IMR Press / FBL / Volume 2 / Issue 1 / DOI: 10.2741/A161

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Open Access Article
A p53 growth arrest protects fibroblasts from anticancer agents
Show Less
1 OSI Pharmaceuticals Inc., 106 Charles Lindbergh Blvd., Uniondale, NY 11553-3649
Front. Biosci. (Landmark Ed) 1997, 2(1), 37–45; https://doi.org/10.2741/A161
Published: 1 November 1997
Abstract

Reversible inhibitors of the cell cycle such as the TGF-betas have been exploited to protect dividing cells from exposure to anticancer drugs and radiation. Here, rat embryo fibroblast (REF) lines expressing different p53 mutations were used to test whether the p53 growth arrest could also chemoprotect cells from high doses of anticancer drugs. Whereas the doubling times of the different REF lines at 37 degrees C were similar, cells bearing temperature-sensitive mutations (mouse 135V or human 143A) were growth arrested at 31 degrees C. Temperature-dependent p53 activity was associated with increased levels of MDM2 and p21/WAF1, and the induction of an integrated p53-responsive luciferase gene. The REF lines exhibited similar sensitivities to common anticancer drugs when grown at 37 degrees C. However, when exposed to the same agents following transient incubation at 31 degrees C, the p53-arrested cells exhibited a marked survival advantage as shown by colony-forming assays. Chemoprotection was not universal, in that colony formation was not enhanced significantly after treatment with cisplatin or 5-fluorouracil, two drugs which can cause cellular damage throughout the cell cycle. Like other negative growth regulators, an activated p53 checkpoint may mediate the survival of cells exposed to drugs that target DNA synthesis or mitosis.

Share
Back to top