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1. ABSTRACT

The viral transactivator Rev is essential for HIV
replication, since it allows the nuclear export of unspliced
and partially spliced viral mRNAs that encode the
structural proteins. Rev is an RNA binding protein that
interacts with a highly structured RNA element, the RRE,
found  within the envelope sequences. This viral protein
also interacts with cellular proteins, termed nucleoporins,
and acts as an adaptor between the viral mRNAs and the
cellular nuclear export machinery. Both interactions are
specific, and required for Rev function. Because of its
crucial role in the HIV replication cycle, and its novel
mechanism of action, Rev represents an ideal target for
therapeutic intervention.  This review describes the efforts
towards Rev inhibition. Gene therapy approaches,
including the expression of trans-dominant mutants and
RNA decoys, as well as antisense therapies and small
molecule inhibitors of Rev-RRE binding or Rev interaction
with the cellular machinery will be discussed.

2. INTRODUCTION

HIV-1, the etiologic agent of Acquired Immunodeficiency
Syndrome (AIDS), displays a complex regulation of
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viral gene expression during its life cycle.  Unlike many
“simple” retroviruses (i.e. avian and murine leukemia
viruses), which express only three viral genes, the genome
of HIV-1 encodes nine genes whose expression patterns
are tightly regulated during the HIV-1 replication cycle
(Figure 1, for reviews see 1, 2, 3).  In the infected host
cell, HIV expresses over 20 distinct mRNA species
(reviewed in 4). The early stage of regulation of the HIV-1
life cycle is marked by the appearance of the viral
regulatory molecules Tat, Rev, and Nef, encoded by the
fully spliced 2 kb class of viral mRNAs. The late viral life
cycle gene expression is characterized by the cytoplasmic
appearance of the 4 kb class of single spliced and 9.2 kb
unspliced mRNAs, that encode the proteins required for
the assembly of infectious virions.  The viral transactivator
Rev allows this transition into the late cycle (5, 6), and is
therefore essential for viral replication. In effect, proviral
mutants that do not express Rev fail to produce structural
proteins and therefore cannot form new infectious viral
particles (5, 7).

Because of its essential role in HIV replication,
Rev constitutes an excellent target for therapeutic
intervention.  Its mode of action and specific interactions
with its target RNA and cellular proteins have been
extensively studied and elegantly elucidated, and this body
of knowledge adds to the attractiveness of Rev as a target.
The purpose of this article is to briefly review the latest
developments on Rev, and how this knowledge can be
used for development of anti-viral strategies, as well as to
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Figure 1. Schematic representation of the HIV-1 genome. Gag-pol and Envelope (gp 160) are the classical retroviral proteins.
Note the overlapping reading frames. In addition to these structural proteins and enzymes, HIV has a number of accessory
proteins that have crucial functions in the replication cycle and pathogenesis: Tat, Rev, Nef, Vif, Vpr and Vpu. Rev is
expressed very early in the life cycle, and is the product of a fully spliced mRNA.   

review current efforts in this field.

3. REV STRUCTURE AND FUNCTION

3.1 Rev domains
Rev is a 116 amino acid RNA binding

phosphoprotein that binds a cis-acting RNA regulatory
element contained within the env mRNA,  termed the Rev
response element (RRE) (8, 9, 10, 11).  Mutational
analyses of Rev have revealed several discrete domains: i)
an amino terminal domain that determines RRE binding
and nuclear localization, ii) an oligomerization domain,
flanking the RRE binding domain, and iii) a carboxy
terminal domain that acts as a nuclear export signal (NES)
and binding site for cellular proteins, known as the
activation domain (Figure 2).

The arginine-rich motif, located between amino
acids 35 and 50 in the Rev protein, is responsible for
nuclear localization as well as for the sequence-specific
interaction with the RRE (10, 12, 13, 14, 15). A 17 amino
acid peptide from this highly basic domain has been
shown by circular dichroism to form an α-helix that binds
the RRE with the same affinity as the full-length protein
(15). The sequences immediately adjacent to this basic
domain are critical  for Rev oligomerization, which is
required for full activity in vivo (13, 16, 17, 18).
Subsequent to binding, Rev monomers multimerize on the
RRE, in a process mediated by both protein-protein
interactions, and protein-RNA interaction (13, 19, 20).
Cellular cofactors binding to the activation domain
facilitate multimerization (21, 18).

