a shortened promoter 
sequence allows the packaging of B-domain-deleted 
(BDD) F.VIII within a single AAV particle (256, 263). 
BDD F.VIII, as the name implies, is produced 
by removing the B domain of the F8 gene. This 
alteration does not appear to have any adverse 
effects on procoagulant activity of the protein (264). 
As the B domain represents over a third of the F.VIII 
protein, its removal results in a cDNA that can be 
packaged in an AAV vector and induce sustained 
F.VIII expression in mice (256, 265). These findings 
have been replicated in studies in hemophilic dogs, 
(266, 267). Further studies have indicated that both 
approaches (BDD and dual-vector F.VIII) can be 
effective in canine models (268, 269). However, 
the doses needed to achieve therapeutic correction 
were significantly higher than the maximum dose 
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of AAV-F.IX administered to humans in clinical 
trials (52, 53, 270). Given the dose-dependence of 
the memory CD8+ T cell response to capsid that was 
observed in these trials, these vector doses may not 
be feasible in human subjects.

By enhancing the expression per AAV 
particle, it may be possible to reduce this dose. For 
instance, the use of a full-length rather than a truncated 
promoter is able to enhance F.VIII expression from 
AAV vectors (271). Although this required the use 
of an oversized AAV genome (5.7.5  kb), some 
studies have suggested it is possible to produce 
AAV vectors with an oversized genome, albeit at 
the cost of reduced packaging efficiency (272, 273). 
However, further investigation has suggested that 
these vectors do not actually package oversized 
genomes; rather, the transgene is fragmented 
between AAV vectors and complementation in the 
cell following transduction results in expression 
of these oversized transgenes (274-277). Thus, 
this approach would likely be subject to the same 
limitations as splitting the chains into separate 
vectors. That expression depends on transduction 
of a single cell by two separate AAV vectors 
significantly reduces expression levels below 
what they would otherwise be. Since proteasome 
inhibitors can increase transduction by AAV, the 
use of bortezomib can enhance expression of F.VIII 
using these oversized AAV vectors (74, 75, 278-280). 
Additionally, the use of a more strongly liver-specific 
promoter can enhance transgene expression 
while simultaneously reducing the propensity for 
inhibitor formation that can occur with a ubiquitous 
promoter (281). Similarly, neonatal administration of 
AAV avoided immune responses against F.VIII (282). 
Codon optimization of F.VIII significantly enhances 
transgene expression, as with F.IX (283). In HA 
mice, a dose used in humans (2 x 1012  vg/kg) of 
AAV containing codon-optimized F.VIII with a liver-
specific promoter induced supraphysiologic F.VIII 
expression (284). However, even codon-optimized 
F.VIII is subject to limitations imposed by the 
immune system. The immunogenicity of codon-
optimized F.VIII can vary depending on the genetic 
background of the treated hemophilic mice (257). 
In NHP, therapeutic expression was also induced; 
however, 3 out of 4 macaques developed inhibitors 
against F.VIII that were resolved with transient 
immunosuppression (284). Although AAV-mediated 
gene therapy for hemophilia A is progressing, the 
immune response to the transgene clearly still 
represents an additional barrier to transduction that 
is not fully understood yet.

