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1. ABSTRACT

Poly-ADP-ribosylation is a post-translational 
modification generated in high amounts by poly-
ADP-ribose polymerases (PARPs) in response 
to cellular stress, especially genotoxic stimuli. 
DNA damage-induced PARylation significantly 
changes local chromatin structure and triggers the 
accumulation of several DNA damage response 
(DDR) proteins at the DNA lesions. In this review, we 
will discuss the regulation of chromatin structure and 
DNA damage repair machineries by DNA damage-
induced poly-ADP-ribosylation.

2. INTRODUCTION

DNA lesions, if not promptly repaired, 
generate mutations and genomic aberrations, 
which can lead to genomic instability and cancer. 
A high number of DNA lesions form constantly as 
a consequence of endogenous factors, such as 
by-products of oxidative respiration or replication 
fork collapse, and exogenous physical and chemical 
agents, such as ionizing radiation, UV light or 
chemical compounds (1). To counteract this damage, 
mechanisms of DNA damage surveillance and repair 
have evolved, collectively called the DNA damage 
response (DDR). The response includes the DNA-
repair pathways involved in repairing lesions, as well 
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as regulatory pathways and cell-cycle checkpoints 
known as DNA-damage signaling (2). 

In eukaryotes, the densely packed 
chromatin physically blocks the cellular machinery 
that requires access to DNA, such as the DNA 
repair factors. Although chromatin compaction 
protects the genome against DNA damage (3), 
recent reports also suggest that DNA repair 
processes are less efficient in densely packed 
heterochromatin (4), leading to more mutations 
in these areas (5). Indeed, the early steps of DNA 
repair may include chromatin loosening to facilitate 
access to the damaged DNA, since chromatin 
is known to become hypersensitive to nuclease 
digestion after DNA damage (6). Several interlinked 
pathways evolved to cope with the variety of DNA 
damage types occurring randomly any part of 
the genome. Therefore, it is not surprising that 
regulating the DNA damage response is intricate 
and requires a robust and plastic regulatory 
network. The plasticity in the DDR is established 
mostly though crosstalk between different DNA 
damage-induced post-translational modifications, 
such as phosphorylation, ubiquitilation, poly-ADP-
ribosylation and SUMOylation. We will review the 
regulation of chromatin components and the repair 



Poly-ADP-ribosylation signaling during DNA damage repair

	 441� © 1996-2015

machinery by poly-ADP-ribosylation, focusing on 
the recent developments in the field.

3. ADP-RIBOSYLATION AND ITS 
MOLECULAR EFFECTS 

One of the most dynamic DNA damage-
induced post-translational modifications is poly-
ADP-ribosylation  (PARylation) (7). PAR is generated 
and transferred to the protein targets by a family of 
17 enzymes known as PARPs. Of the 17 enzymes, 
only three have been implicated in the DDR: 
PARP1, PARP2 and PARP3 (8). PARP1 is alone 
responsible for about 90% of the DNA damage-
induced production of PAR, the large majority of 
which is attached to PARP1 itself (9). A number 
of other proteins are also targets of PARylation, 
among them histones, other chromatin components 
and repair factors (10, 11). PARP1 rapidly recruits 
to the DNA damage site owing to its DNA-binding 
domain, which can recognize different kinds of DNA 
lesions (12). Structural studies have revealed the 
mode of single- and double-strand break detection 
by PARP1 (13-15). The binding of free DNA ends 
induces a conformational change in PARP1 turning on 
its enzymatic activity (14). Activated PARP1 transfers 
an ADP-ribosyl moiety – from NAD+ – to mostly Glu, 
Asp or Lys residues of their targets, initially forming 
a mono-ADP-ribosylated residue, which can be 
extended to a long chain of ADP-ribose polymer by 
PARP. PAR is quickly degraded by poly-ADP-ribose 
glycohydrolase (PARG) leaving a single ADP-ribose 
on the modified amino acid (16, 17). Similarly, ADP-
ribose hydrolase 3 (ARH3) can hydrolyze PAR, also 
leaving proteins mono-ADP-ribosylated (18, 19). The 
removal of the final protein-proximal mono-ADP-
ribose is performed by a family of proteins called 
macrodomains, with three members in humans: 
TARG1, MacroD1 and MacroD2 (20-22). Recent 
reviews extensively cover our current knowledge 
about ADP-ribosylation metabolism (23, 24).

