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1. ABSTRACT 
 

ADAMTS-18 is a member of a disintegrin and 
metalloproteinase with thrombospondin motifs (ADAMTS) 
family of proteases, which are known to play important 
roles in development, angiogenesis and coagulation; 
dysregulation and mutation of these enzymes have been 
implicated in many disease processes, such as 
inflammation, cancer, arthritis and atherosclerosis. 
Mutations of ADAMTS-18 have been linked to abnormal 
early eye development and reduced bone mineral density. 
In this review, we briefly summarize the structural 
organization and the expression of ADAMTS-18. We will 
also focus on the emerging role of ADAMTS-18 in several 
pathophysiological conditions which include: 
hematological diseases, tumorgenesis, osteogenesis, eye-
related diseases, central nervous system disorders, and last 
but not least a research perspective of ADAMTS-18 and its 
potential as a promising diagnostic and therapeutic target.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The ADAMTS family was first identified in 
1997 (1). Since that time, the ADAMTS family has grown 
to include 19 members. In detail, the first subgroup consists 
of ADAMTS-1, -4, -5, -8 and -15, while another consists of 
ADAMTS-9 and -20. Both divisions combine to form a 
larger subgroup. Another division includes ADAMTS-2, -
3, and -14. ADAMTS-13 alone forms a unique group. 
Additionally, ADAMTS-17 and -19, ADAMTS-16 and -18, 
ADAMTS-7 and -12, and ADAMTS-6 and -10 consists the 
structurally-related ADAMTS pairs division (Figure 1) (2-
5). 

 
The ADAMTS family of enzymes is 

proteolytically active and is involved in normal 
physiological processes and in the pathogenesis of various 
diseases. For example ADAMTS-1 is associated with 
follicular rupture and ovulation (6), ADAMTS-2, 



ADAMTS-18: A metalloproteinase with multiple functions 

1457 

 
 

Figure 1. A schematic representation of divisions of ADAMTS family. The ADAMTS family can be categorized by the 
structural similarities. Group A consists of two subgroups, in detail, ADAMTS-1, -4, -5, -8 and -15 form one subgroup, while 
another subgroup consists of ADAMTS-9 and -20. Group B includes ADAMTS-2, -3, and -14. ADAMTS-13 alone forms a 
dependent group C. ADAMTS-17 and -19, ADAMTS-16 and -18, ADAMTS-7 and -12, and ADAMTS-6 and -10 consist of the 
group D. 

 
ADAMTS-3, and ADAMTS-14 are procollagen N-
propeptidases (7-9), ADAMTS-1, -8, and -9 participate 
in the inhibitory process of angiogenesis (10-14). 
Mutations in the ADAMTS-2 gene have been implicated 
in Ehlers–Danlos syndrome type 7C, which is also 
named “Ehlers-Danlos syndrome, dermatosparactic 
type” according to the new nosology, a genetic 
condition characterized by procollagen processing (9, 
15). Both ADAMTS-4 and ADAMTS-5 have been 
associated with the breakdown of cartilage, through 
Aggrecan degradation (16-21). ADAMTS-7 and 
ADAMTS-12 are associated with the pathological 
process of arthritis (5, 22-25). Mutations in ADAMTS-
13 are associated with the development of thrombotic 
thrombocytopenic purpura, a disease characterized by 
decreased numbers of circulating platelets (26). 

 
ADAMTS-18 was first identified in 2002 by 

bioinformatics screening of the human genome through 
sequence similarity to the metalloproteinase signature of 
previously described ADAMTS (27). It is reported that there is 
a significant percentage of identity of domain architecture 
between ADAMTS-16 and ADAMTS-18 (overall identities: 
57%, catalytic domains: 85%) by amino acid sequence 
alignments analysis (27). ADAMTS-18 and ADAMTS-16 are 
assigned to a subgroup of ADAMTS family according to their 
similar structure. Although the potential roles of ADAMTS-18 
in different tissues have been studied over past decade, the 
mechanisms underlying are still not clear. Particularly the 

substrate of ADAMTS-18 is still unknown. In this review, we 
will discuss our current understanding of ADAMTS-18 by 
focused on its potential role in different tissues and associated 
diseases (Figure 2). 
 
3. GENE, STRUCTURE, AND EXPRESSION OF 
ADAMTS-18 
 

ADAMTS-18 gene is located on 16q23 in human 
genome (27, 28). The structure of ADAMTS-18 includes a 
signal peptide, a pro-domain, a metalloprotease domain, a 
disintegrin domain, a central TS-1 domain, a cys-rich 
domain, a spacer domain and a TS-1 like repeat domain 
(Figure 3) (27). In pro-domain, ADAMTS-18 contains a 
subtilisin-like pro-protein convertase cleavage site, which 
is the furin recognition sequences. ADAMTS-18 can be 
cleaved at the N terminal by furin or related pro-protein 
convertases leading to secretion of mature ADAMTS-18 
(27). Expression of ADAMTS-18 has been found in a 
variety of tissues in both human and mouse. In human fetal 
tissues, ADAMTS-18 is expressed in lung, liver, and 
kidney while in adult tissues ADAMTS-18 is detected in 
brain, prostate, submaxillary gland, endothelium, and retina 
(27, 29). In addition, ADAMTS-18 is also expressed in 
bone according to a genome-wide bone mass candidate 
genes analysis (30). Recently, ADAMTS-18 is also 
detected in heart, skeletal muscle, spleen, pancreas, 
esophagus, stomach, colon, larynx, breast, cervix, placenta, 
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Figure 2.  A schematic representation of ADAMTS-18’s multi-systemic functions.To date, the potential role of ADAMTS-18 in 
different tissues and associated diseases which have been discovered includes haemostatic balance maintain and tumor 
suppression. In addition, ADAMTS-18 may play an important role in bone-, eye- and CNS-related diseases due to the significant 
change of its expression. However, the mechanism is still not clear. 
 

