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1. ABSTRACT

Parkinson’s disease (PD) is one of 
the most common neurodegenerative diseases 
affecting an increasing number of people worldwide 
with the aging society. Although the etiology of 
PD remains largely unknown, it is now clear that 
genetic factors contribute to the pathogenesis of 
the disease. Recently, several causative genes 
have been identified in mendelian forms of PD. 
Growing evidence indicates that their gene products 
play important roles in oxidative stress response, 
mitochondrial function, and the ubiquitin-proteasome 
system, which are also implicated in idiopathic PD, 
suggesting that these gene products share a common 
pathway to nigral degeneration in both familial and 
idiopathic PD. Interestingly, several lines of evidence 
show that the gene products associate with lipid 
rafts which are thought to be involved in important 
cellular functions such as membrane trafficking, 
signal transduction, and cytoskeletal organization. 
Lipid rafts are cholesterol- and sphingolipid-enriched 
microdomains on the cell membranes that provide 
a highly saturated and viscous physicochemical 
microenvironment to promote protein–lipid and 
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protein–protein interactions. In this article, we will 
review studies focusing on PD in association with 
lipid rafts and discuss implication of lipid rafts in the 
pathogenesis of PD.

2. INTRODUCTION

Cell membranes are crucial to the life 
of the cell. The plasma membrane encloses the 
cell, defines its boundaries, and maintains the 
essential differences between the cytosol and the 
extracellular environment. Inside eukaryotic cells, 
the membranes of the endoplasmic reticulum, 
Golgi complex, mitochondria, and other membrane-
enclosed organelles maintain the characteristic 
differences between the contents of each organelles 
and the cytosol. All biological membranes have 
a common general structure: lipid molecules are 
arranged as a continuous bilayer which provides the 
basic fluid structure of the membrane and serves as 
a relatively impermeable barrier to passage of most 
water-soluble molecules. Protein molecules that 
associate the lipid bilayer mediate nearly all of the 
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other functions of the membrane. Lipid molecules 
constitute about 50% of the mass of most animal 
cell membranes, nearly all of the remainder being 
protein. Because a lipid bilayer is a two-dimensional 
fluid, we might expect most types of lipid molecules in 
it to be randomly distributed in their own monolayer. 
With certain lipid mixtures, however, different lipids 
can come together transiently, creating a dynamic 
patchwork of different domains. The lipid bilayer 
provides the basic structure for all cell membranes 
and its structure is attributable exclusively to the 
special properties of the lipid molecules, which 
assemble spontaneously into bilayers even under 
simple artificial conditions (1). It is no exaggeration to 
say that research in cell membranes has developed 
based upon the lipid raft concept (2) over the past 
ten-odd years. According to the concept, there exist 
microdomains consisting of specific lipid constituents 
on cell membranes as if rafts floated on the ocean. 
Lipid rafts form liquid-ordered domains in the lipid 
bilayer and are dispersed in the bulk of a liquid-
disordered domains that comprise the remainder 
of cell membranes, and are thought to function in 
cellular signaling by forming platforms for individual 
receptor signaling complexes (2). In addition to signal 
transduction, lipid rafts are also believed to play 
important roles in intracellular membrane trafficking, 
cytoskeletal organization, and viral infection (2-4).

Accumulating evidence has been suggesting 
that alterations in lipid rafts are implicated in the 
pathologic processes in various neurodegenerative 
disorders including Parkinson’s disease, Alzheimer’s 
disease, amyotrophic lateral sclerosis, Huntington’s 
disease, and prion diseases (5, 6). In this article, 
we summarize the lipid raft concept and discuss 
an importance of lipid rafts in neurodegeneration 
focusing on Parkinson’s disease.

