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1. ABSTRACT

Multiple sclerosis (MS) and neuromyelitis 
optica (NMO) are presumed to be an autoimmune 
disease in the central nervous system (CNS). 
Although lipids are most abundant components 
in the nervous system, it has been believed that 
cellular and/or humoral immunity to various myelin 
proteins causes these neuroinflammatory diseases. 
Recent research advances enable us to study lipids 
in the membranes and some key molecules involved 
in various neurological disorders including Guillain–
Barré syndrome, Alzheimer’s disease, Parkinson’s 
disease, and prion disease, are localized in lipid 
rafts. In MS and NMO, the key molecules for 
the pathogenesis or the target molecules for the 
treatments of MS and NMO are also localized in lipid 
rafts. Here in this article, we highlight on the possible 
involvement of lipid rafts in the pathogenesis and 
treatment of MS and NMO and introduce our recent 
observation of aquaporin 4 regarding NMO.

2. INTRODUCTION

The plasma membrane in eukaryotic cells 
contains microdomains that are enriched in certain 
neutral and acidic glycosphingolipids, sphingomyelin, 
and sterol (such as cholesterol) to form membrane 
lipid rafts. These regions exist as planar lipid rafts or 
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caveolae. Planar lipid rafts are continuous with the 
plane of plasma membrane and caveolae, on the 
other hand, are morphologically observable flask-
like invaginations. Lipid rafts are platforms for many 
molecular entities, including signaling receptors and 
ion channels that communicate with extracellular 
stimuli to the intracellular milieu. Key molecules 
involved in various neurological disorders including 
Guillain–Barré syndrome (GBS)(1), Alzheimer’s 
disease (2), Parkinson’s disease (3), and prion 
disease (4), are localized in lipid rafts.

Acidic glycosphingolipid, GM1, is also 
localized in lipid rafts. Anti-GM1 antibody is 
commonly associated with a pure motor variant of 
GBS, characterized by no sensory loss, sparing of the 
cranial nerves, and predominant distal weakness on 
extremities. We have previously disclosed that GM1 
enhances the action of nerve growth factor (NGF) by 
enhancing NGF-induced autophosphorylation of high 
affinity NGF receptor, Trk (5). This enhancing effect 
of GM1 is at least in part due to the tight association 
of GM1 with the Trk protein. Our subsequent study 
revealed that GM1 is essential for the Trk initiated 
intracellular signal transduction pathway because 
PC12 cells are unresponsive to NGF biochemically 
and morphologically following the chemical depletion 
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of GM1 with ceramide analogue, D-threo-1-phenyl-2-
decanoylamin-3-morpholino-propanol, which inhibits 
glucosylceramide synthase in the cells (6). Thus, 
GM1 is now well recognized as an essential partner 
of Trk receptor function. Recently we examined 
the biological effects of anti-GM1 autoantibodies 
found in patients with the axonal form of GBS on 
the Trk-initiated intracellular signaling pathway in 
a neuronal cell culture system and elucidated the 
molecular basis of such effects. We found that all 
sera examined in this study inhibited NGF-induced 
Trk autophosphorylation responses. Interestingly, 
these sera induced rapid rearrangement of the Trk 
receptors from membrane lipid rafts to outside of 
these structures, although no obvious effects were 
observed on the distribution of the rafts-marker 
protein, Ras. These data suggest that anti-GM1 
antibodies directly affect the integrity of membrane 
lipid rafts and exert profound effects on the neuronal 
survival system (1).

There are few papers studying 
neuroimmunological diseases of the central nervous 
system (CNS), i.e., multiple sclerosis (MS) and 
neuromyelitis optica (NMO) in relation to membrane 
lipid rafts. Here in this article, therefore, we focus and 
highlight on the possible involvement of lipid rafts in 
MS and NMO because some of the key molecules 
for the pathogenesis or the target molecules for the 
treatments of MS and NMO are localized in lipid 
rafts.

