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1. ABSTRACT

The antigen receptor signaling pathway in
lymphocytes is vital to their development and
biological function. Recent studies have shown that
protein tyrosine kinases and phosphatases are
essential components in this receptor signaling
pathway and therefore, are critical for the
development of mature and functionally competent
lymphocytes. The Src kinase family of protein
tyrosine kinases coordinates the early signaling
events in antigen receptor signaling via
phosphorylation of tyrosine-based substrates. These
kinases are regulated by the concerted action of the
Csk family of non-receptor protein tyrosine kinases
and the protein tyrosine phosphatase, CD45. A
complex set of phosphorylation and
dephosphorylation events regulate protein tyrosine
kinase activity. Upon antigen stimulation, Src protein
tyrosine kinases in conjunction with the tyrosine
kinases, ZAP-70 and Syk initiate downstream
effectors leading to Ca2+ mobilization, the activation
of the Ras pathway and transcriptional activation. The
roles of the various adapter proteins in these
pathways are now being elucidated. It is apparent that
a network of phosphorylation events connect the
antigen receptor to intracellular signaling pathways.
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2. INTRODUCTION

Current model for antigen receptor signaling in
lymphocytes

The T cell receptor (TCR) is a multisubunit
complex of eight transmembrane proteins (1-3) (Fig.
1). The antigen recognition heterodimer consists of
alpha-beta subunits that are non-covalently attached
to CD3 components, gamma-epsilon, delta-epsilon
and a homo- or heterodimer consisting of zeta or eta
chains. Zeta chain homodimers are the most
prevalent. The alpha-beta dimer confers efficient
receptor recognition, while the CD3 dimers and zeta
chains are critical for receptor expression and signal
transduction. Expression of the TCR requires a fully
assembled receptor, supporting the notion that the
subunits are necessary for normal T-cell function. A
functionally similar receptor complex appears in B
cells (Fig. 2). The B cell receptor (BCR) consists of
the surface Ig (sIg), which is the antigen recognition
structure, in a non-covalent complex with two
disulfide bonded heterodimers, containing an Igalpha
subunit and an Igbeta subunit (1-4).

T- and B-cell activation requires
stimulation of antigen receptors to initiate signal
transduction via tyrosine phosphorylation (1-3). In
addition, co-stimulatory proteins such as CD4, CD8
and CD28 for T cells, and CD19 and CD21 for B
cells participate in the antigen recognition process.
TCR engagement through either MHC antigen
coupling or anti-TCR antibody crosslinking results in
tyrosine phosphorylation by the Src kinases, Lck and
Fyn of the immunoreceptor tyrosine-based activation
motifs (ITAMs) located in the cytoplasmic domains of
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Figure 1. Regulation of antigen receptor-mediated signal transduction in T cells.
Prior to TCR activation, CD45 dephosphorylates Lck and preserves it in an active state, ready for coupling to the
TCR upon antigen stimulation. After TCR activation, Lck and Fyn phosphorylate the zeta chains, enabling ZAP-70
interaction and initiating the signal transduction. Noted are the signaling pathways leading to IP3 and Ras. In
addition, substrates which are tyrosine phosphorylated after TCR activation are listed.

Figure 2. Regulation of antigen receptor-mediated signal transduction in B cells.
The early events of BCR signal transduction are postulated to follow a pattern similar to those for TCR signal
transduction. CD45 dephosphorylates Lyn and maintains it in an active state for coupling to the BCR upon antigen
stimulation. After BCR activation, Lyn phosphorylates BCR, enabling Syk interaction to initiate signal transduction.
Noted are the signaling pathways leading to IP3 and Ras.
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CD3 and zeta chains. The ITAM consensus sequence,
D/EX7D/EX2YX2L/IX7YX2L/I (where X is any amino
acid), is present three times in the zeta chain and
once in each CD3 component. Phosphorylation of the
ITAMs leads to rapid recruitment and
phosphorylation of the protein tyrosine kinase, ZAP-
70 which in turn interacts with signaling molecules to
initiate downstream effectors for inositol 1,4,5-
triphosphate (IP3) and Ras. In B cells, a similar
process occurs. BCR stimulation results in the
phosphorylation by Lyn, Fyn and Blk, and of the
Igalpha and Igbeta subunits, followed by rapid
recruitment of Syk and other downstream effectors,
thereby initiating IP3 and the Ras pathway (1-4).

Recent studies have further clarified the
lymphocyte signaling pathway and characterized
important components governing signal transduction.
In addition, significant gains have been made in
describing the interactions of these components with
associated molecules and their effects on cell
proliferation, differentiation, function and apoptosis.
This review focuses on the current roles elucidated
for the Src and Syk/ZAP-70 protein tyrosine kinases
and the protein tyrosine phosphatase CD45.

