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1. ABSTRACT

Most of the Parkinson disease (PD) 
linked genes are also associated with cancers. In 
particular, phosphatase and tensin homologue-
induced kinase 1 (PINK1) and Parkin, both 
of which are involved in recessively inherited 
familial forms of PD linked to mitochondrial 
dysfunction, appear to be abnormally expressed 
in cancers. Functional studies have revealed 
that PINK1 recruits Parkin to mitochondria to 
initiate mitophagy, an important autophagic 
quality control mechanism that rids the cell of 
damaged mitochondria. Although PD and cancer 
are obviously disparate human disorders, there 
is an evidence for low cancer rates in patients 
with PD. The relationship between cancer rates 
and PD might be related to the involvement of 
common pathways in both diseases. This paper 
provides a concise overview on the cellular 
functions of the PINK1 and Parkin.

2. INTRODUCTION

Most of the Parkinson disease (PD) 
linked genes are also associated with cancers. In 
addition, there are evidences for low cancer rates 
in patients with PD (1). This might be related to the 
involvement of common genes in both diseases (1). 
For example, PINK1 and Parkin, both of which 
are involved in familial forms of PD, appear to be 
abnormally expressed in cancers (2, 3). Inhibition 
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of PINK1 results in an elevation of reactive oxygen 
species and the accumulation of mitochondrial 
oxidative lesions. PINK1 has been shown to protect 
against cell death induced by proteasome inhibition 
and oxidative damage (4, 5). The oxidative stress 
is caused by an imbalance between the production 
of ROS and the ability of cells to neutralize their 
reactive intermediates. PINK1and Parkin may 
play a pivotal role in a common mitochondrial 
homeostasis. Mitochondria have been recognized 
as an essential organelle in the establishment of 
tumor characteristics, proliferative capacity, and 
adaptation to cellular environment. Interestingly, 
Parkin, which encodes an ubiquitin ligase, plays a 
role in cancer as a putative tumor suppressor (6, 7). 
Mutations in Parkin gene were originally identified as 
a genetic contributor of PD, however, they had also 
been reported in several types of cancer. In addition, 
Parkin gene is frequently targeted by deletion and 
inactivation in human malignant tumors (8). It is now 
clear that Parkin gene alterations are not restricted 
to familial forms of PD but also occur frequently 
in a wide variety of malignancies which include 
glioblastoma and lung cancer (9). Parkinson disease 
and cancer are obviously disparate human disorders. 
The relationship between cancer rates and PD might 
be related to the involvement of common pathways in 
both diseases. The overlapping of genes involved in 
PD and cancer would also imply a shared pathogenic 
pathway. Unraveling the link between PD and cancer 
may open a therapeutic window for both diseases. 
Therefore, PINK1 and Parkin represent a potential 
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therapeutic target for the treatment of cancers. 
However, the mechanism underlying the differing 
cellular fates of each disease remains unclear.

3. EXPRESSION AND CHARACTERISTICS 
OF PINK1 AND PARKIN 

PINK1(phosphatase and tensin homolog 
(PTEN)-induced kinase 1) mRNA is expressed 
ubiquitously (10), which encodes a 581 amino acid 
putative mitochondrial serine/threonine kinase 
(Figure 1). An N-terminal mitochondrial-targeting 
signal domain is sufficient for mitochondrial 
INTRODUCTION of PINK1 (11). PINK1 is then 
predominantly found in the mitochondrial inner 
membrane and inter-membrane space, although 
a fraction of PINK1 exists in the mitochondrial 
outer membrane with the kinase domain facing 
the cytosol (12). PINK1 can be processed into at 
least two shorter forms, which are distributed in 
both mitochondrial and cytosolic compartments. 
The cytoplasmic localization of PINK1 may be 
affected by N-terminal cleavage. The cytoplasmic 
PINK1 is quickly degraded by proteasome (13). 
Adding to the variety of cell-survival functions of 
PINK1, it has been shown to phosphorylate the 
mitochondrial heat shock protein 75 (Hsp75), also 
known as tumor necrosis factor receptor-associated 
protein 1 (TRAP1). The TRAP1 is increasing for 
neuronal survival against oxidative stress or heat 
shock by preventing the release of cytochrome-c 
from mitochondria (14). Consequently, PINK1 
protects cells from apoptosis in response to 
oxidative stress such as H2O2 and suppresses 
cytochrome-c release. The TRAP1 may be a direct 
substrate for PINK1, which localize primarily in the 
mitochondrial matrix and at extra-mitochondrial 
sites. The mitochondrial serine protease HtrA2 