3. MULTIPLE SCLEROSIS

Mulltiple sclerosis is presumed to be an 
autoimmune disease targeting the myelin sheath 
in the central nervous system (CNS). Cellular and 
humoral immunity to myelin proteins including myelin 
basic protein (MBP), proteolipid protein (PLP), and 
myelin oligodendrocyteglycoprotein (MOG) causes 
neuroinflammation (7, 8). Recent studies revealed 
that non-myelin antigens including neurofilaments, 
neurofascin, RNA binding proteins, and potassium 
channels may also contribute to the pathogenesis 
(9). Although lipids comprise over 70% of myelin 
sheath, autoimmune responses to lipids have been 
studied much (far) less than responses to proteins 
described above because of lack of enabling 
technologies.

3.1. Exploration of key molecules regarding 
the pathogenesis of MS

Kanter et al. developed large-scale 
lipid microarrays for detection of autoantibodies 

present in the serum and cerebrospinal fluid (CSF)
(10). By using this method, they identified lipid-
specific antibodies against sulfatide, sphingomyelin 
and oxidized lipids in the CSF derived from MS 
patients. Sulfatide-specific antibodies were also 
detected in SJL/J mice with acute autoimmune 
encephalomyelitis (EAE). Immunization of mice with 
sulfatide plus myelin peptides resulted in a more 
severe disease course of EAE, and administration 
of sulfatide-specific antibody exacerbated EAE. 
Thus sulfatide and other lipids may contribute to the 
pathogenesis of autoimmune demyelination.

3.2. αB-crystallin and lipid rafts
van Noort et al. examined proliferative 

responses of human peripheral blood T cells 
to the complete collection of myelin proteins 
fractionated by reversed-phase high-performance 
liquid chromatography (11). Myelin isolated from 
MS-affected brain contained a single protein fraction 
to which T cells from MS patients and from healthy 
controls showed dominant responses. This highly 
immunogenic protein was identified as αB-crystallin, 
a small heat-shock protein. They also revealed the 
presence of oligodendrocytes and astrocytes with 
raised αB-crystallin expression in active MS lesions, 
which were not found in unaffected myelin.

aB-crystallin is an intracellular Golgi 
membrane-associated small heat shock protein. 
Besides MS, elevated levels of aB-crystallin have 
been linked in Alexander, Alzheimer, and Parkinson 
diseases, and age-related macular degeneration. 
The membrane association of αB-crystallin has been 
known for more than 3 decades, yet its physiological 
import has remained unexplained. It has shown that 
αB-crystallin is secreted from human adult retinal 
pigment epithelial cells via microvesicles (exosomes), 
independent of the endoplasmic reticulum-Golgi 
protein export pathway (12). The presence of 
αB-crystallin in these lipoprotein structures was 
confirmed by its susceptibility to digestion by 
proteinase K only when exosomes were exposed 
to Triton X-100. Transmission electron microscopy 
was used to localize αB-crystallin in immunogold-
labeled intact and permeabilized microvesicles. The 
saucer-shaped exosomes, with a median diameter of 
100-200 nm, were characterized by the presence of 
flotillin-1, α-enolase, and Hsp70, the same proteins 
that associate with detergent-resistant membrane 
microdomains (DRMs), which are known to be 
involved in their biogenesis. Notably, using polarized 
adult retinal pigment epithelial cells, the secretion 
of αB-crystallin was predominantly from the apical 
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side. Using OptiPrep gradients, it was demonstrated 
that αB-crystallin resides in the DRM fraction. The 
secretion of αB-crystallin is inhibited by the cholesterol-
depleting drug, methyl-β-cyclodextrin, suggesting 
that the physiological function of this protein and the 
regulation of its export through exosomes may reside 
in its association with DRMs/lipid rafts.