In addition to the nuclear localization and RNA
binding domain, a protein activation domain which is
required to mediate Rev effector functions in vivo is
located at the carboxy terminus (22-26). A leucine-rich
region has been identified as the critical part of this
domain, which is required for interaction with cellular
protein(s) involved in the transport of HIV mRNAs (24,
25). This domain also acts as a nuclear export signal
(NES) (27, 28, 29, 30). NES have been identified in Rev

proteins from non-primate lentiviruses (30), as well as in

several cellular proteins: the inhibitor of cAMP-dependent
protein kinase (PKI) (28), the fragile X mental retardation
protein (FMRP) (31),  and the amphibian transcription
factor IIIA (32). Unlike the better known nuclear
localization sequences (NLS), this domain contains critical
hydrophobic residues (28), and like the NLS, all these
peptide domains are functionally interchangeable (28, 30,
31, 32) and capable of directing the export of unrelated
proteins (27, 28).

3.2 Rev-RRE interactions
Rev represents a paradigm for the arginine-rich

family of RNA binding proteins, and one of the best
studied. The target for Rev binding, the RRE, is a highly
structured 234 nucleotide RNA that forms an array of
stem-loops (33, 34, 35). It has been demonstrated that the
Rev binding site is located in a 13-nucleotide bulge
structure in stem-loop IIB, shown in Figure 3 (11, 13, 14,
19, 20, 36, 37) (Figure 3).  The secondary and tertiary
structure of the RRE has been deduced from the in vitro
selection of randomized RREs (38,39) and variation of
these sequences (40). Two purine-purine pairs within the
internal bulge of stem-loop IIB have been identified (37,
39- 42). These non-canonical base pairs open the major
groove of the A-form RNA double helix, making the bases
more accessible to the arginine-rich, positively- charged
Rev peptide (39, 41).

In addition to these in vitro studies, a genetic
strategy has been used to isolate Rev “suppressor”
mutations that alleviated the deleterious effects of
mutations in stem-loop IIB of the RRE (43). Taken
together, these studies suggested that the arginine-rich α-
helix of Rev docked into the major groove of the RNA
double helix in the bulge of stem-loop IIB. The three
dimensional structure of the high affinity RRE site (stem-
loop IIB) complexed with the arginine-rich Rev peptide
has recently been determined by nuclear magnetic
resonance (NMR) techniques (44, 45). These studies
confirm the purine-purine base pairs, separated by a non-
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Figure 2. Rev domains. The RRE binding domain (hatched box) is located between amino acid 35-50 in HIV-1 Rev, and is rich
in arginine residues. This domain is flanked by sequences important for oligomerization (shaded). The black box represents the
activation domain or nuclear export signal (NES). The sequences of other NES in related lentiviruses are shown in the insert.
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Figure 3. Structure of the Rev Responsive element (RRE). The stem-loop structure of the HIV-1 RRE is depicted here. Stem-
loop IIB (SLIIB) (shaded) contains the Rev binding site (RBE), shown within the box. The two non-canonical purine-purine
base pairs are indicated.
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conserved residue in the bulge, that cause the backbone to
twist in an S-shaped fold. As predicted, the major groove
is doubled in width, allowing the arginine-rich α-helix to
fit, making contacts with the phosphate backbone and with
purine residues (46).