3. PROTEIN TYROSINE KINASES

The Src family of protein kinases contains
nine family members: Src, Blk, Yes, Yrk, Fgr, Hck,
Fyn, Lyn and Lck (1). The primary structure of the
Src kinases can be subdivided into several interaction
domains (Fig. 3). The amino-terminal region contains
a Src homology 4 (SH4) domain for myristylation,
palmitylation and interactions with acidic
phospholipids. Adjoining the SH4 domain is a 50-80
amino acid stretch which acts as a putative cell
surface protein binding region. This is followed in
order by an SH3 domain and an SH2 domain, which
bind to proline-rich sequences and tyrosine
phosphorylated proteins, respectively. The kinase
domain adjacent to the SH2 domain contains a
tyrosine autophosphorylation site, that potentiates
enzymatic activation. Another tyrosine
phosphorylation site, located in the carboxyl-
terminus, serves a negative regulatory function.
Phosphorylation of these tyrosines regulates Src
kinase activity.

T cells express three Src family members:
Lck, Fyn and Yes. Lck interacts with the cytoplasmic
tails of CD4 and CD8alpha, whereas Fyn associates
with the cytoplasmic tail of CD3 chains and zeta
chain (2,5,6). Upon TCR activation, Lck and Fyn
initiate the phosphorylation of ITAMs on zeta chains,
CD3eta, CD3gamma and CD3delta. In addition they
are implicated in the phosphorylation and activation
of ZAP-70 and/or Syk (6-8).

B cells express Lyn, Lck, Fyn and Blk (1,
4). Similar to TCR activation, a cascade of
phosphorylation events occurs upon BCR stimulation.

The Src kinases are activated and presumably
phosphorylate the ITAMs on Igalpha and Igbeta,
which leads to the phosphorylation of Syk.

Syk and ZAP-70 have similar primary
structures that consist of two amino-terminal SH2
domains and a kinase domain linked by hinge regions
(1,6,9). Antigen activation results in the recruitment
of ZAP-70 and Syk to the TCR and BCR, respectively
by interacting via their SH2 domains with the doubly
phosphorylated ITAMs. Trans- and auto-
phosphorylation by Src and/or ZAP-70/Syk increases
kinase activity (6).

3.1 Signaling pathways involving protein tyrosine
kinases

Activation of the immune response in
lymphocytes induces various cellular events such as
cytoskeletal rearrangement, gene transcription and
cell proliferation. The Ras/Rho family of GTPases are
important in initiating these events. These GTPases
convert extracellular stimuli into intracellular signals
by regulating the activities of serine/threonine
kinases, known as mitogen activated protein kinases
(MAPK) (10). MAPK in turn controls gene
expression important for many cellular functions,
including cell growth and differentiation. The MAPK
family can be subdivided into three subfamilies:
extracellular signal regulated kinases (ERK), stress
activated protein kinases (SAPK) or c-Jun N-terminal
kinases (JNK) and p38 kinase (11). The Ras family
controls ERK through the serine/threonine protein
kinase, Raf. The Rho family of small GTPases is
responsible for regulating stress activated protein
kinases, SAPK or JNK. Along with the Ras and Rho
pathways, mobilization of intracellular Ca2+ is also
activated during the activation of the immune
response. This is achieved through the activation of
phospholipase C (PLC)-gamma1 and PLC-gamma2.
IP3 and diacylglycerol are formed from the hydrolysis
of phosphoinositol bisphosphate (PIP2) by
PLCgamma. In due course, intracellular Ca2+

mobilization results from IP3 stimulation.
Concurrently, diacylglycerol activates various
isoforms of protein kinase C, which gives rise to
serine/threonine phosphorylation of selective
substrates (3).

To transduce the signal from the membrane
receptors to any of the downstream pathways requires
intermediary molecules known as adapter proteins.
Many of these adapter proteins contain SH2 and/or
SH3 domains making them fully capable of binding
and recruiting numerous proteins (2). Upon
stimulation of the immune response, adapter proteins
are tyrosine phosphorylated conceivably by Src
kinases or ZAP-70/Syk (1,2). In the Ras pathway,
putative SH2 adapter proteins such as Vav and Shc
are tyrosine phosphorylated. The 46-52kDa protein,
Shc binds to the adapter protein Grb2, which is
constitutively associated to Sos, the guanine
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Figure 3. The domain structure of the Src protein tyrosine kinase family.
The domain structure of the Src kinase family is shown, with the tyrosines in the autophosphorylation site and
carboxyl-terminal domain indicated. The SH2, SH3, SH4 and kinase domains are shown. Nine members of the Src
family are listed.

nucleotide exchange factor for Ras. Shc can also
interact directly with the phosphorylated zeta chains
of the TCR, thereby coupling TCR stimulation to the
Ras pathway (12). Vav, a 95kDa guanine nucleotide
exchange factor, is implicated in Rho and Ras
pathways. Moreover in the Ca2+ pathway, tyrosine
phosphorylation of PLC-gamma1 and PLC-gamma2
leads to enhanced lipase activity, resulting in
increased formation of IP3 and diacylglycerol from
PIP2, and consequently elevated intracellular Ca2+

concentration.