3. LIPID RAFTS

3.1. Lipid raft concept
Lipid rafts are highly enriched in cholesterol 

and sphingolipid, and are defined biochemically by 
their insolubility in Triton X-100 (TX-100) at 4°C and 
their buoyant density which permits their isolation by 
flotation through density gradients (7). The special 
features of lipid rafts are thought to be due to the 
tight packing of highly saturated fatty acid residues 
in raft lipids with cholesterol (2, 8). Furthermore, 
polyunsaturated lipids have also been suggested to 
be implicated in formation of stable lipid rafts (9, 10). 
Certain specialized regions of the plasma membrane, 
such as the caveolae involved in endocytosis, are 

enriched in sphingolipids and cholesterol, and it 
is thought that the specific proteins that assemble 
there help stabilize these lipid rafts. Because the 
hydrocarbon chains of sphingolipids are longer 
and straighter than those of other membrane 
lipids, raft domains are thicker than other parts of 
the lipid bilayer and better accommodate certain 
membrane proteins. Thus, the lateral segregation 
of proteins and of lipids into raft domains would, 
in principle, be a mutually stabilizing process. In 
this way, lipid rafts could help organize membrane 
proteins, concentrating them either for transport in 
membrane vesicles or for working together in protein 
assemblies, as when they convert extracellular 
signals into intracellular ones. However, there has 
been a long debate among scientists whether the lipid 
rafts really exist on the cell membranes, because of 
lack of methodology showing their existence on the 
cell membranes. Biochemically defined lipid rafts, 
i.e., detergent-resistant membranes (DRMs), are an 
artificial product with no assurance of their presence 
on real cell membranes, leading to the skepticism 
against the lipid raft concept.

3.2. Lipid rafts becoming a reality
In the previous concept, there exist 

“large” lipid rafts tightly packed with composition 
of cholesterol and sphingolipids of micrometers in 
diameter on cell membranes. These “preformed” 
rafts contain molecules including receptors required 
for signal transduction regardless of presence or 
absence of stimuli, making it more efficiently once 
the stimulus is brought on. Although the concept 
appeared reasonable for functionality of cell 
membranes, recent advances in technology such 
as single-molecule spectroscopy and microscopy 
techniques decipher the real rafts (11-20). Cell 
membranes display a tremendous complexity of 
lipids and proteins designed to perform the functions 
cells require. To coordinate these functions, 
the membrane is able to laterally segregate its 
constituents. Raft-associated molecules dispersed 
on cell membranes in the resting state cluster 
together to form the rafts on the stimuli and they 
can be stabilized to coalesce, forming platforms 
that function in membrane signaling and trafficking. 
Lipid rafts are fluctuating nanoscale assemblies of 
sphingolipid, cholesterol and proteins, short-lived 
with a timescale of tens to hundreds milliseconds. 
Cell membranes are actually organized based 
on dynamic liquid-liquid immiscibility and lipid 
rafts are thought to form on demand (Figure 1). 
The misleadingness into the presence of the 
large preformed lipid rafts appeared based on the 
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observations using immunocytochemistry in which 
antibodies as an external stimulus could assemble 
raft components artificially.

3.3. Biological roles of lipid rafts
Lipid rafts have been thought to be involved 

in a great variety of cellular functions and biological 
events. For instance, T cell receptors (TCRs) in 
the resting state may associate with raft lipids 
to form nanoscale assemblies that cluster into a 
raft platform (TCR microclusters) on activation of 
the T cell by the ligand on an antigen-presenting 
cell. The TCR then becomes phosphorylated by 
the Src family kinase lymphocyte cell-specific 
protein Tyr kinase, and recruits and activates the 
Tyr kinase 70 kDa ζ-associated protein (ZAP70), 
which initiates further downstream signaling (21, 
22). The nervous system provides many examples 
of lipid raft-associated signaling proteins and lipid 
raft-dependent signal transduction (23). Lipid rafts 
in nervous system cells have been implicated in 
neurotrophic factor signaling (24-26), cell adhesion 
and migration (25, 27, 28), axon guidance and 
neurite outgrowth (29), synaptic transmission (25, 
30), neuron-glia interactions (31, 32), and myelin 
genesis (33). Lipid rafts also appears to play roles 
in the membrane trafficking. In the endoplasmic 
reticulum (ER)-to-Golgi vesicular transport of 
yeast, it is required for ER exit of the vesicles that 