3.3 Cellular factors that interact with Rev
Rev is functional in a wide variety of eukaryotic

cells, including yeast, Drosophila, Xenopus oocytes, and
mammals (25, 47, 48, 49). Thus, the Rev cellular
cofactor(s) may be evolutionary conserved proteins,
essential for the function of normal cells. Several cellular
factors have been described to interact with Rev. The
murine protein YL2 and its human homologue p32 were
shown to interact with the basic domain of Rev, the same
domain that interacts with the RRE and contributes to the
oligomerization process (50, 51, 52). The p32 protein
associates with ASF/SF2, an essential splicing factor (53),
and is thought to function as a link to the cellular splicing
machinery. Rev has been shown to recruit ASF/SF2 itself
to the Rev-RRE complex in vitro, thus causing inhibition
of splicing (52).  However, ASF/SF2 is not specific for
Rev, since it also binds to the basic RNA binding domain
of Tat (54), and it does not bind to the activation or
effector domain of Rev, which has been shown to be
essential for Rev function (22-26).

The Rev leucine-rich effector domain was
considered a more likely candidate for interaction with
cellular factors specific for Rev function, since mutations
in this domain (Figure 2) abrogate Rev function whether
fused to its own RRE-binding domain or to heterologous
RNA binding sequences (55). In further support of this
model, non-functional Rev mutants in the activation
domain which contain an intact RNA binding domain,
exhibit a potent dominant-negative effect (12, 23, 25). At
least two cellular proteins have been shown to bind to the
activation domain of Rev: the eukaryotic initiation factor
5A (eIF-5A) (56), and a novel class of nuclear pore-
associated proteins (57, 58, 59, 60). Although the role of
eIF5A in mediating Rev function is not completely
understood, it has been shown that non-functional mutants
of this protein that still retain their ability to bind Rev
inhibit Rev-mediated nuclear export, in yeast and in
human T cells (61). A novel yeast cellular protein that is
part of the nuclear pore complex, called Rip1p (59), and
its mammalian homologue , hRIP/Rab (57, 58) were found
to bind to the activation domain of Rev, as well as to that
of HTLV-I Rex (58), as required for a true cofactor of
HIV-1 Rev function, since Rev and Rex, together with the
Rev proteins from other lentiviruses have functionally
equivalent activation domains (58).  The RIP/Rab protein
contains a series of repeats containing the amino acids
phenylalanine and glycine, known as FG repeats. These
repeats are characteristic of a class of nuclear pore
proteins called FG nucleoporins (62). Rev has also
recently been shown to interact with multiple FG
nucleoporins in yeast and in mammalian cells (60), and
the ability of Rev mutants to interact with these proteins

correlates with their ability to promote nuclear export of
RNA (60). These cellular proteins are important in the
nuclear export process, and they have been shown to bind
other NES in cellular proteins, such as PKI (29, see
Section 3.1).

3.4 Mechanism of action of Rev
 Two main hypotheses have been proposed for
the mechanism by which Rev causes the relocalization of
unspliced or partially spliced viral mRNAs in the
cytoplasm: 1. inhibition of some aspect of pre-mRNA
splicing by Rev, leading to increased mRNA transport to
the cytoplasm, and 2. direct effect of Rev to increase the
nuclear export of pre-mRNA species.

Most of the evidence in favor of the role of Rev
in inhibition of splicing was originated in  in vitro
experimental systems. These studies showed that
inefficient splicing is a pre-requisite for Rev function and
that Rev inhibits the splicing of RRE-containing introns
(63, 64). An arginine-rich peptide from the NLS/RNA
binding domain of Rev has been shown to block the entry
of the essential U4/U6.U5 small ribonuclear protein
complex in the spliceosome assembly in vitro (65).
However, this block does not require the presence of the
Rev activation domain, that has been shown to be essential
for Rev function in vivo. In addition, it has not been
demostrated that this in vitro-observed inhibition of
splicing is required in vivo for Rev function.

