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1. ABSTRACT

E3 ubiquitin ligase Skp2 attaches 
ubiquitin to its target proteins and marks them for 
destruction by the 26S proteasome. This mechanism 
participates in a number of important cellular 
processes such as cell proliferation, DNA replication, 
V(D)J recombination, gene transcription, cellular 
metabolism and senescence. Skp2 is oncogenic. 
It is overexpressed in various solid tumors and 
hematological malignancies. Due to the antagonistic 
role Skp2 plays against p27, Skp2 overexpression 
is frequently associated with down-regulation of 
p27. Importantly, Skp2 overexpression in cancer 
cells is prognostic of cancer progression and overall 
survival. Recent studies have shown that Skp2 
suppression might be an excellent strategy to inhibit 
tumorigenesis in tumors in which tumor suppressor 
genes such as VHL, RB or TP53 are mutated. In 
this review, we also summarize early efforts in the 
development of Skp2 inhibitors. The implications 
of continued, long-term Skp2 suppression are 
discussed.
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2. INTRODUCTION

Polyubiquitin proteasome system regulates 
multiple cellular processes through targeted protein 
degradation(1). The polyubiquitin system adds 
ubiquitin to proteins to be degraded through three 
steps mediated by three classes of enzymes. First, 
the ubiquitin-activating enzyme (E1), activates the 
ubiquitin carboxyl terminal glycine residue in an ATP 
dependent fashion, forms a linkage via a thiolester 
bond with the ubiquitin. The activated ubiquitin is 
then passed on to the ubiquitin-conjugating enzyme 
(E2), and finally the ubiquitin-ligase (E3) attaches 
the ubiquitin molecule to the lysine residue of the 
target protein and joins the ubiquitin with the target 
protein with an isopeptide bond. These steps are 
repeated multiple times before the polyubiquitinated 
target protein is funneled to the 26 S proteasome 
for destruction(2). During this process, the substrate 
specificity is determined by the E3 ubiquitin ligase. 

Classification of E3 ubiquitin ligases is 
based on whether they possess the homologous 
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E6 associated protein carboxyl terminus (HECT) 
domain or Really Interesting New Finger (RING) 
domain that are involved in adding ubiquitin to the 
target protein(3, 4). Polyubiquitin E3 ligases usually 
function in a multi-component protein complex. Two 
well-known RING finger type E3 ubiquitin ligase 
complexes are Anaphase-promoting-complex 
(APC) (5) and Skp1 Cullin F-box (SCF) protein 
complex (Skp for S phase kinase associated 
protein) (6). Whereas APC/C is essential for mitosis, 
the SCF complex is involved in G1/S cell cycle 
progression, transcription, DNA replication, DNA 
repair, B and T cell development and apoptosis 
(see below). Most of these are intimately related to 
tumorigenesis and tumor progression.

Within the SCF family of E3 ubiquitin 
ligases, Cullin serves as a rigid scaffold recognizing 
Rbx1 (RING finger domain protein) and F box 
proteins. Skp1 in the complex is the adaptor protein 
that links Rbx1 to the F box proteins that determine 
substrate specificity. The F-box proteins control 
substrate recognition/recruitment through distinct 
protein-protein interaction. Therefore, the function 
of the SCF complex depends on the F box protein 
serving as the substrate recognition component. So 
far, 69 proteins are found to share the F-box motif, 
which is a 40 amino acid motif within the protein and 
are classified as Fbw, Fbl and Fbo subtypes. The 
F-box of Skp2 is of Fbw type and it contains a WD40 
domain (7). 

Since the revelation of its role in 
carcinogenesis, Skp2 has been found overexpressed 
in various cancer types. Overexpression of Skp2 
predicts poor outcome, resistance to chemotherapy 
and radiation therapy, disease recurrence. 
Lately, Skp2 was found to participating in cellular 
senescence, metabolism, maintaining cancer 
cell stemness and autophagy activation that are 
deregulated in cancer (see below). Here we review 
the role of Skp2 in important cellular processes, 
its target proteins, studies of skp2 expression in 
various types of malignancies, and the implications 
of several recent studies in cancer therapy and 
prevention. Finally, we will review Skp2 inhibitors still 
in the early stages of drug development.