ADP-ribosylation can exert its biological 
effects in various ways: destabilizing protein-DNA 
interactions, regulating protein-protein interactions 
and protein function or labeling proteins for 
proteasomal degradation. Firstly, the long negatively 
charged ADP-ribose polymers can destabilize 
protein-DNA interactions directly (Figure 1a). Thus, 
PARylation of histones can lead to relaxation of the 
chromatin directly (25-27). Similarly, PARylation of 
the linker histone H1 also leads to the release of H1 
from the nucleosomes and causes loosening of the 
chromatin (26, 28).

Secondly, PAR forms a scaffold that 
allows the timely recruitment of specific factors, 
thus enriching them at the sites of DNA damage 
by means of specialized ADP-ribose-binding 
modules (Figure 1b). To date, there are seven PAR-
binding domains known that target to sites of ADP-
ribosylation, with the number likely to increase in the 
future. The first identified ADP-ribose recognition 
modules were the linear PAR-binding-motifs 
(PBMs) (29), followed by the macrodomain (30), PAR-
binding-zinc finger (PBZ) (31), the WWE domain (32), 
the BRCT and FHA domains (33, 34). Interestingly, 
this vast arsenal of ADP-ribose-binding modules 
is widespread among the DNA damage repair 
factors (35). The oligonucleotide/oligosaccharide-
binding (OB) domains of SSB1, SSB2, CTC1 and 
MEIOB are the newest addition to the group of PAR-
binding domains (36). Based on sequence homology 
with other OB domains, they were initially identified 
as single-stranded DNA binding domains; however, 
these domains bind PAR with higher affinity than 
single-stranded DNA. SSB1 and SSB2 are involved 
in DNA damage repair, whereas CTC and MEIOB 
have roles in telomere protection and meiotic 
recombination, which are both other activities linked 
to ADP-ribosylation. 

Thirdly, ADP-ribosylation can influence the 
activity of its targets (Figure 1c). This is well known 
for some of the dangerous ADP-ribosylating bacterial 
toxins (37). However, such data are largely lacking 
for PARylation upon DNA damage: several proteins 
are modified but for most of them the modification 
appears to have no clear function (see (10) for a 
list of ADP-ribosylated proteins upon DNA damage, 
and (31, 38) as example of some factors whose 
ADP-ribosylation has no defined function). The 
only DNA damage-related example is the PI3K-like 
kinase DNA-PKcs, which has increased enzymatic 
activity upon ADP-ribosylation, at least in vitro (39).

Last but not least, poly-ADP-ribosylation is 
to mark proteins for proteasomal degradation by a 
subset of E3 ubiquitin ligases with the PAR-binding 
WWE or PBZ domains (40, 41) (Figure 1d). These E3 
ligases are responsible for ubiquitylating PARylated 
substrates. The activation of PARP1 leads to the 
recruitment of the E3 ligases, RNF148/Iduna and 
CHFR, both of which target PARP1 to ubiquitin-
mediated proteolysis (41, 42). The recruitment of 
RNF148/Iduna and CHFR is mediated by their WWE 
and PBZ domain, respectively (31, 43, 44). The 
mechanism of PAR-dependent ubiquitin-mediated 
proteolysis is likely to exist in other PARylated 
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proteins as well. PARylation of repair factors could, in 
fact, be a important way of regulation of their levels, 
but the experimental evidence is currently lacking.