4.3. Retrovirus and lentivirus
In addition to AAV, significant work 

has been done exploring the use of retroviral/
lentiviral vectors for the treatment of hemophilia 
A. As previously mentioned, these vectors can be 
employed for either ex vivo or in vivo gene transfer. 
The first proof of concept for in vivo gene therapy 
used a γ-retroviral vector to express F.VIII in 
hepatocytes of neonatal hemophilic mice (285). This 
approach was also successful in a canine model 
of hemophilia A (286). Though additional studies in 
mice and rabbits suggested that this approach might 
also be viable in adult subjects, in human patients, 
only a sporadic and transient rise in circulating F.VIII 
was detected (287-289). In addition to γ-retroviral 
vectors, LV has also been employed in the treatment 
of hemophilia A via in vivo gene transfer. Although 
F.VIII expression can be achieved with this 
approach, the therapeutic benefit was hampered by 
the subsequent development of anti-F.VIII inhibitors 
in immune competent mice (126, 290-292). Feline 
immunodeficiency virus (FIV)-based LV have also 
been employed for hemophilia A gene therapy; 
these studies have suggested that pseudotyping 
with the GP64 envelope protein from baculovirus 
may enhance liver tropism of LV (293-295). By 
combining this liver-tropic envelope protein with a 
liver-specific promoter and miR-142 regulation (to 
prevent transgene expression in APCs), it was finally 
possible to use LV to express F.VIII in hepatocytes 
without provoking an inhibitor response (296). 
Continuing the theme of enhanced immunogenicity 
of F.VIII relative to F.IX, the GP64 envelope 
protein was required to avoid inhibitor formation in 
this case, whereas the F.IX-expressing LV could 
achieve safe expression with a VSV-G envelope 
protein (133, 296). Although the miR-142-regulated 
LV expressing F.IX was tolerogenic, preventing 
antigen-specific immune responses, it remains to be 
seen whether these F.VIII-expressing vectors can 
also prevent inhibitor formation following challenge 
with recombinant protein (134, 135). Given the 
ability of AAV-F.VIII vectors to potentiate stronger 
immune responses in some strains of HA mice, this 
is a relevant concern if subsequent supplementary 
doses of F.VIII are required (257). Lastly, although 
LV vectors have been developed that target gene 
delivery to endothelial cells in vivo, the efficacy of 
this approach for F.VIII expression remains to be 
seen (297, 298).

Among the ex vivo gene therapies using LV, 
the most common site of expression is hematopoietic 
stem cells. Expression of F.VIII in hematopoietic 
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stem cells has been achieved as early as 1992 using 
γ-retroviral vectors; although this approach did not 
initially correct the bleeding phenotype in vivo, it did 
appear to partially tolerize mice to F.VIII (299, 300). 
Further optimizations allowed for therapeutic F.VIII 
expression in vivo, as well as enhanced efficacy of 
the tolerogenic potential of this treatment (301-304). 
Similarly, LV can be used to induce F.VIII expression 
in hematopoietic stem cells as well as human CD34+ 
cord blood cells (305-308). LV-mediated F.VIII 
expression in B cells also induces therapeutic F.VIII 
expression and immune hyporesponsiveness (309). 
An interesting development involves the expression 
of F.VIII specifically in platelets rather than all 
hematopoietic cells. Outside of endothelial cells, 
platelets are the other major source of vWF; platelet-
derived vWF is thought to be critical for on-demand 
coagulant activity, though it may also play a role in 
clotting hemostasis (310). Given the ability of vWF 
to enhance F.VIII secretion, producing F.VIII within 
platelets may allow for efficient on-demand release 
of F.VIII (311). A transgenic mouse expressing F.VIII 
under the control of a platelet-specific promoter 
demonstrated correction of the bleeding phenotype 
in the absence of circulating F.VIII (312). LV can 
be used to express F.VIII specifically in platelets, 
and this strategy also provides therapeutic benefit 
in the absence of circulating F.VIII (313, 314). 
This approach has also proven effective in canine 
models of hemophilia, and LV-transduced human 
cord blood cells correct the bleeding phenotype 
when transplanted into immunodeficient hemophilic 
mice (315, 316). A  surprising consequence of this 
approach to deliver F.VIII on-demand following a 
bleeding incident is the ability to bypass concerns of 
immunogenicity that have plagued other approaches. 
Mice treated with LV to induce F.VIII expression 
in platelets show bleeding correction even in the 
presence of high-titer inhibitory antibodies (317). 
Transduced mice more rapidly clear inhibitors 
compared to control animals, though they still had 
clinically relevant Bethesda titers (BU > 5) six months 
post-injection. Additionally, the consequences of 
challenge with recombinant protein remain to be 
seen. This is in contrast to HSC transduction with 
retroviral vectors and a less restrictive promoter, which 
robustly induced tolerance to the transgene (303). 
The efficacy of tolerance induction following HSC 
gene transfer appears to be directly correlated with 
the efficiency of engraftment/expression. The use of 
safer vectors, more restrictive promoters, or milder 
conditioning regimens seems to impede the ability 
to induce transgene-specific tolerance, perhaps 
suggesting that transgene expression in specific 