has also been identified to be regulated by 
PINK1 (15). The HtrA2 is phosphorylated and 
physically interacts with PINK1 in relation to a 
signaling pathway (15). HtrA2 is released from 
the inter-membrane space of mitochondria during 
apoptosis to the cytosol (16). Deletion of HtrA2 
gene causes mitochondrial dysfunction leading to a 
neurodegenerative disorder like PD (15). Whether 
HtrA2 is a direct PINK1 substrate is unclear, 
and it is possible that differences in cell viability 
resulting from PINK1 inactivation may affect HtrA2 
through other kinase such as p38 MAPK or JNK. 
PINK1 may also interact with Beclin1. Full-length 
PINK1 interacts with the Beclin1 (17), a key pro-
autophagic protein implicated in the pathogenesis 
of Alzheimer’s and Huntington’s diseases, 
which enhance starvation-induced autophagy. 
Overexpression of PINK1 protects neuronal cells 
against various stresses, while down-regulation 
of PINK1 sensitizes the cells to various stresses. 
PINK1 enhances phosphorylation of AKT at Ser-
473, and the AKT phosphorylation may be due 
to activation of mammalian target of rapamycin 
complex 2 (mTORC2) by PINK1 (18).

Mutations in the Parkin gene (PARK2) 
are originally identified as a genetic contributor of 
autosomal recessive PD (19). The Parkin gene is 
located on chromosome 6q25.2.-6q27 (19, 20). 
The gene product Parkin is a 52 kDa protein with 
an N-terminal ubiquitin-like (Ubl) domain followed 
by a 60 amino acids linker and four zinc-finger 
domains (19). Parkin protein is an E2-dependent E3 
ubiquitin ligase that binds UbcH7 and UbcH8 (19, 21). 
The E3 ubiquitin ligase is an enzyme that catalyzes 
the transfer of ubiquitin, a small 76 amino acids 
protein, from an E2 ubiquitin-conjugating enzyme 
to a protein substrate. The last three zinc-finger 

Figure 1. Schematic illustration indicating the domain structures of PINK1 (upper) and Parkin (lower) proteins. The consensual important 
domain structures for each protein are depicted. MTD= mitochondrial targeting domain, UbH= Ubiquitin homology domain, RING1, RING2= 
RING finger domain, IBR= In Between Ring fingers
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domains form an RING1 and RING2 (RBR) module 
(Figure 1), which is also found in many other E3 
ubiquitin ligases (21). Parkin has been implicated in 
various cellular processes for which many substrates 
have been suggested (22, 23). Importantly, Parkin is 
recruited to depolarized mitochondria where it plays 
a role in the clearance of proteins damaged as a 
result of oxidation by autophagy (mitophagy) (24), 
as well as in the metabolism of dopamine (25). 
Parkin controls dopamine utilization in midbrain 
dopaminergic neurons (25). Regulation of Parkin 
is through post- translational modifications. In 
particular, phosphorylation plays a key role. PINK1 
kinase activity is required for the recruitment of 
Parkin to depolarized mitochondria and for the 
activation of its ubiquitin-ligase activity (26). PINK1 
phosphorylates Ser65 in the Ubl domain of Parkin, 
which increases its ubiquitin ligase activity (27). 
So, PINK1 and Parkin are in close proximity on 
depolarized mitochondria (28, 29). Parkin levels may 
be regulated by auto-ubiquitination, and its coupling 
to the de-ubiquitinating enzyme may regulate its 
stability in cells (30, 31). 