4. THE EFFECTS OF POLY-ADP-
RIBOSYLATION ON CHROMATIN 
STRUCTURE UPON DNA DAMAGE 

The effects of PARylation on chromatin 
structure and dynamics were identified early on. It 
was observed over 30 years ago that the PARylation 

of histones leads to their consequent destabilization 
and the relaxation of chromatin structure (25-27). 
Later, PARP1 activity was shown to lead to linker 
histone H1 eviction, contributing to more a relaxed 
chromatin structure (28, 45). More recently, it was 
reported that the chromatin relaxation upon DNA 
damage induced by laser microirradiation depends 
on ATP and PARylation (38, 46). This suggests that 
PARylation initiates the recruitment or activation of 
chromatin-remodeling enzymes upon DNA damage. 
Indeed, a number of chromatin-remodeling enzymes 

Figure 1. The molecular effects of poly-ADP-ribosylation. a) Transfer of negatively-charged ADP-ribosyl moieties on chromatin proteins. The 
change of sign in proteins charges induces their release from DNA and the overall chromatin relaxation. In this example, histones are modified 
by PARP1. b) Establishment of a complex recruiting platform, depending on ADP-ribosylated proteins offering docking sites. While at the 
beginning most of ADP-ribosylation is present on PARP1 itself and histones, the recruitment of early factors allow the formation of further 
docking sites. c) Change in the activation level or accessibility of ADP-ribosylated proteins. In the example, an enzyme is at first inactive. After 
PARP1 modifies it, the enzyme is activated and processes its substrates. d) Targeting for ubiquitin-mediated proteasome degradation. At first, 
PARP1 modifies the target protein. The PAR attractstheE3 ubiquitin ligase complex, because of its ADP-ribose binding domain. Consequently, 
the E3 ubiquitin ligase adds ubiquitin moieties on the target protein, which is thus committed for the proteasomal degradation.
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recruit to DNA damage in a PARylation-dependent 
manner such as Amplified in Liver Cancer 1 (ALC1), 
SMARCA5 and Chromodomain helicase DNA-
binding protein 4 (CHD4) (38, 47-50). On the other 
hand, PARylation contributes to the formation and 
maintenance of more compact, silenced chromatin 
as well. The Nucleosome Remodeling Deacetylase 
(NuRD) complex and several Polycomb Group 
(PcG) proteins are recruited to DNA lesions in 
a PARylation-dependent manner (49, 50). The 
Polycomb Repressive Complex 2 generates the 
repressive chromatin mark H3K27me3, and the 
NuRD complex can deacetylate histones, both 
contributing to chromatin silencing.

4.1. Amplified in liver cancer 1, a 
macrodomain-containing chromatin 
remodeler

ALC1 is a chromatin-remodeling enzyme of 
the SNF2 ATPase superfamily. The ALC1 encoding 
gene was identified as a frequently amplified 
locus in hepatocellular carcinomas (51,  52). 
ALC1 is involved in both DNA repair and the 
control of gene expression (48, 52, 53). In mice, 
ALC1 overexpression leads to increased tumor 
incidence (53, 54). ALC1 depletion sensitizes cells for 
DNA damaging agents and its overexpression leads 
to DNA repair defects (48). Unlike the large, multi-
subunit chromatin remodeling complexes, ALC1 acts 
as a monomer and is the only chromatin remodeler 
described to date that requires PARylated substrates 
for ATPase and remodeling activity in vitro (47, 48). 
ALC1 interacts with and recruits the ubiquitin ligase 
TRIM33 to the DNA damage site, and TRIM33 itself 
stimulates ALC1 removal. TRIM33 overexpression 
was shown to reverse the ALC1 overexpression-
associated DNA repair defects, supporting its role in 
controlling ALC1 residence time on chromatin (55). 
Interestingly, TRIM33 tissue-specific knockout mice 
have a high prevalence of liver cancers, lending 
further support to its antagonism with ALC1 (56). 