3. SKP2 CONTROL OVER IMPORTANT 
CELLULAR PROCESSES RELATED TO 
ONCOGENESIS 

Skp2 was first cloned during characterization 
of a kinase complex essential for S phase entry in 

1995  (8). Skp2 mRNA level was found the highest 
during S phase and there was increased abundance 
in transformed cells. In normal fibroblasts, Cdk2, 
Cyclin A, PCNA and p21 form complexes. However, 
p21 disappears from the complex in transformed 
cells. Skp1(p19) and Skp2 (p45) form complexes in 
significant quantities with cyclin A and CDK2 instead 
in transformed cells. Depletion of Skp2 protein by 
microinjection of antibodies to p45 or antisense 
mRNA prevented the cells from entering into the S 
phase. This was the first clue pointing out that Skp2 
might be oncogenic. Skp2 gene was mapped to 
chromosome 5 (9) and found to be associated with 
karyotypic alteration and known amplification. It has 
soon become clear that Skp2 is the F-box containing 
protein that functions as a E3 polyubiquitin ligase, 
working together with Skp1, Culin to target cell 
cycle regulators for ubiquitination-mediated 
proteolysis(10-13). 

3.1. Cell proliferation
One of the hallmarks of cancer is its ability 

to maintain sustained proliferation signal(14). This is 
often times achieved by up-regulation of positive cell 
cycle regulators (oncogenes) and down regulation 
of negative cell cycle regulators (tumor suppressor 
genes). p27Kip1 is a well-known negative cell 
cycle regulator. p27 needs to be degraded for cells 
to transition from quiescent to proliferating state. 
It is destabilized in many types of tumors and this 
destabilization correlates with tumor aggressiveness 
and metastasis (15-17). Plenty of evidences point out 
that Skp2 plays an essential role in cell proliferation. 
Skp2 is the ubiquitin E3 ligase that targets p27 for 
degradation (18-20). Skp2 recognizes p27 that is 
phosphorylated at T187 and target it for degradation. 
The Cyclin A or Cyclin E/Cdk2 complex is then freed 
from p27 inhibition and able to transit from G1 to 
S phase and start DNA synthesis. Importantly, 
overexpression of Skp2 in fibroblasts was able to 
drive quiescent cells into S phase, an event that has 
happened in only a few instances with E2F, c-Myc 
and CyclinE/Cdk2 (18, 19). Skp2 up-regulation is 
now thought to be the major mechanism of p27 down 
regulation in cancers. In the mouse model, knockout 
of Skp2 is not lethal (21). However, the Skp2-/- mouse 
had reduced growth rate and increased apoptosis. 
Levels of cyclin E and p27Kip1 were markedly 
increased. Cyclin E level does not drop during S 
and G2 phase, highlighting the role of Skp2 in cell 
proliferation and regulation of cell cycle. Regulation 
of other negative cell cycle regulators by Skp2 has 
also been extensively documented (for  review see 
Frescas and Pagano (22). 
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3.2. DNA replication
Skp2 participates in DNA replication 

control. As part of the mechanism to ensure that 
DNA replication only happens in S phase of the cell 
cycle, human origin recognition complexes (hOrc1) 
is degraded immediately after the initiation of S 
phase following assembly onto the chromosome 
right after mitosis. Degradation of the hOrc1 
complex is mediated by Skp2 (23). Skp2 also 
control degradation of DNA replication licensing 
factor Cdt1 (24). Consistent with this finding, Skp2 -/- 
mice had markedly enlarged nuclei with polyploidy. 
Melanoma cells displayed 8N DNA content when 
Skp2 was knocked down (21, 25). 

3.3. V(D)J recombination
Skp2 is involved in V(D)J (Variable (V), 

Diversity (D) and Joining (J) gene segments) 
recombination in the immune system and DNA 
repair(26). V(D)J recombination is an essential 
step in the development of vertebrate immune 
system (27). This step enables the completion of 
DNA rearrangement that is required for B and T cell 
development. Defect in V(D)J recombination results 
in combined immune deficiency (SCID) (28, 29). 
V(D)J recombination is initiated by RAG1 and RAG2 
that recognize the recombination sequence signal 
(RSS) and make double strand break (DSB) and is 
completed by non-homologous end joining (NHEJ). 
V(D)J recombination is coupled to the cell cycle. 
Periodic phosphorylation and destruction of RAG2 
takes place during the G1/S transition. RAG2 mutant 
that cannot be phosphorylated uncouples DNA 
recombination from cell cycle transition (26). As a 
result, aberrant DNA recombination happens and 
results in genomic instability manifested by clonal 
chromosomal translocation. Skp2 is involved in the 
destruction of RAG2 during G1/S transition (30) and 
mice that are deficient in Skp2   (Skp2 -/-) had similar 
phenotype under a p53-mutated background (26). 