ZAP-70 and Syk are involved in
phosphorylating components necessary in initiating
the Ras signaling pathway (1,2). Vav interacts with
and is phosphorylated by Syk and ZAP-70 in
activated B and T cells, respectively (13). Syk
interaction with Vav is dependent upon a catalytically
active Syk, the SH2 domain of Vav and the
phosphorylated tyrosine residues in the linker region
of Syk. In addition, T cells transfected with Syk and
Vav results in increased activation of the nuclear
factor of activated T cells (NFAT). Hence Syk and
ZAP-70 via Vav couple the antigen receptor to the
Ras signaling pathway.

Additional evidence associates Vav
phosphorylation in COS-7 cells with the activation of
JNK and the engagement of Rac-1 activity (14,15).
Rac-1 is a member of the Rho family of GTPases,
which are responsible for regulating JNK.
Furthermore Vav signaling through JNK is down
regulated in Rac-1 dominant negative mutants,
supporting a relationship between Rac-1 and Vav
(15). Other studies show Vav and Rac-1 involvement
in mitogenesis, the Ras pathway and NFAT related T

cell responses (16-19). Since Vav has SH2 and SH3
domains, it is possible that it can recruit proteins
involved in both Ras and Rho pathways and couple
them to antigen receptor-associated tyrosine kinases.
Further clarification of the Vav signaling pathway is
required.

As noted above, Shc and Grb2 are linked in
the Ras pathway. Upon BCR stimulation, Shc is
tyrosine phosphorylated. B cells deficient in Lyn or
Syk display a decrease in Shc phosphorylation and
Grb2-Shc association is reduced (20). These findings
suggest that Shc phosphorylation is dependent on Lyn
and/or Syk. Immunoprecipitation studies of Shc in B
cells and co-transfected COS-1 cells show that Syk
associates with and phosphorylates Shc. Altogether
these results point to an involvement for Syk and Lyn
in coupling the antigen receptor to the Ras pathway
via Shc and Grb2.

SLP-76, a 76kDa SH2 adapter protein that
is tyrosine phosphorylated during T cell activation, is
preferentially phosphorylated by ZAP-70, and
interacts with Grb2 and PLC-gamma1 (21). Over
expression of SLP-76 in T cells results in a
hyperactive receptor, whereas expression of a mutant
SLP-76 that cannot be phosphorylated diminishes
receptor function. Furthermore, decreased
phosphorylation of SLP-76 is found in T cells
expressing a catalytically inactive ZAP-70. These
findings imply a role for SLP-76 in antigen receptor
signaling which appears to require ZAP-70, and may
involve the Ras and Ca2+ pathways.

Fyn and Lyn phosphorylate c-Cbl, a 116
kDa product of a proto-oncogene, which binds to
Grb2 and the p85 subunit of phosphatidylinositol 3’-
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kinase (PI 3-kinase) (22-25). Fyn, through its SH2
domain, associates with and tyrosine phosphorylates
c-Cbl in activated T cells and IL-3 stimulated murine
myeloid cells (23-25). Also in activated B cells, the
phosphorylation of c-Cbl is dependent on interactions
with Lyn but not Syk (25). However binding assays
using GST-fusion proteins demonstrate that the SH2
domain of Fyn can bind to non-phosphorylated c-Cbl,
suggesting that Fyn may also interact with c-Cbl in a
phosphotyrosine-independent manner (24). These
results indicate that Fyn probably binds to c-Cbl
regardless of it phosphorylation state.

Although the biological function of c-Cbl is
not well defined, recent findings suggest that it may
play a role in the Ras signaling pathway. Antigen
stimulation causes Crk, a SH2/SH3 adapter protein,
to bind to tyrosine phosphorylated c-Cbl, and results
in the presence of c-Cbl-Crk complexes in the
membrane particulate fraction (26). These Crk
complexes are formed via interactions with SH2
domains of Crk. The SH3 domains of Crk
preferentially bind C3G, a nucleotide exchange factor
involved in the activation of Rap, the negative
regulator of the Ras pathway. These results imply that
Crk proteins may be responsible for co-localizing
C3G to Rap at the membrane surface. As a result,
Lyn or Fyn phosphorylates c-Cbl which in turn
interacts with Crk, thereby engaging Rap mediated
down regulation of Ras.

Ca2+ mobilization requires PLC-gamma
action on PIP2 to form IP3 However, studies on B cells
deficient in tyrosine kinase show that there are
possibly two pathways leading to Ca2+ mobilization
(27). With activated B cells lacking Syk, PLC-
gamma2 is not phosphorylated and, IP3 production
and Ca2+ mobilization are absent (27).
Correspondingly, activated B cells that lack Bruton's
tyrosine kinase (Btk) exhibit similar characteristics
(28). In contrast, for BCR activation in B cells that
lack Lyn, IP3 generation remains unaffected and a
slow Ca2+ mobilization occurs (27). Immuno-
precipitation studies on activated B cells show that
Syk is associated with PLC-gamma1 (29).
Collectively, these findings point to tyrosine kinases
directing two mechanisms for intracellular Ca2+

production. Syk regulates Ca2+ mobilization through
PLC-gamma and IP3 production, whereas Lyn affects
Ca2+ mobilization through a different route.