ALC1 has two functional domains: an 
N-terminal SNF2-type ATPase and a C-terminal 
macrodomain. ALC1 recruits to the laser-induced 
DNA damage via its PAR-binding C-terminal 
macrodomain (47, 48). It was proposed that ALC1 
remodels chromatin at the site of damage upon 
binding with PARylated nucleosomes, as it can slide 
nucleosomes in vitro upon PARP1 activation (47, 48). 
However, it has been shown that PARylated PARP1, 
rather than PARylated nucleosomes, is sufficient 
to activate of ALC1 (47). This suggests that ALC1 
could play a more general role in clearing PARylated 

proteins from DNA, although this hypothesis has 
not been tested. The remodeling activity of ALC1 is 
enhanced in the presence of the H4 tail, in a manner 
similar to the ISWI remodelers (48). However, the 
mechanism through which the H4 tail activates 
ALC1 activity is not understood. Recently, the ALC1 
ATPase activation was shown to require an ALC1-
nucleosome-PARylated PARP1 intermediate (47). 
Whether the macrodomain is only a recruitment 
module or an allosteric regulator of the N-terminal 
ATPase domain is thus still to be determined.

4.2. The ISWI and NuRD chromatin-
remodeling complexes

SMARCA5, also known as SNF2H, is 
the core ATPase subunit of several chromatin-
remodeling complexes of the ISWI family, three of 
which were shown to recruit to DNA damage: the 
WICH, the CHRAC and the ACF complex (57-60). 
SMARCA5 depletion leads to increased IR sensitivity 
and DSB repair defects (38), and its recruitment to 
laser-induced DNA damage sites depends on PARP1 
activity (38). SMARCA5 was shown to interact with 
RNF168, which promotesSMARCA5 accumulation 
at the site of DNA damage. RNF168, an E3 ubiquitin 
ligase specialized for Lys63-polyubiquitination-
mediated signaling, is recruited upon DNA damage 
in a PAR-dependent manner (38). RNF168 is also 
PARylated, but the effect of PARylation on the E3 
ligase activity of RNF168 has yet to be explored. 
SirT6-deficient mice show decreased chromatin 
association of SMARCA5 and increased sensitivity 
to DNA damage (61). SirT6 was shown to positively 
regulate PARP1 (62). The decreased SMARCA5 
chromatin association in the SirT6-deficient mice 
could thus be explained by decreased PARP1 activity. 
In addition, RNF20-dependent H2B ubiquitilation 
was also shown to recruit SMARCA5 to sites of DNA 
damage, where it promotes chromatin relaxation 
and the recruitment of HR repair factors (58). Thus, 
besides PARylation, H2B ubiquitilation can also 
regulate SMARCA5 recruitment to sites of DNA 
damage. 

Another chromatin remodeler similarly 
interacting with ADP-ribosylation is the NuRD 
complex. It different subunits confer diverse catalytic 
activities: deacetylase from HDAC1 or 2, histone 
chaperone from RbAP46 and 48 and chromatin 
remodeling from CHD3 or CHD4 (63). Both CHD3 
and CHD4 were first identified as the auto-antigens 
for the autoimmune disease dermatomyositis, which 
is associated with increased cancer risk (64, 65). 
Moreover, knock-down of some NuRD subunits 
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(CHD4, HDAC1 and MTA3 increases gamma H2A.X 
levels, a hallmark of DNA damage repair, suggesting 
higher levels of DNA damage (50). CHD4 rapidly 
and transiently recruits to sites of laser-induced 
DNA damage in both a PARP- and RNF8-dependent 
manner (49, 50, 66). In fact, CHD4 binds PAR in vitro, 
even though its PAR recognition sequence has not 
been identified (50). The activity of the NuRD complex 
plays a role in setting up a repressive chromatin 
structure dependent on PARP1 activity and which 
in turn promotes to clear RNA polymerase II from 
the sites of DNA damage (49). On the other hand, 
the RNF8-mediated recruitment of CHD4 is required 
for local chromatin decondensation (66). Thus, the 
NuRD complex appears to recruit to DNA lesions 
through at least two independent mechanisms. 
These two modes of recruitment and activation also 
modulate chromatin structure in different ways, with 
PARylation promoting the repressive function of 
the NuRD complex on the chromatin structure and 
RNF8-mediated recruitment of NuRD leading to 
chromatin relaxation. 