Although both models are plausible and not
necessarily mutually exclusive, a recent large body of data
points to RNA export rather than splicing as the
mechanism of action of Rev, and a direct effect of Rev on
the cellular nuclear transport machinery has now been
demonstrated (49, 57-60). Earlier evidence in support of a
role of Rev in nuclear export stemmed from the fact that
no incompletely spliced viral mRNAs are exported to the
cytoplasm in the absence of Rev, in human T cells
containing stably integrated proviruses (66). Moreover, a
sequence from an unrelated retrovirus, the Mason-Pfizer
monkey virus, was shown to enable Rev-independent HIV
replication, possibly by interacting with a cellular factor
that plays a role in mRNA transport analogous to that of
the Rev protein (67). More recently, the simultaneous
discovery of the nucleoporin RIP/Rab by three independent
laboratories (57-59) as a cellular cofactor for Rev function
confirmed that Rev plays a direct role in the nuclear export
of pre-mRNAs. As described in Section 3.1, several
cellular proteins have been shown to contain nuclear
export signals (NES) functionally homologous to that of
Rev (28, 31, 32). Taken together, this evidence indicates
that Rev acts as an adaptor to allow RRE-containing viral
mRNAs to access a pre-existing cellular export pathway
(29).

4. Rev as target for therapeutic intervention
As described above, Rev function is essential for

viral replication. No cellular homologs of Rev have been
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described so far. Several steps are required for Rev
function: binding to the RRE, oligomerization of Rev
monomers, and interaction with cellular factors from the
nuclear transport machinery. Each of these steps provide
potentially specific targets for therapeutic intervention,
and the fact that the structural contacts for RRE binding,
as well as the role of Rev in nuclear export and its
interaction with cellular proteins are now well understood
makes this protein a very attractive therapeutic opportunity
for the treatment of HIV infection and AIDS.  Even though
Rev represents an excellent viral target, no anti-Rev
compounds have yet entered clinical trials, although some
clinical studies have been initiated using gene therapy
approaches involving Rev (see 68 for review of these
efforts). In this Section, I will review the results of gene
therapy, antisense and drug discovery efforts focused on
the Rev protein.

4.1 Rev as a target for gene therapy
The resistance of HIV to anti-viral drugs,

especially in the early days of single-drug regimes, has
prompted a search for alternative methods of therapy. One
approach has been gene therapy, meaning the transfer of
antiviral genes to infected cells. This strategy is based on
the notion that these “therapeutic” genes will render target
cells resistant to HIV replication. Gene therapy can be
based on the expression of suppressor proteins, or on
expression of anti-viral RNA or DNA molecules. Some
excellent review articles on gene therapy of AIDS have
been published in the past few years (68-71). An extensive
review of the anti-HIV gene therapy approaches is beyond
the scope of this article, and I will focus on strategies
involving Rev.

4.1.1 Protein-based suppressors of Rev function
One of the most advanced protein-based

approaches involves the Rev mutant M10,  a trans-
dominant negative mutant with amino acid substitutions at
positions 78 and 79 in the NES/activation domain, that
retains the ability to bind to the RRE and multimerize, but
is unable to effects its role in transport of pre-mRNAs (25,
72). Because of its trans-dominant negative phenotype, the
M10 protein inhibits HIV replication when expressed in
stable cell lines (73-76). In HIV infected patients Rev
M10-transduced T cells showed increased survival
compared to T cells transduced with a vector expressing a
deletion mutant of Rev M10 (77). High levels of M10 are
required to inhibit viral replication in primary cells, and
the choice of vectors is therefore critical to the success of
gene therapy (78). A Phase I clinical trial taking into
account these parameters has been initiated by Systemics,
Inc. (Palo Alto, CA).

Another protein-based strategy that has been
explored is expression of an anti-Rev single-chain
antibody (79). This single-chain antibody, or SFv, was
expressed from a construct consisting of both light and
heavy chain variable regions of an anti-Rev monoclonal
antibody. Intracellular expression of this SFv resulted in a
level of inhibition of HIV replication comparable to that

shown with the Rev M10 transdominant mutant (79). This
antibody appears to sequester Rev in the cytoplasm, thus
preventing it from exerting its function in nuclear
transport.