glycosylphosphatidylinositol (GPI)-anchors are 
remodeled with a saturated, long-chain fatty acid or 
a ceramide that confers detergent resistance (34, 
35, 36). In membrane traffic departing from the Golgi 
complex, raft cargo proteins are delivered to the 
cell surface in a raft carrier. The protein and lipid-
sorting process probably involves raft clustering to 
drive segregation in the membrane of the TGN (37). 
Lipid rafts also associate with the cytoskeleton and 
mediate cytoskeletal organization (38). Several 
cytoskeletal components as well as enzymes that 
regulate the cytoskeleton localize to lipid rafts and 
help regulate lateral diffusion of membrane proteins 
and lipids in response to extracellular events such 
as receptor activation. Lipid rafts regulate cellular 
polarity, adherence to the extracellular matrix and 
signaling events, and are sites of cellular entry 
of certain pathogens, toxins and nanoparticles. 
The dynamic interaction between lipid rafts and 
the cytoskeleton thus regulates many aspects of the 
function of cells and their adaptation to changing 
environments.

4. PARKINSON’S DISEASE AND LIPID 
RAFTS

4.1. Parkinson’s disease
Parkinson’s disease (PD) is one of the 

most common neurodegenerative diseases, 

Figure 1. In the classic concept, lipid rafts ( ) are preformed with molecules including receptors required for signal transduction regardless 
of presence or absence of stimuli. Based upon recent advances in technology, raft-associated molecules dispersed on the cell membranes in 
resting state cluster together to form the rafts on the stimuli such as binding of ligands to receptors.
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affecting more than 1-4% of people aged 65-85 
years (39). The clinical features consist of 
motor dysfunction including rest tremor, rigidity, 
bradykinesia, postural instability as well as non-
motor symptoms such as cognitive decline, sleep 
disturbances and dysautonomia. The pathological 
hallmarks of PD are marked loss of dopaminergic 
neurons in the substantia nigra pars compacta 
(SNc), which causes dopamine deficiency in the 
striatum, and the presence of intracytoplasmic 
eosinophilic inclusions known as Lewy bodies in 
the remaining cells. Neurodegeneration and Lewy 
body formation are recognized not only in the SNc 
but also in locus coeruleus, pedunculopontine 
nucleus, raphe nucleus, dorsal motor nucleus of the 
vagal nerve, olfactory bulb, parasympathetic as well 
as sympathetic post-ganglionic neurons, nucleus 
basalis of Meynert, amygdaloid nucleus and 
cerebral cortex. The widespread neurodegeneration 
is thought to be responsible for the motor and 
non-motor symptoms of PD (40). The discovery 
of levodopa, a precursor of dopamine, has 
dramatically elongated the life expectancy of PD, 
although it does not necessarily improve the quality 
of life. Levodopa, in fact, is a symptomatic drug and 
long-term treatment with levodopa is associated 
with adverse effects, such as motor fluctuations 
(wearing-off and on-off phenomenon) and 
dyskinesias. New therapies are therefore required 
to improve the long-term functional prognosis. To 
develop a new remedy for PD, it will be essential 
to elucidate the pathogenic mechanisms underlying 
the neurodegeneration.

Mitochondrial dysfunction and oxidative 
stress are critical components of most current 
theories of nigral degeneration in PD (41-44), 
however the mechanisms responsible for the cell 
death remain largely unknown. Recently, there has 
been increasing evidence that genetic factors play 
an important role in PD. Although most PD cases 
are sporadic (idiopathic PD), a small proportion 
of cases shows a Mendelian inheritance. Genetic 
mutations can be detected in ~3% of patients with 
parkinsonism (45). The identification of responsible 
genes for rare familial forms of PD has provided vital 
clues to understanding the molecular pathogenesis 
of the more common idiopathic PD.

4.1.1. Monogenic forms of PD
To date, at least 18 distinct genetic loci 

and 13 genes have been reported to be linked 
to PD, that is, PARK1 and PARK4/a-synuclein, 
PARK2/parkin, PARK5/ubiquitin carboxyl-terminal 