4.3. The histone chaperone FACT
FACT (facilitates chromatin transcription) 

is a histone chaperone complex with roles in 
transcription, replication and repair (67-73) FACT 
has two subunits – SPT16 and SSRP1 –, which 
both have roles in the DDR (73, 74). The depletion 
of SPT16 causes homologous recombination 
defects and impaired recruitment of repair factors, 
such as Rad51 and BRCA1 (70). SPT16 interacts 
with the RNF20 RING finger domain and promotes 
RNF20 recruitment to the site of DNA damage (70). 
Consequently, the SPT16-mediated recruitment of 
RNF20 further promotes H2B ubiquitilation, which 
increases the recruitment of SNF2H, the core 
ATPase of the ISWI remodeling complex, ultimately 
leading to chromatin relaxation at the site of DNA 
damage (58, 70). 

SPT16 becomes PARylated upon DNA 
damage in vivo, which causes FACT to dissociate 
from chromatin (75). The phosphorylation of H2A.X 
by DNA-PK facilitates the exchange of this histone 
variant from chromatin, while PARP1-mediated 
PARylation of SPT16 is inhibitory by releasing FACT 
from chromatin (71). Recently, histone exchange 
measurements at UV-induced DNA damage sites 
showed an accelerated turnover of histones H2A 
and H2B mediated by SPT16 (72). Contradictory to 
the previous findings, the authors found that small-
molecule PARP inhibition slightly decreased H2A/
H2B turnover at the UV-induced DNA lesions. These 

differences could be due to the different experimental 
approaches used in the studies. Alternatively, PARP1 
activity may have both stimulatory and inhibitory 
effects on SPT16-mediated histone exchange, 
which could depend on the specific H2A histone 
variant H2A.X.

5. POLY-ADP-RIBOSYLATION IN THE 
DIFFERENT DDR PATHWAYS

In addition to regulating chromatin structure 
and dynamics, PARylation is a well-established 
regulator of the DDR (7, 8). Several factors involved 
in the downstream regulation of various repair 
pathways bind PAR, or are themselves targets of 
PARylation. In this section, we focus on the effects 
of PARylation on the different DNA repair pathways, 
in particular the regulation of the core factors of the 
repair pathways. 

5.1. ADP-ribosylation during the repair of 
DNA single-strand damage

ADP-ribosylation is primarily linked to 
base excision repair (BER) and single-strand 
break (SSB) repair. Oxidative damage, alkylation, 
methylation, deamination or hydroxylation of the 
DNA bases can lead to base-pairing mismatch and 
are removed by BER. This pathway starts with the 
detection and subsequent excision of the damaged 
nucleotide by DNA glycosylases, which generate a 
single-strand break (76). A functional role of PARP1 
in this process is demonstrated by reduced BER 
in PARP1 mutants and PARP1 interaction with 
several factors involved in BER (10, 34, 35, 77-84). 
PARP2 is involved in BER and SSB repair similarly 
to PARP1 (85). Yet, PARP2recruits to DNA damage 
sites later than PARP1 and its exact role in BER is 
still unknown (86). A number of proteins involved in 
BER and SSB repair have PAR-binding modules 
and recruit to DNA damage in a PARP activity-
dependent manner. XRCC1 (X-ray repair cross-
complementing protein  1), for example, is a factor 
essential for assembling the repair complex in both 
pathways and is directly recruited to SSB foci via 
its BRCT domain, which recognize PAR instead of 
phosphorylation (34, 35, 79, 80). Moreover, XRCC1 
is also PARylated by PARP1 (10, 87). PARP1 and 
XRCC1 are known to form a complex together with 
Condensin I factors upon activation of BER, but 
the physiological function of this interaction is still 
unclear (88, 89). Other examples of recruitment due 
to PARylation have been explored by the recent 
work of Li and coworkers, such as the bifunctional 
polynucleotide kinase/phosphatase (PNKP) and 
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Aprataxin (34). PNKP and Aprataxin are recruited to 
damage sites upon SSB-induced PARylation (34). 
In particular, the former makes the phosphorylation 
status of the DNA ends compatible for ligation, 
whereas the latter restores the SSB when the DNA 
ends are adenylated (34, 90-92). The final ligation 
step of BAR is carried out by Ligase III that also 
recruits in response to PARylation through its PBZ 
domain.