hematopoietic cell types is required for tolerance 
induction (17, 318). Moreover, other studies have 
suggested that the ability of platelet-derived F.VIII to 
bypass inhibitors is improved but limited relative to 
plasma F.VIII (319). The efficacy of platelet-derived 
F.VIII can vary depending on the bleeding model 
used, so further preclinical studies will be required 
to validate this approach for use in humans (320).

In addition to HSCs, mesenchymal stem 
cells (MSCs) can be transduced by retroviruses to 
produce F.VIII (321, 322). In mice, MSCs transduced 
via LV to express F.VIII were not able to mediate 
systemic correction; however, following intra-articular 
injection, they were able to reduce bleeding following 
joint capsular needle puncture injury (323). When 
LV-transduced MSCs were injected intraperitoneally 
into hemophilic sheep, however, they demonstrated 
widespread engraftment in organs and joints and 
were able to prevent further spontaneous bleeding 
as well as resolve pre-existing joint damage (324). In 
addition to hematopoietic approaches, LV has also 
been used for ex vivo transduction of endothelial 
cells to produce F.VIII. Although this approach 
avoids the need for myeloablative conditioning, 
which can have deleterious side effects, achieving 
persistent engraftment of endothelial progenitors 
has been challenging (325). Recent developments 
in cell sheet transplantation technology have shown 
promise for achieving sustained F.VIII expression 
from transduced endothelial cells (326). However, 
in a canine model, it was recently suggested that 
the use of an implantation matrix may not always be 
desirable. Omental implantation of F.VIII-expressing 
endothelial cells transduced with LV in a fibrin matrix 
induced an inhibitor response in the presence of 
sustained F.VIII expression, possibly due to the 
induction of IL-6 and MCP-1 by the thrombin in the 
matrix (327). Although anti-F.VIII IgG2 antibodies were 
detected when cells were implanted in the absence 
of this matrix, they did not possess inhibitory activity. 
Finally, LV has recently been used to transduce 
induced pluripotent stem (iPS) cells. While these 
iPS cells, which are transcriptionally reprogrammed 
from adult cells, show some promise, there are still a 
number of barriers including oncogenicity, genomic 
instability, epigenetic memory, and the impact of 
propagation in culture that caution against the use 
of these cells (328). In nude mice, LV-transduced 
iPS cells were capable of teratoma formation and 
the secretion of physiologically relevant levels of 
functional F.VIII (329). The impact of the immune 
system on this approach, however, is still unknown.