4.1.2 Intracellular expression of RNA-based Rev
inhibitors

A large portion of the anti-HIV gene therapy
efforts is based on RNA-based suppressors of viral
replication, like ribozymes and RNA decoys. Ribozymes
are RNA molecules that can be engineered to cleave RNA
at specific sites (80). Retroviral vectors expressing
hammerhead ribozymes targeted against different regions
of the HIV genome have been shown to inhibit viral
replication in transduced cells (81-83). A hammerhead
ribozyme targeting the common exon of the Tat and Rev
genes has been shown to inhibit HIV replication in a
human T cell line (84).  Because ribozymes are extremely
sequence specific, mutations in the virus would rapidly
result in resistance. To address this concern, combination
strategies with ribozymes  that target different sites, or
with ribozymes together with other antiviral genes, such as
RNA decoys, have been proposed. In fact, a fusion
molecule consisting of a ribozyme targeting the U5 region
of the HIV LTR and an RNA decoy representing stem-loop
IIB of the RRE, has been shown to be more efficient than
ribozymes or RNA decoys alone (85, 86).  The expression
of antisense RRE decoys in retroviral vectors is also being
explored as of potential therapeutic value (87-89). The
effects of stable expression of antisense RNA targeting the
Rev, Tat, and Vpu genes on viral replication has also been
investigated, and showed to be of limited efficacy (90, 91).

Although gene transfer for the treatment of HIV
infections is an attractive alternative or complement to the
use of antiviral drugs, it is still not a reality, and many
problems related to gene delivery and level of expression
remain to be solved (69). More classical antiviral
approaches, such as drug discovery, are being pursued,
extending the efforts towards other viral targets, and one
of these is Rev. The next Sections will describe antisense
and drug screening targeting the Rev protein, that do not
involve gene transfer.

4.2 Inhibiting Rev function via antisense
oligonucleotides and other nucleic-acid molecules

The antisense RNA strategy was inspired by a
naturally occurring mechanism of gene regulation in
prokaryotes (92). The specificity of Watson-Crick base
pairing made antisense molecules very attractive as
potential therapeutic agents. A vast amount of literature
exists on the application of this strategy to human
diseases, including viral infections (reviewed in 93). Both
unmodified and modified antisense oligonucleotides
directed against various HIV RNA sequences have been
shown to inhibit viral replication, both in a sequence-
specific and in a non-sequence specific manner. A
synthetic phosphorothioate oligodeoxynucleotide targeting
Rev mRNA has been shown to have antiviral activity in
chronically infected cells, inhibiting HIV replication by
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80% at 25 µM (94), possibly through inhibition of
translation. Since very early on, oligonucleotides
complementary to the RRE sequences were shown to have
the capability of disrupting Rev-RRE binding in vitro (95),
several modified oligonucleotides targeting different stem-
loops of the RRE have been tested for inhibition of viral
replication (96, 97), and found to inhibit viral replication
in a specific manner.

A novel nucleic acid-based approach towards
inhibition of HIV infection by blocking Rev function has
been the use of decoy RNA-DNA chimeric
oligonucleotides containing the high affinity 13 nucleotide
“bubble” structure of stem-loop IIB (see Figure 3) (98).
These chimeric decoy bound the RRE with high affinity in
vitro and were shown to inhibit HIV replication 40-70% at
~10 mM, using various assays (98).

In spite of the enthusiasm generated by the use
of phosphorothioate oligonucleotides in the area of viral
diseases, to date these strategies have met with limited
success and significant issues remain in their potential use
as therapeutic agents, including efficacy, cell permeability,
delivery and cost. Because of the present limitations of
both gene therapy and nucleic-acid-based antivirals, it is
important that traditional approaches, such as screening
for compounds with anti-Rev activity, are explored. The
next Section will review the low molecular weight
compounds and natural products that inhibit Rev.

4.3 Low-molecular weight compounds and natural
products that inhibit Rev

Rev has been considered a promising target for
therapeutic intervention of HIV infections since it was
proven to be essential for HIV replication. The earliest
attempts at intefering with its function were based on
antisense technology, in the late 1980s (see previous
Section). In the past few years, knowledge of the
mechanism of action of Rev has increased rapidly, and it
became clear that Rev offers several molecular targets for
drug discovery. The very specific Rev-RRE interactions
have been a preferred target for drug discovery, since it
has no cellular counterpart. At the same time, other groups
have focused on cell-based assays that would allow
discovery of a drug that acts at the level of the interaction
of Rev with the cellular transport machinery, as well as at
the RNA-binding level. The next sections will describe the
compounds and natural products that have been found to
interfere with Rev function, as well as their potential
usefulness as therapeutic agents. A list of these agents is
presented in Table 1. 4.3.1. Intercalating agents and
other RNA-binding compounds