UV-C light-induced DNA lesions, such 
as cyclobutane pyrimidine dimers (CPDs) and 
pyrimidine (6-4) pyrimidine photoproducts 
(6-4PPs), which are repaired by nucleotide 
excision repair (NER), are also strong activators 
of PARylation.(93-95). PARP1 interacts with DDB2 
(damaged DNA binding 2), which recognizes CPDs 
and 6-4PPs (96, 97). The PARP1-DDB2 interaction 
facilitates chromatin rearrangement by recruiting 
ALC1, and increasesDDB2 stability at the damage. 
Although DDB2 recruitment to the damage site is 
not affected by either PARP inhibition or knockdown 
of PARG, the retention time of DDB2 on chromatin 
is increased upon PARG knockdown. Thus, 
PARylation plays a role in retaining DDB2 at the 
damage loci (97). 

5.2.The role of ADP-ribosylation in double-
strand break repair

The most deleterious DNA lesions are 
double-strand breaks (DSBs), because the unrepaired 
DNA ends can induce genomic rearrangements, 
such as translocations or deletions. There are two 
major repair pathways against DSBs: homologous 
recombination (HR, also called homology directed 
repair) and non-homologous end-joining (NHEJ) (2). 
HR requires a homologous sequence, typically present 
after replication (late S and G2), in order to restore 
the original DNA sequence. NHEJ, on the other 
hand, anneals the broken ends without using a 
homologous template and operates throughout 
the cell-cycle. However, NHEJ introduces mutations 
upon repair. Although it is being error-prone, NHEJ 
is a simpler and faster process in comparison to the 
laborious and slower HR. The decision between HR 
and NHEJ repair is regulated at multiple stages. The 
first decision is at the recognition and binding of the 
break: the MRN complex (MRE11, Rad50 and NBS1) 
initiates HR, and the DNA-PK holoenzyme (DNA-
PKcs, Ku70, Ku80) initiates NHEJ. The deletion of 
NBS1 in murine cells reduces DSB repair by HR and 
increases NHEJ (98). Conversely, the loss of the Ku 
proteins or DNA-PKcs impairs NHEJ (1, 99). The 
failure of classical NHEJ can lead to the repair of 

DSBs by the alternative NHEJ, a backup pathway, 
which involves SSBR pathway components and also 
PARP1 (100). 

PARP1 binds to DSBs, so it is not surprising 
that PARP1 activity modulates DSB repair as well. 
A  milestone in the research of PARP1 and DSB 
repair came in 2005. Two laboratories reported that 
PARP inhibitors efficiently kill cell lines deficient 
in BRCA1 or BRCA2, both proteins important in 
HR  (101, 102). It was hypothesized that PARP 
inhibition leads to the accumulation of single-strand 
breaks – due to impaired BER and SSBR – that turn 
into DSBs, which accumulate due to impaired repair 
and eventually cause cell death. However, impaired 
BER does not lead to lethality in BRCA deficient 
cells; it is DNA-PK hyperactivation that kills the 
BRCA-deficient cells upon PARP inhibition (103). 
The molecular basis and the targets of PARP1, 
which suppress DNA-PK overactivation in the 
HR-deficient cell lines, are unknown. Nevertheless, 
PARP1 activity limits DNA-PK activation, at least, if 
HR is defective. 