Gene therapy for hemophilia

	 572� © 1996-2015

4.4. Integrases and non-viral approaches
Research in nonviral gene therapy for 

hemophilia A has largely mirrored the approaches 
used for hemophilia B. In vivo hydrodynamic 
injection of F.VIII-expressing plasmid can induce 
transgene expression; however, unlike with F.IX, 
this approach is limited by the development of 
anti-F.VIII inhibitors (254). Subsequent studies with 
the addition of immunomodulatory therapies have 
prevented inhibitor formation and induced F.VIII-
specific tolerance mediated by Tregs (255, 330, 331). 
Hydrodynamic injection in conjunction with RNA 
trans-splicing (splicing therapeutic RNA into abundant 
albumin mRNA) has also been explored in the 
treatment of hemophilia A (332, 333). Similarly, 
sustained gene transfer using the Sleeping Beauty 
transposon is limited by an immune response to 
F.VIII, unless tolerance is induced at the neonatal 
stage (334, 335). Interestingly, in adult mice, using 
SB to express both F.VIII and the immunosuppressive 
enzyme indoleamine 2,3-dioxygenase (IDO) 
induced sustained F.VIII expression and reduced 
T cell infiltration in the liver (336). In addition to 
hydrodynamic injection, F.VIII-expressing plasmids 
have also been targeted to specific cell types using 
nanocapsules. Targeting SB-mediated transduction 
of F.VIII to liver sinusoidal endothelial cells (LSECs) 
of adult HA mice using hyaluronan nanocapsules 
induced sustained correction of clotting 
function (337). An alternative approach for in vivo 
gene therapy involves the oral delivery of plasmid 
DNA encapsulated in chitosan nanoparticles (205). 
This approach provides phenotypic correction of 
hemophilic mice, and repeated delivery provides 
sustained correction in the absence of an immune 
response to F.VIII (338, 339). In both of these 
nanoparticle-mediated approaches, mice were not 
challenged with exogenous F.VIII to verify if they 
were tolerized to F.VIII, or if they merely failed to 
mount an immune response to the endogenously 
produced protein.

Nonviral gene transfer has also been 
employed ex vivo for the treatment of hemophilia 
A. In human patients, this ex vivo approach was 
used to transduce autologous dermal fibroblasts 
and select for F.VIII-producing cells (340). Delivery 
of these genetically modified fibroblasts into 
hemophilic patients provided a slight decrease in 
the number of bleeding events, and no inhibitor 
formation was detected. However, these clinical 
improvements only lasted for about 10  months, 
likely due to loss of the transduced cells. Given 
these promising results, subsequent studies have 

focused on finding a superior cell type for ex vivo 
transduction, both in terms of secretion capacity as 
well as persistence. In particular, blood outgrowth 
endothelial cells (BOECs) have shown promise for 
this approach. These cells, derived from circulating 
endothelial cells in peripheral blood, display many 
of the characteristics of endothelial cells, including 
vWF expression (341). Additionally, BOECs grow 
extremely well in culture; after 65  days, they can 
be expanded from about 20  cells to 1019  cells 
(341). Following gene transfer, selection, and 
injection into mice, genetically modified BOECs 
induced therapeutic or even supraphysiologic 
circulating levels of hF.VIII, depending on the cell 
dose (342). These cells maintained an endothelial 
phenotype and accumulated primarily in spleen and 
bone marrow. Further studies have also achieved 
persistent seeding of liver and lung in addition 
to the spleen and bone marrow (343). Other 
approaches have involved nonviral modification of 
hepatocytes and embryonic stem cells (344, 345). 
F.VIII-expressing endothelial cells derived from iPS 
cells have also shown promise for the treatment 
of hemophilia A (346). iPS cells have also been 
modified with human artificial chromosomes (HACs), 
constructs that mimic a human chromosome. HACs 
are maintained separately from the host genome 
(minimizing the risk of insertional mutagenesis), 
persist through cell divisions due to their ability to 
bind centrosomal proteins, and allow for delivery of 
large constructs that can mimic physiological gene 
regulation (347-350). Megakaryocytes/platelets 
derived from iPS cells have been generated that 
produce F.VIII following transduction with a HAC, 
though their in vivo efficacy has not yet been 
demonstrated (351).