hydrolase L1 (UCHL1), PARK6/PTEN-induced 
putative kinase 1 (PINK1), PARK7/DJ-1, PARK8/
leucine-rich repeat kinase 2 (LRRK2), PARK9/
ATPase type 13A2 (ATP13A2), PARK11/Grb10 
interacting GYF protein 2 (GIGYF2), PARK13/
Htr serine peptidase 2 (HTRA2/OMI), PARK14/
phospholipase A2, group VI (PLA2G6), PARK15/F-
box protein 7 (FBXO7), PARK17/vacuolar protein 
sorting protein 35 (VPS35) and PARK18/eukaryotic 
translation initiation factor 4 gamma 1 (EIF4G1) 
(Table 1). The phenotype of these familial forms of 
PD is consistent with that of idiopathic PD in terms 
of levodopa-responsive parkinsonism indicative of 
dopamine deficiency in the nigrostriatal pathway, 
whereas there seem to be some characteristic 
features dependent on the genes. Mutations 
in a-synuclein cause cognitive impairment and 
dysautonomia with Lewy body pathology. LRRK2 
mutations may result in a clinical phenotype 
closely resembling idiopathic PD with pleomorphic 
neuropathology. Mutations in parkin, PINK1, or DJ-1 
may lead to young-onset parkinsonism with a low 
risk for cognitive impairment with a pathology mainly 
restricted to the brainstem. Carrier of mutations 
in the other genes may rarely develop a disease 
resembling idiopathic PD (46, 47). Whether the 
mutations in these Mendelian forms of parkinsonism 
converge on the same cellular pathways such as 
mitochondrial dysfunction and oxidative stress 
remains to be elucidated, while understanding the 
mechanisms of each of these monogenic forms 
might decipher the pathogenesis of dopaminergic 
neurodegeneration in these diseases as well as in 
the idiopathic PD.

4.2. Lipid rafts in PD
4.2.1 a-Synuclein

a-Synuclein has been attracting a great 
deal of attention because of its implication in the 
pathogenesis of a-synucleinopathies including 
Lewy body disorder (LBD), i.e., PD, PD with 
dementia or dementia with Lewy bodies and multiple 
system atrophy as well as Alzheimer’s disease 
(48-51). Point mutations in the a-synuclein gene 
cause rare forms of autosomal dominant familial 
LBD (52-54). In addition, increased dosage of the 
wild- type gene appears sufficient to produce LBD 
(55-58). a-Synuclein is also a major component of 
Lewy bodies (LBs) and Lewy neurites, abnormal 
filamentous aggregates that are neuropathological 
hallmarks of LBD (59, 60). Although a growing body 
of evidence suggests an important role of a-synuclein 
in the pathogenic process of the disorder, the 
precise mechanism by which a-synuclein influences 
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neural degeneration and indeed its normal function 
remain poorly understood. a-Synuclein consisting 
of a 140-amino acid (a.a.), an abundant and 
highly conserved neuronal protein in vertebrates, 
is enriched in presynaptic nerve terminals (61-
64) and has been suggested to play a role in 
synaptic plasticity and neurotransmitter release 
(64-68). However, unlike most presynaptic protein, 
a-synuclein is not tightly associated with either the 
synaptic vesicle or the synaptic plasma membrane, 
because it behaves as soluble protein by differential 
centrifugation and gradient fractionation (63, 65, 69, 
70). The mechanisms responsible for its synaptic 
localization are thus not preserved in standard 
biochemical studies. In vitro studies suggest that 
a-synuclein binds to artificial vesicles, especially 
those containing acidic phospholipids (71-73). 
a-Synuclein has also been shown to associate with 
axonal transport vesicles (74), lipid droplets (75), 
and yeast membranes (76). We have elucidated that 
a-synuclein associates specifically with lipid rafts and 
that the raft association is required for the synaptic 
localization of a-synuclein (77). The A30P but not 
A53T mutation linked to PD disrupts the interaction of 
a-synuclein with lipid rafts. The results thus suggest 