4. PINK1 AND PARKIN INVOLVED IN 
MITOCHONDRIAL HEALTH 

Mitochondria play an important role in 
cellular metabolic processes by serving as generators 
of ATP and apoptotic signaling pathways. Cells 
rearrange their mitochondrial populations according 
to local ATP needs. Molecular genetics has linked 
mitochondrial dysfunction to the pathogenesis of PD 
and cancers by the discovery of several inherited 
mutations in the gene products that associate with 
mitochondria (32). Prolonged ROS exposure can 
cause mitochondrial dysfunction, because proteins 
involved in oxidative phosphorylation and the 
electron transport chain are sensitive to the oxidative 
stress (33, 34). PINK1 has been reported to protect 
against oxidative stress by phosphorylating a 
mitochondrial chaperone TRAP1/ Hsp75 (14). 
PINK1 co-localizes and interacts with the TRAP1 
in the mitochondrial intermembrane space. Upon 
phosphorylation, the TRAP1 prevents cytochrome c 
release. In the absence of TRAP1, over-expression 
of wild type PINK1 is unable to protect cells against 
oxidative stress mediated apoptosis, indicating 
that TRAP1 is essential downstream target for the 
pro-survival effects of PINK1 (14). The ability of 
PINK1 to phosphorylate TRAP1 is also impaired 
by kinase inactivating mutations of PINK1. PINK1 
dependent phosphorylation of HtrA2 enhances 
its protease activity leading to enhanced survival 

against oxidative stress (15, 35). An interaction 
of PINK1 with HtrA2 indicating the possibility of 
common prosurvival pathway has been shown in 
drosophila models (36). However, the HtrA2 is not 
essential for all the protective functions of PINK1 in 
Drosophila (36, 37). Another mitochondrial protease 
rhomboid-7 has been implicated in post-translational 
regulation of both PINK1 and HtrA2 (38, 39). 
A rhomboid-like serine protease, PARL, can affect 
the proteolytic processing of the PINK1 (40). Normal 
PINK1 localization and stability requires catalytic 
activity of the PARL. The PARL cleaves human 
PINK1 within its conserved membrane anchor (41). 
Upon depolarization of the mitochondrial membrane, 
the import of PINK1 and PARL-catalyzed processing 
is blocked, leading to accumulation of the PINK1 
precursor (41). PARL-catalyzed removal of the 
PINK1 signal sequence in the import pathway acts 
as a cellular checkpoint for mitochondrial integrity. 
Interestingly, PD-causing mutations decrease the 
processing of PINK1 by PARL (42). PARL may 
mediate differential cleavage of PINK1 depending 
on the health status of mitochondria.

The neuroprotective activities of PINK1 
depend on its mitochondrial localization. A protein 
kinase MARK2 phosphorylates and activates the 
PINK1 (43). Mutation of the Thr-313 in PINK1 shows 
toxic effects with abnormal mitochondrial distribution 
in neurons. Both MARK2 and PINK1 have been 
found to colocalize with mitochondria and regulate 
their transport. So, MARK2 may be an upstream 
regulator of PINK1 and regulate the mitochondrial 
trafficking. Mature PINK1 is free to be released into 
the cytosol or the mitochondrial inter membrane 
space. Targeting of this precursor to the outer 
mitochondrial membrane has been shown to trigger 
the mitophagy (44) (Figure 2). PINK1 silencing also 
results in mitochondrial respiratory dysfunction. 
Cells lacking PINK1 function have increased basal 
cytoplasmic and mitochondrial ROS production (45). 
It has been shown that PINK1 knockout mice exhibit 
impaired mitochondrial respiration and decreased 
activity of oxidative phosphorylation (46). Loss of 
PINK1 leads to severe alterations in mitochondrial 
homeostasis by the increased mitochondrial 
ROS inducing an increase in mitophagy (47). In 
addition, the impaired mitochondrial respiration can 
be worsened by exposure of the mitochondria to 
heat shock (46). Thus, PINK1 has a pivotal role in 
mitochondrial quality control via the mitochondrial 
stabilization, phosphorylation of chaperones. Failure 
of mitochondrial quality control eventually contributes 
to the cell death.
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PARL deficiency impairs Parkin recruitment 
to mitochondria, suggesting PINK1 processing and 
localization is essential in determining its interaction 
with Parkin (48). With mitochondrial damage, PINK1 
facilitates aggregation of depolarized mitochondria. 
When mitochondrial import is compromised 
by depolarization, PINK1 accumulates on the 
mitochondrial surface where it recruits Parkin from 
the cytosol, which in turn mediates the mitophagic 
destruction of mitochondria in order to initiate 
mitophagy, an autophagic control mechanism 
that clears damaged mitochondria. Transient 
overexpression of Parkin further augments 
mitochondrial autophagy even in PINK1 deficient 
cells resulting in cytoprotection (49). Parkin can 
be phosphorylated by PINK1 in its RING finger 
domain, which may promote translocation of Parkin 
to mitochondria (50). In healthy mitochondria, 
PINK1 is rapidly degraded in a process involving 
both mitochondrial proteases and the proteasome. 
Parkin expression is clearly reduced in the absence 
of PINK1, and loss of Parkin function is sufficient 
to induce the abnormal mitochondrial morphology. 
Therefore, the importance is reflected by the 
neuroprotective properties of Parkin in counteracting 
oxidative stress and improvement of mitochondrial 
functioning. Moreover, activation of Parkin upon 