4.5. Optimization of factor VIII
Finally, the optimization of the F.VIII 

transgene represents a vector-agnostic approach to 
improving gene therapy. As previously mentioned, 
codon optimization of F.VIII has been shown to 
enhance transgene expression (283). However, 
the inefficient secretion of F.VIII provides additional 
routes for transgene optimization. Interestingly, 
porcine F.VIII is secreted by cells more efficiently 
than human F.VIII (352-354). HSCs expressing 
porcine F.VIII are able to correct the bleeding 
phenotype following implantation into hemophilic 
mice (303, 304, 355). Further studies have 
incorporated porcine sequences into hF.VIII to 
enhance secretion of the clotting factor while still 
maintaining a largely human protein; this hybrid 
protein can also mediate clotting activity in vivo 
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following implantation of transduced HSCs (356-358). 
Another interesting aspect of porcine F.VIII is 
its differential immunogenicity relative to hF.VIII. 
Although the magnitude of the response to both 
proteins is largely comparable, antibody responses 
preferentially target different epitopes in porcine or 
human F.VIII, and some reports have suggested 
that porcine F.VIII may be able to bypass inhibitors 
directed against hF.VIII (359-362). Similarly, canine 
F.VIII is more stable and exhibits greater specific 
activity than hF.VIII (363). Incorporation of a point 
mutation (R1645H) from canine F.VIII into hF.VIII 
conferred many of these properties to the new 
transgene, and expression of this altered F.VIII via 
an AAV vector was more effective and comparably 
immunogenic to BDD-F.VIII (364). Other strategies 
for enhancing secretion include the incorporation of 
a fragment of the light chain into the heavy chain 
(whose secretion is the rate limiting step) or the use 
of chemical chaperones (365, 366). Alternatively, 
one can simply bypass F.VIII altogether. Expression 
of activated factor VIIa in hepatocytes or platelets 
has been shown to provide bleeding correction in 
the absence of thrombotic events (367, 368). F.IX 
variants that do not require F.VIII, or an antibody 
that mimics F.VIII’s role in the intrinsic factor Xase 
by bringing F.IX and F.X into close proximity are also 
able to provide therapeutic benefit (369, 370). By 
completely avoiding F.VIII, these strategies sidestep 
complications posed by the immune system. In 
addition to preventing the risks associated with a 
de novo inhibitor response to the gene therapy, 
they would also be appropriate for use in patients 
with preexisting inhibitors without being concerned 
with tolerance induction. However, there are also 
potential risks for thrombosis when bypassing the 
natural regulation of the coagulation cascade, and 
these mechanisms will likely need thorough safety 
studies before being applied in the clinic.

5. CONCLUSION

Clearly, the field of gene therapy for 
hemophilia is being thoroughly explored. Given its 
recent clinical success, AAV-mediated hepatic gene 
transfer is likely to be the primary direction going 
forward for hemophilia B. However, there are still a 
number of problems that limit the broad applicability 
of the current approach, particularly the current 
immunosuppressive regimen and pre-existing 
neutralizing antibodies. Perhaps these barriers to 
transduction will be fixed with more specific therapies 
or a combinatorial approach of several techniques to 
bypass NAB. Alternatively, a different approach that 

does not have to deal with these anti-vector immune 
responses, such as an ex vivo or nonviral technique, 
might become a more effective way to administer 
gene therapy to the broadest base of patients. For 
hemophilia A, while AAV-mediated gene therapy 
has potential, a number of limitations reduce its 
desirability, including packaging capacity and 
inefficient expression. While a number of transgene 
modifications have increased the expression levels, 
the vector doses required to achieve corrective F.VIII 
expression remain significantly higher than with 
F.IX. These expression limitations lead to further 
concerns about immune responses both to the 
capsid and, if expression levels are not sufficient, 
the transgene. As such, ex vivo gene transfer may 
be more effective for hemophilia A due to its ability 
to enhance expression through cellular division. 
Specifically, gene transfer to platelets is a promising 
example of this technique. This approach appears 
to bypass barriers posed by the immune system, as 
the local expression and release of F.VIII can correct 
the bleeding phenotype in the presence of inhibitors. 
This technique, too, has its drawbacks, particularly in 
terms of delivery. Current techniques involve the use 
of integrating viral vectors, for which concerns about 
oncogenicity have not been fully addressed. Thus, 
while a number of promising approaches for gene 
therapy for hemophilia have been elucidated, there 
are clearly numerous problems that still need to be 
addressed to develop approved gene therapies for 
both hemophilia A and B for use in humans.
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