There have been several reports of PARP1 
negatively regulating HR by counteracting the 
accumulation of Rad51, a protein required for the 
homology search during HR, into foci and decreasing 
sister chromatid exchange and intra- and extra-
chromosomal homologous recombination (104-107). 
A closer look at the proteins that are known to recruit 
to DNA damage in a PARylation-dependent manner 
or known to be PARylated reveals that a surprisingly 
large number of them are involved in HR. The list is 
growing and certainly incomplete: MRE11, RAD50, 
NBS1, ATM, BARD1, RNF168, SSB1 and SSB2 
are among the HR-related proteins associated with 
PARylation (12, 31, 33-36, 38, 41-44, 108). For 
example, SSB1 and SSB2 rapidly recruit to sites of 
DNA damage in response to PARylation, which they 
recognize with their PAR-binding OB domains (36, 109). 
SSB1 is one of the earliest proteins arriving to DNA 
damage and it interacts with the MRN complex, 
facilitating the recruitment of the MRN complex to 
DSBs (110, 111). MRE11 also has a PAR-binding 
motif, confirmed with in vitro pull downs, whereas 
NBS1 has a FHA-BRCT fusion domain with a double 
specificity for PARylation and phosphorylation. The 
early phase of NBS1 recruitment is PARylation-
dependent and the late phase is mediated by DNA 
damage-induced phosphorylation (34). Ataxia 
telangiectasia mutated (ATM) is a kinase crucial for 
the activation and recruitment of HR factors, as well 
as cell-cycle checkpoint activation (112). ATM has 



Poly-ADP-ribosylation signaling during DNA damage repair

	 446� © 1996-2015

two PAR-binding motifs, which might explain the way 
ATM recruits to DSBs during the early phase of the 
DDR (108). The BARD1/BRCA1 heterodimer also 
recruits to DNA damage in part by PARylation (33). 
In particular, the BRCT domain BARD1 is a high-
affinity PAR-binding domain (33), and the PAR-
mediated recruitment of BARD1 is important for both 
the recruitment and the function of BRCA1. Thus, 
PARylation appears to play a positive role in HR in 
most cases.

There are several reports of an interaction 
between DNA-PK and PARP1 (29, 39, 113-117). 
Because of their PBMs, DNA-PKcs and Ku70recruit 
to DNA damage in a PAR-dependent manner and 
form a complex with PARP1 (29). The effect of their 
interaction is rather controversial: PARylation of 
DNA-PK was shown to stimulate DNA-PK activity 
but others did not observe the stimulatory effect of 
PARylation (39, 113, 114). Nevertheless, PARP1 and 
DNA-PK appear to cooperate in the DNA damage 
repair as revealed by experiments in double-knockout 
mice and by their role in V(D) J recombination in B 
cells  (118-120). Also, depletion of APLF (Aprataxin 
and PKNF like factor), a nuclease involve in both 
BER and NHEJ, leads to similar sensitization to DNA 
damaging agents, like that seen in PARP1-deficient 
cells (121, 122). APLF recruits to sites of laser-
induced DNA damage in response to PARylation via 
its PBZ motifs (121, 123). In particular, early APLF 
recruitment depends on PARP3 activity, whereas 
ATM-mediated phosphorylation is important for 
APLF retention on the damage site (124-126). The 
XRCC4/Ligase IV complex, which carries out the final 
ligation of the DNA ends in NHEJ, is also recruited 
to damaged DNA through the PAR-binding BRCT 
domain of Ligase IV (34). Therefore, PARylation 
positively regulates NHEJ repair proteins, rather 
than being inhibitory as was the case for BRCA-
deficient cells (103).