3.4. Gene transcription 
Skp2 participates in transcriptional 

regulation of many genes that are intimately related 
to oncogenesis. Genes under Skp2 regulation 
that are closely associated with carcinogenesis 
include but not limited to MLL, MYC, FOXO1 and 
MEF. Fusion of the MLL (mixed lineage leukemia) 
N-terminal 1400 aminio acid with ~70 partners at 
the C terminus through chromosomal translocation 
at 11q23 is characteristic of all MLL leukemia (31). 
This type of leukemia occurs predominantly in the 
pediatric population and has very poor prognosis. 
MLL encodes a histone methyl-transferase necessary 

for efficient gene transcription. It regulates gene 
expression through the MLL-E2F axis (32). During 
the cell cycle, MLL is destructed by SCFSkp2 in G1/S 
and by APCCdc20 in G2/M. The MLL fusion proteins 
are however resistant to degradation by the ubiquitin 
proteasome system (UPS) containing Skp2 (33). 
MYC (myelocytomatosis i.e. leukemia and sarcoma) 
protooncogene encodes short-lived transcription 
factors that are important in cancer development. 
MYC translocation causes Burkitt’s lymphoma in 
human. MYC also contributes to genesis of many 
cancers (for review see (34)). Overexpression of 
MYC has been linked to genomic instability (35). 
Together with three other genes SOX2, OCT4 and 
KLF4, MYC could reprogram the fibroblasts to 
a pluripotent stem cell state (36). Skp2 interacts 
with c-Myc and participate in its degradation. Skp2 
enhances c-Myc induced S phase transition and 
activates c-Myc target gene in a c-Myc dependent 
manner. Furthermore, Myc induced transcription is 
Skp2 dependent emphasizing the interdependent 
nature between Skp2 and c-Myc (37). Foxo1 
(Forkhead transcription factors) plays an important 
role in tumor suppression by inducing programmed 
cell death and growth arrest. Loss of Foxo1 protein 
function by protein degradation has been implicated 
in cancer. Foxo1 is degraded by Skp2. Loss of 
Foxo1 correlates with Skp2 overexpression in a 
lymphoma model, which strongly suggests a role 
for Skp2 in tumorigenesis through Foxo1 down-
regulation (38, 39). Lastly, Skp2 also takes part in 
ubiquitin-mediated proteolysis of MEF (40), a ETS 
family of transcription factors originally cloned from 
human megakaryocytes leukemia cell lines (40). 
MEF is repressed by several leukemia associated 
fusion transcription factors (PML-Retinoic receptor 
alpha and AML-ETO) known to cause acute myeloid 
leukemia in adults(41, 42). Studies in mice showed 
that MEF is required for normal NK and NK-T cell 
development (43). It is also essential for maintaining 
hematopoietic stem cell quiescence (44).

3.5. Cellular senescence
 Cellular senescence mechanism has 

been proven to restrict tumor initiation and 
promotion (45-47). This mechanism is induced 
either by expression of oncogene or loss of tumor 
suppressor gene and is thought to be dependent on 
the induction of p19Arf-p53 pathway (48). Skp2 knock 
down was shown to induce cellular senescence in 
cells having aberrant proto-oncogenic signals or loss 
of tumor suppressor genes. Importantly, the process 
was shown to be independent of p19Arf-p53 but 
instead dependent on p21, p27 and ATF4. Since 
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Skp2 encodes an E3 ubiquitin ligase and knockdown 
of Skp2 is compatible with life, this raised the 
interesting possibility of using Skp2 inhibitor in 
cancer prevention (49).

3.6. Cellular metabolism
Akt is a kinase that regulates a number of 

important cellular processes such as metabolism and 
tumorigenesis (50, 51). Activation of Akt by growth 
factors is a two-step process involving membrane 
recruitment and K63-linked ubiquitination (52). Akt 
supports Warburg effects (preferential use of aerobic 
glycolysis for energy need and biosynthesis by the 
cancer cells) by increasing glucose uptake/glucose 
influx. Activation of Akt causes cells to become 
dependent on aerobic glycolysis. Skp2 is the E3 
ubiquitin ligase in EGF mediated activation of Akt. 
While Skp2 overexpression is associated with Akt 
activation, Skp2 deficiency impairs Akt activation, 
glucose uptake and glycolysis (53). 