3.2 Regulation of protein tyrosine kinase activity
The activity of Src kinases is regulated by

phosphorylation and dephosphorylation of specific
tyrosines (1). Src kinases contain an
autophosphorylation site within the kinase domain
that serves to potentiate kinase activation. The
carboxyl-terminal negative regulatory tyrosine when
phosphorylated, interacts intramolecularly with the
SH2 domain thereby decreasing kinase activity (30-
32). The crystal structures of c-Src and Hck indicate
that Src kinase inactivation resulting from these

intramolecular interactions arises from a
conformational change in the molecule (31,32). The
family of non-receptor protein tyrosine kinases, which
consist of Csk and Ntk, have been shown to
phosphorylate the negative regulatory domain
tyrosine, thereby decreasing Src kinase activity
(33,34). Studies using Csk/Ntk deficient cells suggest
that Csk/Ntk are required for inactivating Src kinases.
Fyn and Lyn in Csk-deficient mice are constitutively
activated and exhibit increased phosphorylation,
suggesting that Csk is required to repress tyrosine
kinase activity (35,36). Csk cannot only
phosphorylate Lck and Fyn but has also been shown
to phosphorylate CD45, and thus increase
phosphatase activity (37).

Apart from the negative regulation by
Csk/Ntk, Src kinases are positively regulated by the
protein tyrosine phosphatase, CD45 which has been
shown to dephosphorylate the negative regulatory
domain, thus increasing the kinase activity necessary
for TCR activation (1). However, CD45 may also
negatively regulate Src kinases by dephosphorylating
the autophosphorylation site on Src kinases (38).
Yac-1 T cells deficient in CD45 exhibit Lck
hyperphosphorylated at both the autophosphorylation
site and negative regulatory domain, but to a higher
degree at the latter. In addition, the phosphatase
domain of CD45 can dephosphorylate the
autophosphorylation site of active Lck in vitro. All in
all, these results point to a role for CD45 in
negatively and positively regulating Lck activity.

It is also possible that Lck may be regulated
by sequestration as an inactivated pool within a
glycolipid enriched membrane domain (39). Lck
within the glycolipid enriched membrane domain has
its negative regulatory domain in a
hyperphosphorylated state. It is postulated that this
results from the absence of CD45 which is excluded
by the glycolipid enriched membrane domain.

Another protein tyrosine phosphatase that is
important in the negative regulation of protein
tyrosine kinase activity is SHP-1. In T cells, SHP-1
interacts through its SH2 domains with ZAP-70 and
dephosphorylates ZAP-70 (40). Thymocytes from
motheaten (me) mice, which have a deficiency in
SHP-1, exhibit elevated tyrosine phosphorylation
after TCR stimulation due to increased activation of
Src kinases (41). This implies that SHP-1 may also
dephosphorylate members of the Src kinase family. In
B cells, SHP-1 binds to CD22 and FcgammaRIIB to
negatively regulate BCR signaling (42,43).
Altogether, SHP-1 is a vital negative regulator of
antigen receptor mediated signaling in both B cells
and T cells.

3.3 Lymphocyte development
Thymocyte development occurs as a series

of selection stages, where only those meeting a
defined criteria pass into mature lymphocytes (44).
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Immature thymocytes begin as multipotent cells
which do not express CD4 or CD8, and as such are
designated double negative (DN) (CD4- CD8-). Upon
expansion, alphabeta gene rearrangement and
expression of the TCR, the thymocytes express TCR,
CD4 and CD8, and enter the double positive (DP)
stage. At this point they are designated CD4+ CD8+

TCRlow. The thymocytes then undergo selection for
self recognition which is dependent on the avidity of
the TCR for antigen presented by MHC molecules
within the thymus. During the final development
stage, DP thymocytes become single positive (SP) in
either CD4 or CD8 with specificity for MHC class II
or class I, respectively. Those that survive have
undergone positive selection and are ready for
maturation.

In the bone marrow, the process of B cell
development comprises several stages where the preB
cells are selected to develop into long-lived mature B
cells (45). At the same time the B cells are screened
for tolerance against autoantigens. Initially, the pro-
B/preB cells undergo rearrangement in their Heavy-
chain gene loci. Those that contain the proper in
frame gene rearrangement undergo Light-chain gene
rearrangement to form immature B cells. After further
secondary Light-chain gene rearrangement and
selection against autoantigens, immature B cells exit
the bone marrow to become mature B cells.