All in all, PARP1 appears to be a “pro-DSB 
repair” factor in normal cells, promoting both HR and 
NHEJ. The role of PARP1 becomes significant upon 
the failure of one or more of the pathways. In fact, 
the main role of PARP1 in DSB repair appears to 
be in alternative NHEJ, a highly error-prone repair 
pathway that can function in the absence of classical 
NHEJ (116). Several laboratories observed that 
PARP1 inhibits classical NHEJ factors, namely the 
heterodimer Ku70/Ku80, from the recognition of 
the free ends (127-130). This inhibition leads to the 
recruitment of the XRCC1/Ligase III complex, which 
carries out DNA ligation (34, 35, 79, 131). 

6. CONCLUSIONS

PARylation has long been appreciated as 
an important regulator of both chromatin structure 
and DNA damage repair (28). The best understood 
role of PARylation is as a platform for recruiting 
and concentrating repair factors at the sites of 
DNA damage (7, 8). This is well established, and is 
evidenced by the frequent presence of PAR binding 
domains in repair proteins (35). Much less is known 
about how PARylation modulates protein activity or 
how PAR-mediated ubiquitilation regulates protein 
levels. Hopefully, our understanding of the effects 
of protein PARylation will advance quickly with 
the recent developments in the identification of 
ADP-ribosylation sites within proteins using mass 
spectrometry.

DNA damage-induced PARylation leads to 
local chromatin relaxation (45); however, it is not the 
only way PARylation affects chromatin. PARylation 
recruits a number of chromatin remodeling 
enzymes, which relax chromatin at the sites of 
DNA damage, but PARylation can also silence 
chromatin by recruiting of the NuRD complex and 
PRC2 (38, 47-49). This duality is also observed in the 
connections between PARP and the DDR. The role of 
PARP1 in repairing single-strand DNA lesions is well 
established but its involvement in the repair of DSBs 
is less well understood (7, 8). PARylation appears 
to mostly stimulate both HR and NHEJ in normal 
cells (12, 31, 33-36, 38, 39, 41-44, 108, 118-120); 
however, there are also observations of PARylation 
negatively regulating HR or NHEJ (103-107, 127-130). 
The importance of PARP activity becomes obvious 
when some of the repair pathways fail as highlighted 
by the toxicity of PARP inhibitor in BRCA-deficient 
cells (101, 102). That PARylation concurrently 
causes apparently conflicting biological effects 
could be the consequence of the ways that the DNA 
damage response is studied. Most of the approaches 
to induce DNA damage, such as ionizing radiation, 
drugs or laser microirradiation, generate a variety of 
DNA lesions ranging from base damage to DSBs. 
Furthermore, these lesions occur simultaneously 
and randomly throughout the genome in both silent 
and active chromatin regions. DSBs generated by 
restriction endonucleases are well defined within 
the genome, however the activity of the restriction 
endonucleases in compacted parts of the chromatin 
might be limiting. And the experimental detection 
of the repair process is also less accurate as the 
response arising from multiple DNA lesions is 
observed and often in a population of cells. 
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The local chromatin environment, the level 
of transcription and the stage of the cell cycle are all 
likely to modulate important factors in DNA damage 
repair. Mutations accumulate within heterochromatic 
parts of the genome with higher frequency than 
in euchromatin, suggesting less efficient repair in 
compacted chromatin (4, 5). Local transcription, in 
fact, affects HR-NHEJ pathway choice (132, 133). 
The role of PARylation might be clearer for a 
particular DNA break at a given locus at a given time. 
Our understanding of the DDR and the roles of 
PARylation in the process would greatly benefit from 
future technology development to allow the induction 
of DNA lesions with high accuracy at specific parts of 
the genome and detection of DNA being repaired at 
a nucleotide resolution within single cells. 
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