3.3. Statins
Statins, or 3-hydroxy-3-methylglutaryl 

coenzyme A (HMG-CoA) reductase inhibitors, 
mediate their biological effect by inhibiting HMG-CoA 
reductase, which is an upstream rate-limiting enzyme 
in the cholesterol synthesis pathway (Figure 1). The 
consequent reduction in circulating low-density 
lipoprotein (LDL) cholesterol provided the original 
rationale for treating cardiovascular disease (13). 
Cholesterol is a major component of lipid rafts to 
form platforms where functionally related proteins 
interact to provide effective signal transduction, such 
as T-cell receptor and co-stimulatory molecules that 
form an immunological synapse, and ceramide/
sphingomyelin and receptors that mediate cellular 
signaling (14). Therefore, cholesterol depletion in 

lipid raft microdomains could alter their structure and 
function, with a significant effect on cellular activation 
and signaling pathways (15).

Besides cholesterol-lowering effect, the 
inhibition of HMG-CoA reductase by naturally existing 
statins (lovastatin, mevastatin, and simvastatin) 
and synthetic statins (fluvastatin, atorvastatin and 
rosuvastatin) inhibits the mevalonate pathway 
leading to the reduction of its biologically active 
metabolites, including isoprenoids, dolichol, 
ubiquinone (16) (Figure 1). Isoprenoids are required 
for isoprenylation of proteins and for their optimal 
function (16). Isoprenoids, faresylpyrophosphate 
and geranylgeranylpyrophosphate bind to proteins 
during their posttranslational modification and 
serve an important role in the functional targeting 
of proteins to different cellular sites (17). Inhibition 
of isoprenylation is considered to play an important 
role in the statin-mediated cholesterol-independent 
pleiotropic effects targeting inflammatory diseases.

Based on these mechanisms of action, 
multiple clinical trials have been undertaken. 

Figure 1. Cholesterol biosynthesis pathway highlighting the biologically active metabolites. HMG-CoA: 3-hydroxy-3-methyl glutaryl coenzyme 
A. Statins bind and inhibit HMG-CoA reductase. 
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Unfortunately, these trials resulted in the 
consequence that there is no convincing evidence to 
support the use of statins as an adjunctive therapy 
in MS (18).

3.4. Fingolimod (FTY720)
Fingolimod (FTY720), 2-amino-2-propane-

1,3-diol hydrochloride, is the first oral disease 
modifying therapy approved for relapsing forms 
of MS. Data from clinical trials have indicated that 
fingolimod is strongly effective for relapse-remitting 
MS. After the large scale of phase 3 trials, Food and 
Drug Administration promptly approved fingolimod 
as a first-line treatment for relapse-remitting 
MS (19, 20).

Following phosphorylation in vivo by 
sphingosine kinase SPHK2, the active agent, 
fingolimod phosphate (fingolimod-P), acts as a 
sphingosine-1-phosphate (S1P) receptor modulator, 
binding with high affinity to four of the five known 
S1P receptors (S1P1, S1P3, S1P4 and S1P5) 
(Figure 2). Fingolimod affects on lymphocyte 
trafficking, in which the initial activation and eventual 
downregulation and degradation of S1P1 prevent 
lymphocyte egress from lymphoid tissues, thereby 
reducing autoreactive lymphocyte infiltration into 
the CNS (21). Within this context, fingolimod 
differentially affects the recirculation of lymphocyte 

subsets. In MS patients, fingolimod primarily 
reduced the numbers of CCR7+CD45RA+ naive T 
cells and of CCR7+CD45RA− central memory T cells 
in blood, whereas CCR7−CD45RA− and CCR7−

CD45RA+ effector memory T cell subsets remained 
largely unaffected (21). In addition, fingolimod 
exerts direct effects on T cell differentiation and 
function by enhancing the generation and function 
of regulatory T cells and inhibiting the differentiation 
of proinflammatory Th1 cells (22, 23, 24). Moreover, 
because of its lipophilic nature, fingolimod 
crosses the blood-brain barrier, and might directly 
downregulate S1P1 and S1P3 in astrocytes. These 
two receptors have been reported to be upregulated 
in MS astrocytes (25). Oligodendrocytes and 
their precursor cells also express S1P receptors 
particularly S1P5 in mature oligodendorcytes. 
Neural progenitor cells and some neurons can 
also express S1P1 along with other S1P receptor 
subtypes. Microglia can express S1P receptor. 
The diversity of both cell types and S1P receptor 
subtypes underscore potential effector activities of 
fingolimod within the CNS in MS.