To examine the biological relevance of the
Src protein tyrosine kinases in lymphocyte signaling
and maturation, mice expressing mutations in a Src
kinase or a deficiency in Src kinases are analysed. In
mice deficient in Lck, thymocytes are generally
blocked at the DP stage, but a small number of single
positives are found (46). However, those that do
develop exhibit only partial signaling in response to
TCR stimulation. In contrast, thymocytes from mice
deficient in Fyn are able to mature but SP thymocytes
are hyporesponsive to TCR ligation (47,48). Thus
unlike Lck, Fyn contributes to TCR signaling but is
not critical for thymopoiesis. For mice deficient in
both Lck and Fyn, thymocyte development is blocked
at the DN stage and no mature alphabeta T cells are
observed in the peripheral lymphoid organs (49,50).
However, there are normal numbers of natural killer
cells which have normal cytolytic activity (50). In all,
these results point to a possible redundancy effect of
Fyn for Lck in T cell development.

Expression of a gain of function Fyn
(Y528F) transgene in lck-/- mice restores DP
thymocyte development and enhances the DP to SP
transition of thymocytes, further supporting a
redundancy between Lck and Fyn (49). However, the
Fyn transgene only marginally affects RAG1-/- mice
whereas expression of a constitutively active Lck
restores normal DP thymocyte development (49,51).
In addition, a dominant negative Fyn does not affect T
cell development while a dominant negative Lck
abrogates DP thymocyte development (52-54). Taken

together, these results show that Fyn and Lck do not
have identical functions. Nonetheless, Fyn can
transduce signals required for positive selection of
DP thymocytes and can subserve Lck in some aspects
of T cell development.

It is apparent that Lck is required for
positive selection of thymocytes. In support of this, a
catalytically inactive Lck expressed in DP thymocytes
unambiguously blocks positive selection (55).
However, other defects present in DP thymocytes
deficient in Lck can also influence positive selection.
It is noted that thymocytes deficient in Lck are
blocked at the DP stage and have decreased CD4
dependent signaling but relatively unaffected TCR
signaling (41). In addition, these thymocytes display
decreased CD5 expression and increased TCR
expression. CD5, an accessory signaling molecule, is
important since it negatively regulates TCR and BCR
signaling, and is required for the positive selection of
thymocytes (56,57). Similarly, CD4/TCR co-
aggregation is essential for ZAP-70 activation in DP
thymocytes (58). Hence, altered CD5 or TCR
expression can affect the positive selection of DP
thymocytes deficient in Lck. Nevertheless expression
of the Fyn transgene (Y528F) normalizes CD5 and
TCR expression (49).

Lyn is critical for BCR signal transduction
and this is supported by the findings from mice
deficient in Lyn (59). These mice exhibit decreased
numbers of B cells, which may result from a failure
in B cell expansion. It is noteworthy that the lymph
nodes of mice deficient in Lyn have deformed
germinal centers. B cell function is also impaired as
shown by their poor response to lipopolysaccharide
stimulation. However, their response to CD40
stimulation is normal. In addition, these mice exhibit
elevated levels of serum IgM due to increased
numbers of plasma cells producing IgM, circulating
autoreactive antibodies and symptoms characteristic
of an autoimmune disease. Therefore, these results
demonstrate that Lyn is vital for proficient B cell
signaling and establish Lyn dependence in B cell
selection.

ZAP-70 and Syk are also important for
lymphocyte development. A portion of humans or
mice with severe combined immunodeficiency
(SCID), display a defective ZAP-70 or a deficiency in
ZAP-70 (60-62). The normal number of CD4+ cells
are present but they are non-functional. No CD8+

thymocytes are present in the periphery. Mice
deficient in ZAP-70 have a thymocyte block at CD4+

CD8+ TCRlow stage but can be rescued with human
ZAP-70 (63). Deficient mice exhibit elevated
numbers of normal DP thymocytes. Mice deficient in
Syk exhibit normal thymopoiesis (64,65). Therefore
ZAP-70 but not Syk is vital for thymocyte
development. However, mice deficient in Syk have
decreased numbers of mature B cells and signaling
through the BCR is impaired (64-66). Furthermore,
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they display impaired gammadelta T cell
development (67).

ZAP-70 and Syk have similar structural and
functional properties, which could imply a
redundancy between these two kinases. However the
different expression patterns of ZAP-70 and Syk may
affect their roles (68). ZAP-70 is not expressed in
peripheral B cells but is restricted to T cells, natural
killer cells and thymocytes. However, Syk is
expressed in thymocytes and predominantly in
peripheral B cells but down regulated in peripheral T
cells. Recent findings attempt to address the
functional overlap between ZAP-70 and Syk. In B
cells deficient in Syk, the BCR is non-functional.
Nonetheless, expression of ZAP-70 in these cells
reconstitutes BCR signaling (69). Functionally
competent SH2 and catalytic domains of ZAP-70 are
essential for full BCR activity. ZAP-70, like Syk,
binds to the phosphorylated Igalpha and Igbeta
subunits, with affinities similar to their interactions
with the CD3eta subunit. Therefore under these
conditions, ZAP-70 can substitute for Syk in its role
in BCR signal transduction.