4. STUDIES OF SKP2 IN VARIOUS CANCER

4.1. Head and neck cancer 
In a study of 37 cases of oral squamous 

cell cancer (SCC), it was found that 49% of them 
overexpressed Skp2. Skp2 overexpression 
correlated well with poor prognosis and inversely 
with p27 expression(54). In 102 cases of laryngeal 
cancer, Skp2 was an independent prognostic factor 
for poor disease free survival (DFS) and overall 
survival (OS)(55). In mucoepidermoid cancer, Skp2 
expression correlated with tumor size, microscopic 
grade and worse prognosis(56). The same 
conclusion was reached in studies of 62 cases of 
head and neck cancer(57). Skp2 overexpression 
correlated with poor OS. Skp2 expression in 42 
cases of glottis cancer was associated with stage, 
metastasis, poor prognosis. Negative correlation 
was found between PTEN and Skp2(58).

4.2. Lung cancer
Skp2 was first studied in 22 small cell 

lung cancer (SCLC) cell lines and found to be 
amplified on a region of chromosomal 5, resulting 
in overexpression of Skp2. Amplification and 
overexpression was found in 44% and 83% of the 
primary SCLC samples. Down-regulation of Skp2 
expression significantly suppressed cell growth (59). 
Skp2 was overexpressed in 88% (N=16) of non-
small cell lung cancer (NSCLC) cell lines and 65% 
of the primary tumors (N=163). In tumors with Kras 
mutation, Skp2 overexpression was an independent 

poor prognostic marker for survival (60). In a 
separate study of 138 NSCLC tumor specimens, 
Skp2 was found overexpressed in smokers, 
male, squamous cell and poorly differentiated 
carcinoma. Skp2 overexpression correlated with 
cancer aggressiveness and was an independent 
prognostic marker for poor prognosis with an inverse 
relationship with p27 expression (61). Studies of 
128 surgically resected NSCLC concluded that 
Skp2 overexpression was involved in progression of 
squamous cell lung cancer alone (62). In an effort 
to develop molecular markers for early detection 
of lung cancer, it was found that the copy number 
change of Skp2 along with 5 other genes, could 
diagnose stage I NSCLC with a sensitivity of 86.7% 
and specificity of 93.9% from the sputum samples. 
This test worked better for squamous subtype than 
adenocarcinomas (90). 

4.3. Breast cancer
Skp2 was found expressed at a higher level 

in estrogen receptor (ER) and Her2/neu negative 
tumors, the so called basal like subtype(63). These 
tumors are of higher grade and have low p27 levels. 
Overexpression of Skp2 increased resistance to 
antiestrogen therapy to ER positive cells. A more 
recent study found Skp2 overexpression correlated 
with Akt activation and tumor metastasis, served as 
a marker for poor prognosis in Her2 positive breast 
cancer patients. Silencing Skp2 sensitized these 
patients to Herceptin treatment(53). Overexpression 
of Skp2 mRNA and protein were especially 
prominent in young and poor prognosis patients with 
breast cancer (N=169)(64). The expression levels 
independently predicted poor DFS.

4.4. Prostate cancer 
In a study of 622 prostate cancers treated 

with radical prostatectomy (65), Skp2 levels were 
found higher compared to the normal tissue, 
premalignant lesions and prostate intraepithelial 
neoplasms. Skp2 labeling frequencies correlated 
with preoperative PSAs, Gleason scores. The 
Skp2 labeling Indices correlated with extraprostate 
extension, clinical stage and Gleason scores. A 
Skp2 index score of >10 was associated with shorter 
biochemical recurrence survival. A similar study 
confirmed that Skp2 overexpression was associated 
with shorter biochemical recurrence survival(66).