S1P is synthesized in most cells by 
the actions of sphingosine kinases (SPHK1 
and SPHK2), which are localized in lipid raft 
microdomains (Figure 2). Ceramide can be 
either synthesized de novo, originating in the 

Figure 2. Sphingosine-1-phosphate (S1P) is synthesized in most cells by the actions of sphingosine kinases (SPHK1 and SPHK2), which are 
localized in lipid raft microdomains. Fingolimod is also phosphorylated by sphingosine kinase to form the active agent, fingolimod phosphate 
(fingolimod-P), which acts as a S1P receptor modulator, binding with high affinity to four of the five known S1P receptors.
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endoplasmic reticulum, or can be generated at the 
plasma membrane by hydrolysis of sphingomyelin 
by neutral sphingomyelinase. Ceramide can be 
further deacylated by ceramidase to produce 
D-erythro-sphingosine. Sphingosine is subsequently 
phosphorylated by SPHK to form S1P. Therefore, 
inhibition and silencing of SPHK in lipid raft might be 
a potential new treatment for MS.

3.5. Remyelination promoting antibodies
Rodriguez et al. demonstrated a certain 

population of humoral autoimmune response against 
CNS antigens is beneficial for CNS remyelination in 
the Theiler’s murine encephalomyelitis virus model 
of MS (26, 27). They established multiple monoclonal 
antibodies which promote CNS remyelination 
and characterized these antibodies (28, 29). The 
analysis of the antibodies revealed a part of natural 
autoantibodies, which is encoded by unmutated 
immunoglobulin germline genes, (30, 31, 32). 
These antibodies induced CNS myelin repair not 
only in viral model of MS, but also in autoimmune 
model (EAE) (33) and toxin (lysolecithin)-
induced demyelination (34). They extended their 
observation and screened a panel of sera from 
patients with Waldenströme’s macroglobulinemia, 
multiple myeloma, and monoclonal gammopathy of 
undetermined significance. Consequently, a human 
IgM antibody was identified (35) and the antibody 
was sequenced (36). An expression system was 
engineered to express high titer recombinant 
this human IgM (rHIgM22)(36). rHIgM22 induced 
calcium signals in oligodendrocytes in vitro and 
induced myelin repair within demyelinated plaques 
in Theiler’s virus model of MS (36). Its signaling 
was disrupted by cholesterol depletion, suggesting 
that the target of rHIgM22 is associated with lipid 
rafts (37). Subsequent analysis revealed that 
rHIgM22 is co-localized with integrin β3 associated 
with lipid rafts but not other integrin β-chains in 
oligodensrocytes (38). Acorda Therapeutics and the 
Mayo Foundation are currently conducting phase 1 
clinical trial to assess the safety and tolerability of a 
single dose of rHIgM22 in people with MS (http://www.
acorda.com/ Products/rHIgM22.aspx). Additionally, 
they recently generated another recombinant human 
IgM antibody, designated rHIgM12, which enhances 
polarized axonal outgrowth from primary neurons 
when presented as a substrate in vitro and improved 
motor functions in chronically Theiler’s virus-
infected SJL mice (39). The epitope of the antibody 
includes sialic acid because treatment with sialidase 
disrupted the binding. rHIgM12 bound to neuronal 
surfaces and induced cholesterol and ganglioside 

(GM1) clustering, indicating that rHIgM12 functions 
through a mechanism of axonal membrane 
stabilization (39). This antibody has a potential to 
improve neurodegenerative diseases.