4. THE PROTEIN TYROSINE PHOSPHATASE,
CD45

CD45 is a single chain transmembrane
glycoprotein with two cytoplasmic phosphatase
domains, of which the second domain appears to be
inactive. This protein exists in various isoforms of
molecular weights 180-220kDa, as a result of
alternative splicing between exons 4, 5 and 6 (or A, B
and C). These exons encode for the amino-terminal
extracellular O-linked glycosylated region (70-73).
Thus, these alternatively spliced isoforms differ in the
lengths of their extracellular domains. Furthermore,
they are differentially expressed on T cell subsets and
resting or activated T cells, and their expression is
dependent on cell differentiation and activation.
CD45 is expressed by all hematopoietic cells except
mature erythrocytes and platelets.

4.1 CD45 regulates protein tyrosine kinases
CD45 functions to regulate Src kinase

activity. Evidence for this has been obtained from T
and B cells deficient in CD45. In these cells, the
negative regulatory domains of Lck and Fyn are
hyperphosphorylated. As a consequence antigen-
mediated signal transduction is compromised (74-76).
CD45 does not regulate Lck and Fyn equally. (75,77).
In T cells deficient in CD45, Lck tyrosine
phosphorylation increases 8-10 fold over wild type
compared to a 2-3 fold increase for Fyn, despite equal
expression of the Src kinases. Deletion of the SH4
domain from Lck or replacement of it with the
analogous domain from Fyn results in a 5 fold
increase in tyrosine phosphorylation of the negative
regulatory domain (78). This suggests that there are
mechanisms that mediate CD45 interaction with
specific Src kinases.

In B cells, Src kinases are also regulated by
CD45. Lyn is hyperphosphorylated at its negative
regulatory domain and autophosphorylation site in
chicken DT40 B cells deficient in CD45 (79).
Accordingly, BCR signaling in these cells is severely
compromised. In comparison, DT40 B cells deficient
in Csk and in the resting state exhibit a constitutively
activated Lyn, whose autophosphorylation site is
hyperphosphorylated but its negative regulatory
domain is unphosphorylated (80). This implies that
dephosphorylation of the carboxyl-terminal negative
regulatory domain tyrosine by CD45 is a prerequisite
for Lyn activity during BCR signaling. Consequently
CD45 is an important positive regulator of Lyn
activity and may also participate in dephosphorylating
the autophosphorylation site of Lyn.

Lck and Fyn are hyperphosphorylated at the
negative regulatory domain, and exhibit hyperactivity
in Yac-1 T cells deficient in CD45 (74).
Phosphopeptide studies on Lck from these cells
demonstrate that Lck is hyperphosphorylated at both
the autophosphorylation site and the negative
regulatory domain, although to a greater degree at the
latter site (38). Tyrosine to phenylalanine mutations
of Lck at the autophosphorylation site (Y394) and
negative regulatory domain (Y505) establish that the
autophosphorylation site is more dominant in
affecting Lck activity. In cells expressing mutations at
both Y505F and Y394F, no kinase activity is
observed. Furthermore, in vitro assays using the
phosphatase region of CD45 and active Lck in its
native conformation demonstrates that CD45 can
dephosphorylate the autophosphorylation site of Lck.
Thus CD45 is responsible for dephosphorylating both
regulatory phosphorylation sites on Lck (38). These
findings point to CD45 as a negative and positive
regulator of Src kinase activity.

4.2 The extracellular domain of CD45 affects
antigen-mediated signal transduction

The extracellular region of CD45 is
modified by alternative splicing of exons 4, 5 and 6
(or A, B and C), which code for O-linked
glycosylation and thus govern the amount of O-linked
glycosylation present (70-73). As a result, CD45
isoforms are highly regulated and differentially
expressed on the various lymphocyte subsets. Results
from CD45 chimeric experiments indicate that the
cytoplasmic domain of CD45 is sufficient for
supporting TCR signaling (81,82). However, CD45
isoform expression has been associated with
lymphocyte maturation and activation. This argues
that CD45 isoforms, and in particular the
extracellular domain of CD45, may influence
lymphocyte function. Studies expressing the
individual CD45 isoforms in transgenic mice or T cell
lines demonstrate that each CD45 isoform affects
TCR signaling differently (83-85). In fact, cells
expressing the low molecular weight isoform of
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CD45 appear to be the most effective in TCR
signaling.

Not only is TCR signaling affected by
which CD45 isoforms are present but also the
tyrosine phosphorylation pattern of intracellular
proteins (86,87). Adapter proteins such as Vav and
SLP-76 show differential phosphorylation and varying
degrees of physical association, with higher levels of
each in the presence of the largest CD45 isoform
(86). The regulatory effect of the CD45 isoforms may
result from selective interactions of the particular
isoform with cell surface molecules.