an important role for lipid rafts in the normal function 
of a-synuclein and raise the possibility that perturbing 
raft association may induce changes in a-synuclein 
that contribute to the pathogenesis of PD. To 
understand how a-synuclein interacts with lipid rafts, 
we have developed an in vitro binding assay to rafts 
purified from native membranes (78). Recapitulating 
the specificity observed in vivo, recombinant wild 
type but not PD-associated A30P mutant a-synuclein 
binds to lipid rafts isolated from cultured cells and 
purified synaptic vesicles. Proteolytic digestion of 
the rafts does not disrupt the binding of a-synuclein, 
indicating an interaction with lipid rather than protein 
components of these membranes. We have also 
found that a-synuclein binds directly to artificial 
membranes whose lipid composition mimics that 
of lipid rafts. The binding of a-synuclein to these 
raft-like liposomes requires acidic phospholipids, 
with a preference for phosphatidylserine (PS). 
Interestingly, a variety of synthetic PS with defined 
acyl chains do not support binding when used 
individually. Rather, the interaction with a-synuclein 
requires a combination of PS with oleic (18:1n-9) 
and polyunsaturated (either 20:4n-6 or 22:6n-3) fatty 
acyl chains, suggesting a role for phase separation 

Table 1. Genetic risks of Parkinson’s disease
Gene symbol Gene Locus Mode Gene name Age at onset Lewy bodies

PARK1(SNCA), PARK4 4q22.1 AD α‑synuclein Around 40 +

PARK27 6q26 AR Parkin <40 − (+ in some patients)

PARK3 2p13 AD ? 35‑89 +

PARK5 4p13 AD UCH‑L1 <50 ?

PARK6 1p36.12 AR PINK1 Around 50 + in heterozygotes

PARK7 1p36.23 AR DJ‑1 27‑40 ?

PARK8 12q12 AD LRRK2 Around 65 +/‑ 

PARK9 1p36.13 AR ATP13A2 11‑16 ?

PARK10 1p32 SP ? Late ?

PARK11 2q37.1 AD GIGYF2 Late ?

PARK12 Xp21‑q25 SP ? Late ?

PARK13 2p13.1 SP HtrA2/Omi Late ?

PARK14 22q13.1 AR PLA2G6 20‑25 +

PARK15 22q12.3 AR FBXO7 10‑19 ?

PARK16 1q32 SP ? Late ?

PARK17 16q11.2 AD VPS35 Late ‑

PARK18 3q27.1 AD EIF4G1 Late +

GBA 1q22 SP Glucocerebrosidase 52+‑7 +
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within the membrane. Furthermore, a-synuclein 
binds with higher affinity to artificial membranes with 
the PS head group on the polyunsaturated fatty acyl 
chain rather than on the oleoyl side chain, indicating 
a stringent combinatorial code for the interaction of 
a-synuclein with membranes.

4.2.2. LRRK2
LRRK2 protein is a 2527 a.a. polypeptide 

(~280 kDa), consisting of leucine-rich repeats (LRR), 
Ras of complex proteins (ROC) followed by the 
C-terminal of Roc, mitogen-activated protein kinase 
kinase kinase (MAPKKK) and WD40 domains 
(79). LRRK2 protein belongs to the ROCO protein 
family. Although the functions of ROCO protein 
family remain unknown, LRRK2 might play a role 
in cell division and development according to the 
information from Dictyostelium ROCO proteins (80). 
In the rodent brain, LRRK2 is widely distributed 
including the SNc, caudate putamen, and olfactory 
bulb (81-83). In the human brain, recent in situ 
hybridization and immunohistochemical analyses 
revealed that LRRK2 also localizes within various 
brain regions associated with PD pathology (84). 
Therefore, LRRK2 supposedly has important 
functions in broad areas of the brain as well as 
the nigro-striatal dopaminergic pathway. In cells, 
LRRK2 proteins are mainly found in the cytoplasm. 
However, LRRK2 proteins are also present in 
membranous organelles including ER, Golgi 
complex, early endosomes, lysosomes, synaptic 
vesicles, mitochondria and plasma membrane 
(81, 85-87). Moreover, other groups reported 
that LRRK2 regulates the maintenance of neurite 
process morphology in mammalian brains (88) and 
interacts with Rab5a, which facilitates membrane 
internalization at synaptosomes (89). In C. elegans, 
LRRK2 homolog (LRK-1) also localizes in the 
Golgi complex and regulates the axon-dendritic 
polarity of synaptic vesicles (90). To characterize 
membrane association of LRRK2, we used cultured 
cells including primary neurons from mouse brains 
and showed the localization of LRRK2 in the Golgi 
complex, plasma membrane and synaptic vesicles. 
The localization of LRRK2 to the membranes resists 
solubilization by ice-cold 1% Triton X-100 but not 
extraction with increasing salt concentrations, 
indicating that LRRK2 associates with lipid rafts 
through an electrostatic bond. We also investigated 
the effects of mutations found in PD patients on 
the biochemical properties of LRRK2. Intriguingly, 
the mutants behave in a manner similar to the wild 
type, with regard to association with membrane 
including lipid rafts (87). The results suggest that 