The first approaches towards anti-Rev drug
discovery focused on the Rev-RRE interaction. Because
Rev binds to an RNA target, intercalating agents with
specificity or preference towards RNA were investigated

as potential Rev-RRE inhibitors. The intercalating dye
pyronin Y was reported to completely block the formation

of the Rev-RRE complex  in vitro, at low µM
concentrations (99). In agreement with previous reports
that Rev-RRE binding is a pre-requisite for
oligomerization (13, 19, 20) this intercalating agent also
block the formation of multimeric complexes. Despite
these strong in vitro effects, the dye failed to inhibit HIV
replication in cytoprotection assays, in part because of its
high levels of cellular toxicity (99). This result was not
altogether surprising since pyronin Y is known to
intercalate DNA in addition to RNA. Other intercalating
agents, derivatives of diphenylfuran, were also reported to
inhibit Rev-RRE interaction, by causing a conformational
change in the RRE (100). Although these agents can be
useful as probes to investigate the precise mechanism of
Rev-RRE binding,  intercalating agents are clearly not
attractive molecules from a therapeutic point of view,
because of their many toxic and mutagenic effects.

Non-intercalating compounds with previously
known RNA binding properties were also candidates for
inhibition of Rev-RRE binding. In this group of molecules,
the aminoglycoside antibiotic neomycinB and some of its
analogs were reported to disrupt Rev binding to the RRE
in a specific manner (40, 101). Aminoglycoside antibiotics
are known to act at the level of prokaryotic ribosomes,
disrupting mRNA translation by binding to 16S RNA
(102,103). In addition to binding to bacterial 16S RNA
and to the RRE, these antibiotics have been also reported
to interfere with splicing (104) and to bind to hammerhead
ribozymes (104).  The binding affinities of the
aminoglycosides for their RNA targets are not very high,
they are in the low µM range (40, 101, 104, 105), and
therefore not surprisingly this binding has been shown to
have a low degree of specificity or selectivity (106).
Because of this, it is expected that a large number of
cellular RNA molecules will bind to these compounds in
the µM range. In fact, aminoglycoside antibiotics are
known to be quite toxic to human (107). As with
intercalating agents, these molecules are also not very
interesting from a therapeutic point of view, due to toxicity
and lack of specificity.

4.3.2 Screening approaches
A classical approach towards drug discovery has

been the random screening of  a vast number of synthetic
organic compounds or fungal/plants extracts. This method
of discovery, combined with the use of medicinal
chemistry, has been very successful in discovering new
activities resulting in the development of therapeutic
agents.  Not surprisingly, this approach has been utilized
to discover compounds capable of inhibiting Rev function.

A small-molecule inhibitor of Rev was
discovered at Sterling-Winthrop (now Sanofi-Winthrop),
using a 96-well plate assay to measure Rev function in
transfected cells (108).  The assay measured production of
the p24 protein from the HIV gag-pol gene as a result of
Rev expression, in COS-1 cells. A series of structurally
related compounds, 8-alkyl-2-(4-pyridyl)pyrido[2,3-
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Table 1. Low molecular weight inhibitors of Rev function. The structure of the compounds described so far as Rev inhibitors is
shown, as well as the molecular target and their effect on HIV replication assays.

Compound Molecular target Inhibition of HIV replication
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d]pyrimidin-5(8H)-ones, were found to inhibit Rev-
dependent p24 production with an IC50 in the low µM
range. These compounds were also found to inhibit HIV-1
replication in a human T lymphoma line in the same
concentration range. Because cytotoxicity was observed at
concentrations of ~25 µM, these compounds are not likely
to be of therapeutic use in their present form, although
they could be considered leads for the design of less toxic,
more potent derivatives. At the same time, this effort has
provided proof that inhibitors of Rev can be found using
classical screening approaches.