The extracellular domain of CD45 is
important in mediating interactions with other
membrane surface proteins which are involved in T
cell activation. CD2, a 55-60 kDa glycoprotein, is
involved in T cell activation. However, signal
transduction via CD2 stimulation requires CD2
interactions with other signaling molecules, such as
CD3eta and zeta chain (88-90). Moreover, the protein
tyrosine kinases, Lck and Fyn associate with the
signaling complex formed by CD2 and zeta chain
(91,92). In addition, CD45 interacts with CD2 to
modulate its activation of T cells (93). Studies using
CD2 chimeras with CD4, CD28 and CD58 show that
CD45/CD2 complexes are primarily governed by
extracellular domain interactions and to a lesser
extent by cytoplasmic associations. Apparently, the
cytoplasmic domain of CD2 associates mainly with
the zeta chain of the TCR complex. These findings
point to CD45 involvement in regulating CD2
activation of T cells.

CD4, a co-stimulatory protein, associates
with Lck and is involved in the antigen recognition
process. CD45 isoform studies demonstrate that low
molecular weight and not high molecular weight
isoforms of CD45 preferentially interact with CD4
and TCR, and this association affects antigen
recognition (94). Furthermore, the interaction
between CD4 and CD45 is dependent upon the
external domains of the CD45 isoforms but
independent of the cytoplasmic domains. These
results point to CD45’s role in regulating antigen
receptor signaling and also CD4 function in antigen
recognition. In addition, CD45 interaction with CD4
may regulate Lck function and activity.

4.3 Effects of CD45 on lymphocyte development
Mice deficient in CD45 exhibit defects in T

cell development and impaired B cell signaling (95-
98). Two separate gene targeted mice have been
described in which either exon 6 or exon 9 was
replaced with a neomycin cassette (95,98). The
phenotype of deficient mice developed from either
targeted exon is similar. T cell development is
severely inhibited at two distinct stages: development
of DP thymocytes from DN thymocytes is reduced
twofold and the maturation of DP in to SP is
decreased fivefold. In addition, TCR induced

apoptosis of thymocytes is impaired whereas non-
TCR stimulated apoptosis is unaffected. Altogether,
these results demonstrate that CD45 is required for T
cell development and is consistent with the
observation that CD45 is necessary for efficient
signaling through the TCR.

Exon 6 targeted mice have normal numbers
of B cells, which are responsive to
lipopolysaccharrides (95,96). However, IgM
stimulation fails to induce B cell proliferation.
Furthermore while extracellular Ca2+ influx is
abrogated, intracellular Ca2+ mobilization is normal
upon anti-Ig induction. In mice with the exon 9
mutation, B cell development is unaffected but no
BCR signaling is observed when stimulated by anti-
IgM or anti-IgD (98). However stimulation through
CD40 (anti-CD40) is unaffected compared to reduced
signaling through CD38 (anti-CD38). Altogether,
CD45 plays an important role in Ig mediated-BCR
signaling and in some aspects of CD38 signaling. It
also may be important for extracellular Ca2+ influx.

As noted above, immature B cells undergo
selection during maturation to determine the
competency of the BCR. In mice deficient in CD45,
this selection process is altered due to changes in
antigen receptor signaling (97). The threshold signal
required for selection is abnormally lowered
compared to wild type, eliminating B cells which
normally would be selected. Clearly, the signal
generated here from antigen receptor stimulation is
recognized by the deficient B cell as being improper
for B cell maturation. These results demonstrate that
antigen signaling is a requirement for normal mature
B cell accumulation and the degree of signaling
regulates proper selection. Accordingly, CD45
appears to act as a positive regulator of the signaling
threshold required for B cell maturation.

During lymphocyte development, the level
of CD45 expression is important for antigen receptor
signaling. CD45 expression is up regulated during T
cell maturation particularly during the positive
selection of SP thymocytes (99). CD45 levels are low
on DP thymocytes but increase when cells
differentiate to CD4+ or CD8+ SP, in conjunction with
increased levels of TCR-CD3 complex. Consequently
greater than 90% of the positively selected
thymocytes display a CD45high phenotype in contrast
to a CD45low phenotype for non-selected thymocytes.
Similarly CD45 expression is drastically increased
during the developmental period which correlates
BCR up regulation with B cell maturation (99). As a
result, CD45 expression during lymphocyte
development is tightly regulated with those for TCR
and BCR complexes.

4.4 Regulation of CD45 activity
Currently, only a limited amount of

information is known about the mechanism and
participants involved in the regulation of CD45
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activity. Recent studies propose that CD45 activation
and function could be regulated through
phosphorylation by Csk, a negative regulator of Src
kinase activity (37). Cotransfection of Csk and CD45
into COS-1 cells reveal that CD45 is phosphorylated
on two tyrosines, and upon phosphorylation, CD45
exhibits increased phosphatase activity. Therefore,
Csk may up regulate CD45 activity and down
regulate Src kinase activity.