LRRK2 mutants cause PD by inhibiting the normal 
function of wild type or gain of function effects on 
lipid rafts. Recently, Li and colleagues reported that 
LRRK2R1441G BAC transgenic mouse exhibited 
age-dependent levodopa-responsive bradykinesia 
and loss of TH positive dendrites in SNc (91). 
In addition, most of LRRK2-interacting proteins 
are cytoskeleton and trafficking proteins such as 
moesin (92), alpha/beta-tubulin heterodimers (93), 
clathrin and vimentin (94). These observations 
suggest that LRRK2 plays key roles in membrane 
trafficking and axon guidance through lipid rafts.

4.2.3. Parkin
Parkin, a 465 a.a. polypeptide, is implicated 

in the ubiquitin-proteasome system (UPS) as an 
E3 ubiquitin ligase, and mutations in the parkin 
gene is reported to result in loss of ligase function 
(95, 96). The UPS is involved in two tasks. One 
is the accurate timely regulation of the level of 
short-lived proteins that plays a role in processes 
such as cell-cycle regulation, signal transduction, 
and metabolism. The other task is protein quality 
control. Polyubiquitination of the target proteins for 
degradation by proteasomes is catalyzed by three 
enzymes, E1 (ubiquitin-activating enzyme), E2 
(ubiquitin-conjugating enzyme), and E3 ubiquitin 
ligase. Parkin has been shown to catalyze the 
proteasomal degradation of target proteins by 
interacting with E2 and target proteins through 
its RING domain (95, 97, 98), and by binding the 
Rpn10 subunit of 26S proteasomes through its Ubl 
domain (99). The target proteins tagged with the 
polyubiquitin chain linked via lysine27 or 48 are 
recognized and degraded by the proteasome (100). 
On the other hand, parkin has recently been shown 
to catalyze lysine63-linked ubiquitination which is not 
recognized by the proteasome (101, 102). Lysine63-
linked ubiquitination is involved in diverse cellular 
processes such as endocytosis(103-106) and protein 
sorting and trafficking (107-109). We have reported 
that parkin occurs in the Golgi complex in addition to 
the cytoplasm in human brain, although parkin has 
no transmembrane domain (110). In cultured cells 
and rat brain, parkin also associates with cellular 
vesicles as a peripheral membrane protein (111). 
The association of parkin with cellular vesicles might 
relate to that parkin plays a role in the membrane 
trafficking system through K63-linked ubiquitination. 
In our study to characterize the membrane 
association of parkin, treatment of the membranes 
at 4°C with high salt but not 1% TX-100 solubilizes 
parkin (111). Consistently, Fallon and colleagues 
have shown that parkin co-localizes with CASK, 
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mammalian homolog of Caenorhabditis elegans Lin-
2, at synapses in cultured cortical neurons as well as 
in postsynaptic densities and lipid rafts in brain (112).