mitochondrial membrane depolarization induces its 
degradation through the proteasome, suggesting 
that the auto-inhibition of Parkin may protect itself 
from ubiquitin-mediated degradation (51).

5. PINK1 AND PARKIN IN CANCER

Mitochondrial dysfunction has been 
implicated in numerous human conditions including 
cancer (52). Mitochondria go through a series of 
morphological and functional alterations during 
the carcinogenesis. Cellular transformation is a 
multistep process that may require an undetermined 
sequence of genetic alterations and changes in 
intracellular signaling (53). The metabolic profile 
in transformed cells is altered to accommodate 
their proliferation, confer resistance to cell death, 
or facilitate metastasis. The mechanisms of the 
transformation may provide targets for anticancer 
treatment at several levels. Interestingly, many 
alkaloids exert their anticancer activities affecting 
some functions of the cancer-mitochondria via 
inducing mitochondria-dependent apoptosis and 
autophagy and inhibiting mitochondrial metabolic 
pathways (54, 55). ROS generate DNA damage of 
which pathological consequence including cancer 
is well established. In addition to the notion that 

Figure 2. A hypothetical schematic representation and overview of PINK1 and Parkin regulatory pathway for mitophagy. Under healthy state, 
PINK1 is degraded within mitochondria. This may be inhibited by mitochondrial damage, resulting in PINK1 and Parkin accumulation in the 
outer membrane of mitochondria. Parkin is supposed to ubiquitinate unidentified substrate (black circle), resulting in the induction of the 
mitophagy. Note that some critical pathways have been omitted for clarity. OMM: outer mitochondrial membrane; IMM: inner mitochondrial 
membrane
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oxidative DNA damage causes transformation 
of cells, recent studies have revealed that 
mitochondrial deficiencies alter the cell growth after 
the cell transformation (56, 57).

PINK1 has been shown to be down-
regulated in the absence of PTEN (58). Inhibition 
of the PI3K/AKT pathway and the up-regulation 
of PINK1 by PTEN suggest the involvement of 
PINK1 in both cancer and PD. The PTEN gene is a 
tumor suppressor gene encoding a multifunctional 
phosphatase, which plays an important role in 
inhibiting the PI3K/AKT pathway and mutations in 
PTEN have been found in many human cancers. 
Consistently, PINK1 has been identified as an 
essential element for survival and important as a 
potential cancer drug target (59). Therefore, PINK1 
appears to be a novel candidate as a mediator of 
the PTEN growth-suppressive signaling pathway. 
In contrast, decreases in Parkin expression have 
an essential role in tumorigenesis suggesting that 
Parkin is a putative tumor suppressor. In a variety 
of cancers, alternative transcripts were found due to 
gene deletion and duplication in Parkin gene (60). 
Abnormal methylation in Parkin gene results in a 
decreased expression of Parkin. Overexpression 
of Parkin represses cell growth, which results 
in the degradation of ubiquitin-mediated cyclin 