CD45 dimerization may also be involved in
regulating CD45 activity. EGF receptor chimeras
containing phosphatase domain of CD45 dimerize in
the presence of EGF (100). Dimer formation
neutralizes CD45 function and TCR activity.
However, the addition of a EGF receptor with its
cytoplasmic tail truncated restores both activities.
These findings suggest that CD45 dimer formation
can potentially regulate CD45 activity via inactivation
of phosphatase activity. Moreover CD45 is related to
receptor protein tyrosine phosphatase alpha
(RPTPalpha). The crystal structure of the RPTPalpha
membrane-proximal catalytic domain has been solved
(101). The deduced structure shows that a dimer is
formed from two catalytic domains, with the N-
terminal region of one monomer wedged into the
active site of the other monomer. This association
blocks the active site of one catalytic domain, making
it inaccessible to substrate. As a result dimer
formation by RPTPalpha could play a role in
regulating phosphatase function, and as such a similar
event may also be important in regulating CD45
function.

4.5 CD45 is involved in cell adhesion
T cell activation requires both antigen

presentation and cellular adhesion with the antigen
presenting cell. TCR activation concomitantly
stimulates integrin-mediated cell adhesion (102). In
general, cell adhesion is mediated by integrin
stimulation and the formation of focal adhesions.
During this process tyrosine phosphorylation of
intracellular proteins occurs. Focal adhesion kinase
(FAK), a protein tyrosine kinase, is phosphorylated in
response to integrin cross-linking and has been
implicated in the Ras-MAPK pathway (1,2).
Phosphorylation of FAK provides binding sites for
Src kinases, Grb2 and paxillin. Integrin stimulation
and cell adhesion induce the phosphorylation of
paxillin, a cytoskeletal protein involved in
transducing signals to the nucleus (1,2). Both of these
proteins are major components of focal adhesions.

Apart from CD45’s involvement in signal
transduction, CD45 is involved in regulating the
phosphorylation of paxillin and FAK in B cells (87).
The phosphorylation of FAK and paxillin is
dependent on the presence of CD45 in both
stimulated and unstimulated B cells. Apparently,
stimulation of B cells decreases FAK
phosphorylation. B cells deficient in CD45 exhibit no
phosphorylation of either FAK or paxillin, regardless

of stimulation. These results suggest an involvement
for CD45 in regulating cytoskeletal functions and cell
adhesion.

CD45 influences homotypic cell adhesion of
T and B cells (103-105). For T cells, only activated T
cells can be induced via CD45 ligation to aggregate.
Antibodies to the extracellular domain of certain
CD45 isoforms are able to induce homotypic
adhesion, whereas others inhibit adhesion. This
adhesion can be blocked using antibodies against
LFA-1, ICAM-1 and ICAM-3, suggesting that LFA-
1/ICAM-1 and LFA-1/ICAM-3 pathways are
involved. Typically, CD45 is found to co-localize
with LFA-1 at the cell-cell contacts after induction of
cell aggregation via CD45 ligation. Antibodies to
CD45 which block adhesion alter tyrosine
phosphorylation of intracellular proteins induced by
adhesion-activating antibodies to ICAM-3 or LFA-1.
These results indicate that CD45 is an important
component in mediating LFA-1 induced cell-cell
aggregation.

CD45 also associates with CD100, a
disulfide-linked dimer involved in T cell proliferation
and this interaction increases during T cell activation
(106). The expression pattern of CD100 is similar to
that for CD45. Epitope-dependent antibody coupling
of CD45 down regulates CD100 expression at the cell
surface and induces shedding of a soluble 120kDa
form of CD100. Homotypic adhesion of T cells
stimulated by antibodies against CD45 is enhanced
by antibodies against CD100. However the CD100
antibody does not induce homotypic adhesion.
Therefore CD45 modulates CD100 function in cell
aggregation and proliferation.

The association of CD45 with other
membrane-associated proteins during cell adhesion
may be mediated through CD45AP. Monomeric and
dimeric forms of CD45 interact with the putative
adapter protein CD45AP, a 36kDa phosphoprotein
also known as the lymphocyte phosphatase associated
protein (LPAP) (107-110). CD45AP expression in T
and B cells correlates with that for CD45 (111). Cells
deficient in CD45 show no surface expression of
CD45AP although normal levels of its mRNA are
present. Transfection of CD45 into these cells
restores CD45AP expression. Therefore complex
formation between CD45 and CD45AP prevents
CD45AP from proteolytic degradation. Both
molecules interact mainly through their
transmembrane domains. Interestingly, the
cytoplasmic domain of CD45AP is marked by a
putative WW domain, which functionally resembles
SH3 domains and may bind proline rich sequences
(112). As a result, CD45AP can potentially act as an
adapter protein for CD45 substrates.
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