4.5. GI Cancers
In resectable esophageal cancers, high 

Skp2 expression was associated with poor OS(67). 
Negative Skp2 expression in primary resected 
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esophageal squamous cancer was an independent 
factor for better survival (N=157). For gastric cancer, 
overexpression of Skp2 at the mRNA and protein 
levels was associated with poor OS(68). In cells 
stably transfected with Skp2, p27 and apoptotic levels 
were down. However, cell growth rate was up. These 
cells showed more invasive behavior. The number of 
cells labeled with BrdU increased compared to the 
control even when the cells were starved for serum. 
Skp2 labeling indices increased progressively when 
gastric lesions became increasingly malignant(69). 
Skp2 labeling indices were significantly elevated as 
hepatocarcinogenesis advanced (70). Increases in 
Skp2 levels were most frequently observed in less 
differentiated tumors and the Kaplan-Meier survival 
analysis showed poor prognosis in these patients. 
Skp2 nuclear stainings were associated with shorter 
DFS and cytoplasmic stainings were associated 
with less aggressive disease(71). Similarly in colon 
cancer, overexpression of Skp2 and Cks1 strongly 
correlated with loss of p27, loss of differentiation. A 
significant decrease in OS was observed in tumors 
expressing higher levels of Skp2 and Cks1 particularly 
in stage II and III patients(72). Skp2 expression was 
studied in rectal cancer patients who have received 
neoadjuvant chemo and radiation. Higher levels of 
Skp2 were associated with advanced post treatment 
nodal status, lower degree of tumor regression rate. 
Skp2 levels were independent prognostic factor for 
local recurrence free survival. Thus higher Skp2 levels 
were associated with poor therapeutic response 
and adverse outcome in rectal cancer treated with 
neoadjuvant chemoradiation therapy (73).

4.6. Leukemia, lymphoma and myeloma 
Studies in acute myelogenous leukemia 

found that Skp2 expression significantly correlated 
with unfavorable cytogenetics. There was no inverse 
relationship between Skp2 and p27. High frequency 
of PTEN phosphorylation was seen in those 
expressing higher levels of Skp2. Skp2 expression 
level was an independent prognostic factor for DFS 
and OS(74). In Diffused large B cell lymphoma treated 
with CHOP or Rituximab plus CHOP (R-CHOP)(75), 
adding rituximab was not beneficial in patients 
whose tumors were expressing higher levels of Skp2 
and lower levels of p27. Higher levels of Skp2 or 
lower levels of p27 were associated with poor PFS 
and OS in 671 patients treated with either regimen. 
Higher levels of Skp2 or lower levels of p27 were 
independent of factors included in the international 
prognostic index (IPI). Higher Skp2 levels and 
lower p27 levels in combination predicted the worst 
prognoses. Finally, CKS1B was overexpressed in 

aggressive multiple myelomas. Skp2 mediated the 
CKS1B effects at least partially (76, 77).

In summary, Skp2 has been studied in 
various solid tumors or hematological malignancies 
including head and neck, lung, breast, prostate, 
GI, GU, sarcoma, leukemia, lymphoma, myeloma, 
melanoma and brain cancer. So far, all studies have 
defined Skp2 as oncogenic. Skp2 overexpression is 
associated with poor prognosis (Table 1). 

5. SKP2 DOWN REGULATION MIGHT BE 
A USEFUL STRATEGY FOR CANCER 
PREVENTION 

VHL (von Hippel Landau) protein is part 
of the ubiquitin ligase complex that destructs HIF1 
(hypoxia inducible factor) under well oxygeneated 
condition. Germline VHL mutation results in 
haemangioblastoma, renal cell carcinoma and 
pheochromocytoma. VHL mutation also occurs 
in sporadic renal cell carcinoma. VHL inactivation 
induces a senescence-like phenotype in vitro and in 
vivo. This phenotype is independent of p53 and Hif1. 
It is dependent on SWI2/SNF2, p400 and Rb. Down 
regulation of Skp2 by siRNA increased p27 levels 
and induced cell senescence (78). Therefore, down-
regulating Skp2 may be an effective way of targeting 
VHL mutated cancers in vivo.

Skp2 was required for survival of aberrantly 
proliferating Rb1 deficient cells (Rb1 +/-) and for 
tumorigenesis in the mouse model (79). Deletion 
of Rb1 in melanotrophs ablated the entire pituitary 
intermediate lobe when Skp2 was also ablated. This 
prevented tumorigenesis completely in Rb1 +/- cells. 
Cell proliferation in those cells was normal but they 
went into apoptosis resulting in cell elimination. Skp2 
inactivation in Rb1 deficient retinoblastoma cells 
produced the same phenotype. These implicate that 
Skp2 inactivation halts tumorigenesis in the pituitary 
glands or retinoblastoma and Skp2 inhibition 
can create a scenario of synthetic lethality in Rb1 
deficient cells.