E and subsequent cell cycle arrest (Figure 3). 
Accumulation of the Cyclin E, a cell-cycle related 
G1 cyclin whose accumulation is associated with 
cancer development, is therefore associated with 
Parkin deficiency in several proliferative cancer 
cell lines (61). Parkin functions as an E3 ubiquitin 
ligase associated with the ubiquitin-proteasome 
system, and one of its substrates is cyclin E (61). 
Simultaneous mutation in both Parkin and APC 
genes accelerates colorectal carcinogenesis (62). 
Curiously, the Parkin exhibits an E3-independent 
function in the control of gene transcription. Among 
the genes regulated by the Parkin is TP53, a well-
established tumor suppressor, whose expression 
is repressed by functional Parkin (63). Other 
genes whose expression is also regulated by 
Parkin are cyclin-dependent kinase 6 (CDK6) 
and follistatin, whose expression is thought to 
promote carcinogenesis. Parkin reduces cell 
growth by inducing expression of CDK6 (64). 
Ectopic parkin expression in parkin-deficient breast 
cancer cells mitigates their proliferation rate (64). 
In breast cancer, Parkin stabilizes microtubules 
and increases susceptibility to anti-cancer agents. 
Parkin expression also repairs susceptibility to 
TNFα-induced cell death. This process is mediated 
by decreased expression of survivin and the 
activation of caspase -3, -7, -8, -9, and PARP (65) 

Figure 3. Implication of Parkin for cell cycle arrest and apoptosis. A schematic model showing putative points of parkin involvement is shown. 
Note that some critical molecules have been omitted for clarity.
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(Figure 3). Restoration of Parkin expression in 
the Parkin-deficient HeLa cell line restored 
susceptibility to TNFα-induced cell death. It has 
been reported that Parkin dysfunction is relevant 
to glioma-development and that restoration of 
functional Parkin expression in glioma cells 
reduces their growth via a mechanism that involves 
Parkin-mediated down-regulation of the cyclin E 
and the AKT signaling (8). Restoration of Parkin 
expression in Parkin-deficient cancer cells results 
in a marked decrease in their proliferation rate. 
Furthermore, Parkin-null mice exhibit a tendency 
to develop cancer (8). The Parkin pathway 
activation is predictive of survival prognosis of their 
patients (8). Accordingly, Parkin may function as a 
tumor suppressor.

6. PERSPECTIVE

PINK1 is a mitochondrial kinase 
that promotes cell survival, particularly under 
conditions of oxidative stress. Although the 
precise physiological substrate of PINK1 is not 
fully resolved, it is clear that the kinase activity 
is important for the function in the mitochondrial 
quality control monitoring degradation of damaged 
mitochondrial proteins. The mechanisms by which 
wild type PINK1 and Parkin promote interconnected 
mitochondrial networks may involve different steps 
in mitochondrial quality control. The involvement of 
PINK1 and Parkin in mitochondrial dysfunction has 
been intensively investigated in cancer. PINK1 and 
Parkin seem to exert different effects in different 
types of cancers, and therefore, the mechanisms 
by which PINK1 and Parkin suppress tumorigenesis 
diverge. Further studies are needed to determine 
the exact mechanisms by which PINK1 and Parkin 
function in carcinogenesis to understand the precise 
mitochondrial protective roles of PINK1 and Parkin 
in terms of their relationship to each other for roles 
in carcinogenesis.
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Abbreviations: Hsp75: heat shock protein 75, 
HtrA2: high temperature requirement protein 
A2, JNK: c-jun N-terminal kinase, p38 MAPK: 
p38 mitogen-activated protein kinase, MARK2: 
Microtubule affinity-regulating kinase 2, 
mTORC2: mammalian target of rapamycin 
complex 2, PARL: presenilin-associated 
rhomboid-like, PD: Parkinson disease,  PINK1: 
PTEN-induced kinase-1, phosphatase and 
tensin homologue-induced kinase 1,  PTEN: 
phosphatase and tensin homolog, TRAP1: 
tumor necrosis factor receptor-associated 
protein-1,  Ubl: ubiquitin-like 
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