4. NEUROMYELITIS OPTOCA (NMO)

Neuromyelitis optica, also known as Devic’s 
disease is an inflammatory disease of the CNS 
characterized by severe attacks of optic neuritis and 
transverse myelitis. In 1894, Eugène Devic coined 
the term “neuromyelite optique aigue” (acute optic 
neuromyelitis) to describe 16 patients who had lost 
vision unilaterally or bilaterally and within weeks 
developed severe transverse myelitis (40). For more 
than ten decades, there has been long-standing 
controversy as to whether NMO is a variant of MS 
or a distinct disease. Wingerchuk et al. reported 
that NMO spinal cord lesions extend over three or 
more vertebral segments on spinal cord MRI (41). 
Lennon et al. found NMO-IgG, which binds at or near 
blood brain barrier of mouse brain tissue by indirect 
immunofluorescent study, serves as a specific 
marker for NMO (42). Later they demonstrated 
that NMO-IgG selectively binds to the aquaporin-4 
(AQP4) water channel, a component of the 
dystroglycan protein complex located in astrocytic 
foot processes at the blood-brain barrier (43). This 
land-mark discovery has met the controversy to an 
end and has prompted revisions of the diagnostic 
criteria for NMO (44).

4.1. Aquaporin-4 (AQP4)
NMO-IgG is considered to be highly 

specific diagnostic marker for NMO (45, 46, 47) 
and contributes directly to disease pathogenesis 
with complement (48, 49). AQP4 is mainly localized 
on foot processes of astrocytes in the CNS and is 
expressed in ependymal cells and retinal Müller cells 
(50). Interestingly, active NMO lesions showed a 
selective loss of AQP4 immunoreactivity and of glial 
fibrillary acidic protein (GFAP) containing astrocytes 
rather than demyelination (51).

The two major AQP4 isoforms, M1 and 
M23, have identical extracellular domain residues, 
but M1 has 22 more amino acids at the cytoplasmic 
N-terminus. NMO-IgG recognizes both M1 and M23. 
The N-terminal 22 amino acids in M1 contain two 
cysteine residues at positions 13 and 17. Biochemical 
analysis and metabolic labeling of transfected cells 
have revealed that the two N-terminal cysteine 
residues of AQP4 M1 are palmitoylated (52). This 
observation suggests that AQP4 is localized on 

http://www.acorda.com/
http://www.acorda.com/
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lipid raft microdomains, because posttranslational 
modification by palmitoylation on cysteine residue(s) 
is considered a dynamic targeting mechanism of 
transmembrane proteins to lipid rafts (53). It has 
also been reported in primary astrocyte cultures that 
AQP4 resides in the Triton X-100 insoluble fraction 
(lipid raft fraction), and that disruption of lipid rafts by 
depletion of membrane cholesterol with mevastatin, 
fillipin, or methyl-β-cyclodextrin results in the 
alteration of AQP4 distribution (54).

Recently we explored the subcellular 
localization of AQP4 isoforms by generating epitope-
tagged AQP4 M1, AQP4 M23, and AQP4 M1/M23 
co-expressing cells. The sucrose density gradient 
ultracentrifugation analysis using an AQP4 M1- or 
AQP4 M23-expressing cell line revealed that most 
of AQP4 M1 is localized in lipid raft microdomains on 
the membrane; in contrast, AQP4 M23 is localized in 
both lipid raft and non-raft fractions when expressed 
independently (Figure 3) (unpublished observation). 
Interestingly, when both AQP4 M1 and AQP4 M23 
are expressed in the same cells, the majority of AQP4 
is localized in lipid raft microdomains (Figure 3) 
(unpublished observation).

These previous studies and our recent 
results strongly suggest that NMO is the disorder of 
involving membrane lipid rafts of the glial cells in the 
nervous system. These assumptions would boost 
the future research areas of this disorder. Moreover, 
we should explore the new therapeutic methods by 
coping with the perturbation of lipid rafts functions in 
this disorder.