Oncogenic signaling or loss of tumor 
suppressor genes induces cellular senescence. In 
the mouse model, this process is dependent on the 
p19Arf/p53 pathway(80, 81). Depletion of Skp2, in 
combination with oncogenic signaling or inactivation 
of tumor suppressor gene triggers cellular 
senescence in mice without activation of the p19Arf/
p53 or DNA damage response (DDR) pathway. This 
process is dependent on p27, p21 and ATF4 and 
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occurs even in cells with impaired p19Arf/p53 or p53/
PTEN pathways (49). In light of the chemo resistant 
nature of cells with p53 mutation, Skp2 inhibition may 
provide an alternative approach in cancer control 
in a p27, p21 and ATF4 unmutated background. It 
also has implications in cancer prevention since it 
provides a way to eliminate carcinogenesis in those 
cells with oncogenic signaling by mutated ras or E1A 
regardless of the p53 status. 

In the pituitary cancer or prostate cancer 
models, Skp2 inactivation in the Rb and TP53 
doubly deficient mice triggered a surge in p27 
levels. Although this surge was not able to block 
DNA synthesis, cells entered into endoreplication 
and eventually triggered apoptosis resulting in cell 

elimination (82). Therefore Skp2 deletion blocked 
tumorigenesis in pituitary or prostate tumorigenesis 
in Rb and TP53 doubly deficient cells. Skp2 
inactivation in TP53 mutated background triggered 
Rb induced cellular senescence. This implicated that 
cells need Skp2 when either TP53 or TP53 and RB1 
both are inactivated. Given the high prevalence of 
TP53 and/or Rb, Skp2 inhibition may provide a way 
for cancer prevention.

6. EFFORTS IN TARGETING THE SKP2 
MEDIATED UBIQUINTINATION: SUMMARY 
OF LEAD COMPOUNDS 

Using an in vitro reconstituted system 
with CDK2/Cyclin E, Skp1, Skp2, Roc1, Cul1, a high 

Table 1. Role of Skp2 in tumorigenesis and overexpression in prognosis of diverse human cancer
Cancer type Findings References

Glottic, Mucoepidermoid, H & N Correlation with Stage, metastasis and poor prognosis, inverse correlation with pTEN 56‑58

Salivary Gland, Oral SCC Poor OS, DFS, inverse relationship with p27 and differentiation 54, 55, 83‑85

Nasopharyngeal Poor DFS and OS 86

Lung Poor OS, more prominent in SCC, promoting invasion, help diagnose lung cancer 59‑62, 87‑90

Breast Poor DFS, OS, inverse relationship with p27 63, 64, 91, 92

Prostate Poor OS, RFS, correlation with p27, pTEN and differentiation 65, 66, 93

Esophageal Association with unfavorable prognosis, higher stage, metastasis, radiation resistance 67, 94

Gastric Poor OS, inverse correlation with PTEN, p27Kip1, and differentiation 68, 69, 95

Hepatocellular Poor survival and differentiation, nuclear staining predicts early recurrence 70, 71, 96, 97

Pancreas Poor OS 98

Biliary tract Poor OS, inverse correlation with p27Kip1 99, 100

Colorectal Poor OS, negative correlation with p27Kip1, Correlate with poor therapeutic response 72, 73, 101, 102

Ovarian Poor OS, correlates with stage, differentiation and metastasis 103‑105

Endometrial Poor OS 106

Renal Correlates with poor survival 107, 108

Myxofibrosarcoma, STS, GIST Poor DFS and OS, DSS, 109‑112

Kaposi sarcoma Skp2 level correlates with disease progression, no relation with p27 113

Leukemia Poor OS, inverse relationship with p27Kip and PTEN 74

Lymphoma, DLBCL NK/T cell Poor PFS, OS, correlates with aggressiveness and resistance 75, 114‑118

Multiple myeloma Poor prognosis and correlation with p27 expression 76, 77

Melanoma Poor OS 119, 120

Glioblastoma Poor OS 121, 122

OS, overall survival, DFS, Disease free survival, RFS, Recurrence free survival, H&N, Head and neck, SCC, Squamous cell carcinoma, 
STS, Soft tissue sarcoma, GIST, Gastrointestinal stromal tumor, DSS, Disease specific survival; DLBCL, Diffused large B cell Lymphoma
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throughput screening (HTS) was performed (123). 
As a result, CpdA was identified based on its 
ability of interfering with Skp2 function resulting 
in accumulation of p21 and other Skp2 substrate 
but without activating the heat shock protein 
response. CpdA prevented Skp2 incorporation 
into the ubiquitin enzyme complex, induced cell 
cycle arrest and programmed cell death in the 
form of autophagy. The compound was able to 
decrease cancer cell resistance to dexamethasone, 
doxorubicin, melphalan and bortezomib. It was 
active against both the myeloma and leukemia cells. 
However, there was no in vivo data reported. The 
lack of potency was a problem as the author pointed 
out. The drug was used at 5-25 mM concentration in 
the assays. Celgene is not developing this compound 
(personal communication).