 A screening of natural products using an in vitro
Rev-RRE binding assay was carried out at Bristol-Myers
Squibb. Three novel natural products, one from a plant
and two from fungi, were discovered and isolated by bio-

assay guided fractionation (109, 110). The plant
metabolite, niruriside, was isolated from Phyllanthus
niruri, a plant widely used in Indian traditional medicine.
This compound was shown to inhibit binding of Rev to the
RRE at an IC50 of 3 µM, while the IC50 on an unrelated
protein-RNA binding system (the R17 coat
protein/operator RNA) was greater than 130 µM (109).
However , this compound did not protect CEM-SS cells
from acute HIV infection (109). Likewise, the two fungal
metabolites, harziphilone and fleephilone, from the fungus
Trichoderma harzianum, were found to inhibit Rev-RRE
binding by 50 % at 2-8 µM, but had no anti-HIV activity
as tested in the cytoprotection assay (110). Because of this
lack of antiviral activity, these natural products are not
considered useful. It is not clear why these compounds
failed to inhibit HIV replication: since they were
discovered in an in vitro assay, it is therefore possible that
these metabolites fail to enter the cell, are metabolized by
it, or have masking cytotoxic effects. These concerns were
not addressed by these publications.

In contrast with Rev-RRE binding approaches, or
cell-based assays measuring Rev function, a recent effort
to discover inhibitors of Rev has focused on nuclear export
(111). Rev acts in conjunction with the cellular nuclear
export machinery, and to function it needs to translocate
from the nucleus to the cytoplasm (see Sections 3.3 and
3.4). Four antibiotics of the leptomycin-kazusamycin
family were found to inhibit the export of Rev to the
cytoplasm at nanomolar concentrations, in Rev-expressing
HeLa cells treated with actinomycin D. Leptomycin B was
found to be specific in its inhibition of the nuclear export
pathway, while it had no effect on nuclear import
processes (111).  This antibiotic was also found to inhibit
HIV-1 replication in primary human monocytes, with an
IC50 of 0.6 nM (111). However, because of its long-term
toxicity in tissue culture, leptomycin cannot be used
therapeutically. Although this drug was shown to affect
only Rev-dependent gene expression, it is possible that the
transport of other cellular molecules (proteins or ribosomal
or small nuclear RNAs) is also inhibited. The inhibition of

a cellular pathway used by Rev could explain the toxic
effects of this drug, and it raises the possibility that all
Rev inhibitors that  affect this Rev function will prove
unsuitable as therapeutic agents. A greater knowledge of
the nuclear export pathway used by different cellular
protein and mRNA species will be necessary to evaluate
this hypothesis.

Although none of the compounds discovered to
inhibit Rev function is currently being pursued as potential
drugs, it is important to point out that drug discovery is a
laborious and sometimes slow process, and that Rev has
only recently become a target for discovery and
development. At Oncogene Science, Inc., we are carrying
out high throughput screening seeking Rev inhibitors,
using a cell-based assay similar to the one used at
Sterling-Winthrop (108). This program is in the early
phases, and we hope to contribute new entities with new
activities.

5. CONCLUSIONS AND PERSPECTIVE
The recent excitement generated by the

combination therapies using reverse trancriptase inhibitors
and protease inhibitors has produced renewed interest in
the biotechnology/pharmaceutical industry to search for
new therapies targeting other viral proteins, such as
integrase. Because of its crucial function in HIV
replication, Rev represents an attractive target. Gene
therapy and nucleic acid-based approaches have been the
primary focus of both academic and industry researchers in
this area. Although these novel therapies are very
promising, they are still in early stages. The encouraging
results of these approaches in tissue culture systems
validate Rev as a target for anti-HIV intervention. Using
more classical approaches, some Rev inhibitors have been
discovered, although none of them appears to be likely to
be developed into a therapeutic agents. All of these
approaches are in early phases, and these first attempts
represent proof-of-principle experiments indicating that
Rev-RRE interactions can be disrupted by small
molecules, and that Rev interactions with the cellular
machinery of nuclear export are also a valid molecular
target for drug discovery.
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