4.2. Other aquaporins (AQPs)
The AQPs are a family of small membrane 

proteins which primary function is thought to facilitate 
osmotically driven water transport across cell 
plasma membranes. To date, thirteen mammalian 
AQPs, AQP0-AQP12, have been identified. Besides 
AQP4, some of the AQPs have been reported to be 
associated with lipid rafts.

AQP1 is first identified in 1992 (55). AQP1 is 
expressed widely in epithelial cells, endothelial cells, 
and choroid plexus, where it plays an important role 
in the urinary concentrating system, fluid secretion in 
the eye and brain, and angiogenesis (56). AQP1 has 
also been found in fractions containing putative raft-
associated molecules such as the ganglioside GM1, 
sphingomyelin, flottilin, and caveolin. Perturbation 

Figure 3. Based upon the sucrose density gradient ultracentrifugation analysis, AQP4 M1 is localized in lipid raft microdomains on 
the membrane; in contrast, AQP4 M23 is localized in both lipid raft and non-raft fractions when expressed independently (unpublished 
observation). Interestingly, when both AQP4 M1 and AQP4 M23 are expressed in the same cells, the majority of AQP4 is localized in lipid raft 
microdomains (unpublished observation).
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of lipid rafts by cyclodextrin and sphingomyelinase 
restricted AQP1 diffusion (57).

AQP5 was initially cloned from rat 
supramandibular glands. AQP5, an apical plasma 
membrane water channel in salivary glands, lacrimal 
glands, and airway epithelium, has an important role 
in fluid secretion. AQP5 localizes in the intracellular 
lipid rafts under unstimulated conditions, and M3 
muscarinic acetylcholine receptor activation by 
agonist, cevimeline, induce AQP5 trafficking from 
lipid rafts to nonrafts (58).

AQP0 in lens fiber cells has been extracted 
in DRMs (59). In the lens the cytoskeletal protein 
filensin and CP49 interact with AQP0 (Lindsey Rose 
et al., 2006), and interaction with caveolin-1 seems 
to be involved in the recruitment to DRMs of AQP0 
(60). AQP8 and AQP9 of hepatocytes have also 
been extracted in DRMs (61).

Thus, multiple AQPs have been shown to 
reside in the DRMs/lipid rafts. The pathophysiological 
meanings of AQPs and lipid rafts in various diseases 
should be further elucidated in the future.

5. CONCLUSIONS

Lipid rafts represent a preferential place 
for lipid–lipid and lipid–protein interactions at the 
membrane, creating signaling platforms that are 
involved in numerous neuronal and glial functions. 
Recent increasing evidences indicate that molecules 
in the lipid rafts are involved in various neurological 
disorders including GBS, Alzheimer’s disease, 
Parkinson’s disease, and prion disease. As well as 
these neurological diseases, some of the molecules 
in lipid rafts are closely related to the pathogenesis 
or therapeutic targets of MS and NMO. Fingolimod, 
promising oral immunosuppressive drug for MS, 
is phosphorylated by sphingosine kinase SPHK2 
and acts as a S1P receptor modulator. Therefore, 
inhibition and silencing of SPHK in lipid raft might 
be the target of a potential new treatment for MS. 
The discovery that AQP4 is target antigen of NMO-
IgG and anti-AQP4 antibody is a hallmark of NMO, 
gave an end to the controversy as to whether NMO 
is a variant of MS or a distinct disease. Our recent 
observation revealed AQP4 isoforms show distinct 
subcellular localization. AQP4 M1 is localized in lipid 
raft microdomains on the membrane; in contrast, 
AQP4 M23 is localized in both lipid raft and non-
raft fractions when expressed independently 
(unpublished observation). Interestingly, when both 

AQP4 M1 and AQP4 M23 are expressed in the same 
cells, the majority of AQP4 is localized in lipid raft 
microdomains (unpublished observation). Thus, lipid 
rafts provide us a new aspect to understand the 
pathomechanism or establishing novel treatment for 
MS and NMO.
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