4.2.4. DJ-1
DJ-1 is a 189 a.a. protein that forms a 

dimer and belongs to the THiJ/Pfp1/DJ-1 family. 
Several pathogenic mutations causing recessive 
PD have been identified in the DJ-1 gene, including 
exonic deletion, truncations, and homozygous and 
heterozygous missense mutations (46). To date, the 
functions of DJ-1 remain unclear, however, several 
experiments suggest that DJ-1 is involved in multiple 
functions, such as redox-sensitive chaperone (113), 
mitochondria protection against oxidative stress 
(114) and fertility (115). Especially, the anti-
oxidant functions of DJ-1 have been extensively 
reported in cultured cells (116), rodent (117), and 
drosophila models (118, 119). Intriguingly, DJ-1 
null mice showed normal numbers of dopaminergic 
neurons in the substantia nigra, whereas they 
displayed hypoactivity in open field and were also 
sensitive to MPTP and oxidative stress (120). 
Electrophysiological studies revealed that DJ-1 null 
mice had marked reduction of evoked DA overflow 
in the striatum, which is due to increased re-uptake 
of DA (121). Immunoelectron microscopic analysis 
identified DJ-1 proteins in striatal axons and pre-
synaptic terminals (122), indicating that DJ-1 might 
be associated with membrane trafficking at synaptic 
terminals, including vesicle recycling and exocytosis. 
We have recently reported that DJ-1 distributes to 
the cytosol and membranous structures in a punctate 
appearance in cultured cells and in primary neurons 
obtained from mouse brain (123). DJ-1 colocalizes 
with the Golgi complex proteins GM130 and the 
synaptic vesicle proteins such as synaptophysin 
and Rab3A. Förster resonance energy transfer 
analysis revealed that a small portion of DJ-1 
interacts with synaptophysin in living cells. Although 
the wild-type DJ-1 protein directly associates with 
membranes with no interposition of protein, the 
pathogenic L166P mutation of DJ-1 exhibits less 
binding to synaptic vesicles. These results indicate 
that DJ-1 associates with membranous organelles 
including synaptic membranes to exhibit its normal 
function. Very recently, Kim and colleagues (124) 
have shown that DJ-1 associates with lipid rafts 
via palmitoylation of three cysteine residues 
(C46/53/106) and C-terminal region of the protein 
with an enhancement of the association on stimulus 
with lipopolysaccharide (LPS) in astrocytes. Based 
on the observations of LPS-TLR4 signaling in 
astrocyte, they also showed an involvement of 

DJ-1 in the endocytic pathway through its lipid raft 
association. Discrepancy between results from their 
experiments and ours where DJ-1 associates with 
cellular membranes independent of lipid rafts can 
be due to the differences in the cell types or the 
external stimuli.

4.2.5. Idiopathic PD
Whereas there is little data suggesting 

the involvement of lipid rafts in idiopathic PD, it is 
exciting that lipids including sphingolipids represent 
a significant component of Lewy bodies (125, 126) 
of which a-synuclein is also a major component 
(59, 60). Fabelo and colleagues have recently 
reported alterations in lipid composition of DRMs 
from autopsied brains of PD. They purified DRMs 
from human frontal cortex and analyzed their lipid 
composition, showing dramatic reductions in their 
contents of n-3 and n-6 long-chain polyunsaturated 
fatty acids, especially docosahexaenoic acid (DHA) 
(22:6n-3) and arachidonic acid (AA) (20:4n-6) in PD 
compared with those in controls. Also, saturated 
fatty acids (16:0 and 18:0) were significantly higher 
than in control brains. PS and phosphatidylinositol 
were increased in PD, whereas cerebrosides, 
sulfatides and plasmalogens levels were diminished 
(127). Given that the association of α-synuclein 
with raft-like liposomes requires a combination of 
PS with oleic (18:1n-9) and polyunsaturated (either 
20:4n-6 or 22:6n-3) fatty acyl chains (78), the 
depletion of DHA and AA in DRMs from PD might 
unbind α-synuclein from the membranes, eventually 
altering the dynamics of aggregation/fibrillation state 
of α-synuclein (71), likely facilitating the Lewy body 
formation.

5. SUMMARY AND PERSPECTIVE

We hope that this review has convinced 
the reader of important roles for lipid rafts in the 
normal cellular functions and their involvement in the 
pathogenesis of PD. On the basis of a comprehensive 
review of data published, we would conclude that 
familial PD-linked proteins at least a-synuclein, 
LRRK2, parkin, and DJ-1 play roles in association 
with lipid rafts, with the caveat that DRMs are 
considered as lipid rafts in most of the studies. The 
alterations in lipid composition of DRMs from brains 
of idiopathic PD recapitulate an importance of lipid 
rafts in pathological process in PD. Taken together, 
it seems plausible that the proteins responsible 
for familial PD may contribute to homeostasis of 
lipid rafts (Figure 2). Further studies will need to 
investigate the implication of the PD-linked proteins 
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in lipid rafts using living cells and to understand how 
lipid rafts are involved in the pathogenesis of PD.
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