One of the substrate of Skp2 is p27, which 
is important for cell cycle arrest. Binding of p27 to 
Skp2 results in p27 degradation. A structural based 
approach called in silico Virtual Ligand Screening 
was used for HTS of a library (124). A total of 96 
hits were found, of which 4 compounds were tested 
and found to inhibit Skp2, p27 binding (C1, C2, 
C16 and C20). These compounds inhibited binding 
between p27 and Skp2, caused G1 and G2/M cell 
cycle arrests in various cancer cell lines. No animal 
experiments were shown. The concentration needed 
to achieve the drug effects was between 5-10 mM.

Based on the crystal structure of the Skp2-
SCF complex, two pocket-like structures along the 
Skp1 and Skp2 interaction surface important for 
Skp1 and Skp2 binding were identified. Using a 
similar approach described above, another in silico 
HTS of 120,000 compounds was performed. Twenty-
five compounds inhibited the interaction between 
Skp1 and Skp2. C25 was selected for further 
study due to its potency. It blocked Skp1 and Skp2 
interaction completely in vitro at 5 mM(125). Binding 
of C25 physically blocked Skp1 and Skp2 interaction, 
inhibited the E3 ligase activity. C25 restricted cancer 
cell survival by triggering cellular senescence that 
is p53 independent and inhibited glycolysis. In 
xenograft models of lung (A549 cell line) and prostate 
(PC3 cell line) cancer, injection intraperitoneally at 
40-80 mg/kg achieved dose dependent decrease of 
Skp2 levels, simultaneous increase in p27 and p21 
levels and tumor suppression. Intra-tumoral Akt and 
Glut1 levels were also decreased. 

A high throughput AlphaScreen assay 
singled out two compounds named NSC689857 

and NSC681152 as the inhibitors interrupting 
interactions between Skp2 and Cks1. As a result, 
p27 ubiquitination was inhibited, resulting in p27 
accumulation. The compounds were validated in a 
structural-activity relationship analysis(126). 

7. POTENTIAL PROBLEMS OF EXTENDED 
SKP2 DOWN-REGULATION 

Skp2 suppression maybe a useful strategy 
in cancer prevention as reviewed earlier. However, 
there are some concerns as whether extended Skp2 
suppression in cells will cause genomic instability 
resulting in cancer promotion. First, as discussed 
above, The V(D)J recombination process normally 
only occurs in the lymphoid tissue since RAG1 
and RAG2 are lymphoid specific recombinases. 
They are not expressed in other tissues except in 
the brain (28). Coexpression of RAG1 and RAG2, 
however can lead to test substrate recombination 
in non-lymphoid tissue where it would not occur 
normally. This means that all other key factors 
required for the process are available and functional 
in other tissues (127, 128). Cancer cells are well 
known for reprogramming of gene expression. 
Hence, many genes that are normally only expressed 
in the testis are found expressed in the cancer cells. 
Indeed, IgG (129), RAG1 and RAG2 (130) are all 
found expressed in the cancer cells. Aberrant 
expression of RAG1 and RAG2 could contribute 
to genomic instability, which is another hallmark 
of cancer (14, 131). Alternatively, in cells where 
p27 is silenced or mutated, Skp2 down regulation 
would cause unrestricted cyclin E expression since 
Skp2 targets p27 and cyclin E for degradation. It 
is well known that cyclin E overexpression drives 
oncogenesis (132). Mouse model of lung cancer 
has been established successfully by cyclin E 
overexpression (133, 134). Accumulation of cyclin E 
under the context of p27 and Skp2 silencing were 
linked to genomic instability(135). Thus the long term 
benefit of exclusive Skp2 down regulation remains to 
be settled. Careful monitoring of genomic stability is 
warranted under the situation.
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