 
 
Figure 3. Domain structure and organization of ADAMTS-18. ADAMTS-18 consists of a signal peptide, prodomain, 
metalloprotease domain, disintegrin domain, the first thrombospondin type 1 repeat (TSP1), Cys-rich domain, spacer domain and 
5 additional TSP1 repeats. Notably, the intact molecular weight (WM) of ADAMTS-18 is 135KD. 
 
ovary, bone marrow and lymph node (28). Moreover, 
ADAMTS-18 truncation is detected in brain, kidney, 
lung, and testicle of C57BL/6 mice embryo by western 
blot assay (31).  ADAMTS-18 is also found in the eyes 
of developing mice especially in the lens and retina 
(32).  
4. ALTERNATIVE FORM AND THE TRUNCATED 
FRAGMENTS OF ADAMTS-18 
 

 It has been shown that thrombin cleaved 
ADAMTS-18 (33) between Arg775 and Ser776 (31). 
Analysis of putative glycosylation sites in catalytic domain 
indicates that there is one consensus sequence (which is 
called NVT) for N-glycosylation in ADAMTS-18. 
ADAMTS-18 protein contains three repeats in the second 
thrombospondin module. In the process of transcription or 
translation, un-spliced intron or spliced exon may produce 
a stop codon, which lies in the region of coding the middle 
of ADAMTS-18’s third TS-1 like repeat domain, thus 
easily resulting in a truncated ADAMTS-18 motif (27). 
Analysis of the EST databank indicated that there was at 

least one EST (AV730422) corresponding to this region of 
ADAMTS-18, showing a sequence compatible with that 
reported herein (27). It was reported that there were always 
two bands (one is 135KDa while the other one is 75KDa) 
in the Western blot assay in the in vitro translation of 
ADAMTS-18 experiment (31). The size of intact 
ADAMTS-18 is 135KDa and the 75KDa band may indicate 
one of the isoforms of ADAMTS-18 (31). However, 
genetic codon optimization has no effect on production of 
ADAMTS-18 short form (31). In addition, both protease 
inhibitors and mutations in catalytic domain have no effect 
on the generation of ADAMTS-18 short form (31). The 
potential function of the alternative forms of ADAMTS-18 
has been studied (34-36). It was reported that trADAMTS-
18F650 (Met1–Phe650, cDNA constructs terminating at the 
corresponding conserved Phe residue of ADAMTS-18 as 
mentioned before (27)) was generated and purified to test 
its GAG-binding affinity and Aggrecanase activity 
comparing with ADAMTS-5, 9 and 16 (36). trADAMTS-
18F650 had no effective GAG-binding affinity or 
Aggrecanase activity. In addition, trADAMTS-18F650 
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bound heparin poorly possibly due to lacking of a 
consensus heparin-binding sequence (XBBXBX) (36). 

 
The inhibition assay using antibody against C-

terminal of ADAMTS-18 provides evidence that 
ADAMTS-18 C terminal has function. A polyclonal 
antibody (pAb) against active C-terminal ADAMTS-18 
fragment (ADAMTS-18C) was generated from rabbits by 
immunizing ADAMTS-18C recombinant protein 
(rADAMTS-18C) (35). The binding specificity was 
confirmed by ELISA and Western blot assay with 
rADAMTS-18C and natural ADAMTS-18 protein. And the 
bioactivity of pAb was tested in vivo and it has been shown 
that pAb shortened the mouse tail bleeding time in a dose-
dependent manner indicating the role of ADAMTS-18 C-
terminal fragment in regulating thrombus stability. 
 
5. ROLES OF ADAMTS-18 IN VARIOUS 
PATHPHYSIOLOGICAL CONDITIONS  
 
5.1. Hemostasis 

Endothelial cell play a central role in regulating 
the coagulation process (33, 37-40). Both reverse-
transcription (RT)-PCR assay in human umbilical vein 
endothelial cells (HUVEC) and immunocytochemistry 
assay in human tissue confirmed that endothelial cells 
could express and secrete ADAMTS-18 (33). It has been 
shown that thrombin and TNF-α as the HUVECs activators 
could enhance ADAMTS-18 secretion subsequently 
induced platelet fragmentation, platelet disaggregation, and 
thrombus dissolution after thrombin cleavage of 
ADAMTS-18 (33, 41, 42).  

 
It has been reported that anti-GPIIIa49-66 

antibodies commonly found in HIV-1 ITP patients induce 
destruction of platelets through sequential activation of 12-
lipoxygenase and NADPH oxidase, which suggests another 
mechanism of platelet activation and death (33, 43-45). In 
order to find the physiological ligand interacts with 
GPIIIa49-66, the peptide reacted with GPIIIa49-66 was 
identified through phage surface display screening. It has 
been shown that the peptide interacts with GPIIIa49-66 had 
70% homology with C-terminal sequence of ADAMTS-18. 
Both ADAMTS-18 and anti–GPIIIa49-66 Ab did not 
fragment platelets in GPIIIa-/- knockout mice and C-
terminal truncated ADAMTS-18 had no binding affinity to 
platelets (33). In addition, a second rabbit antibody against 
the N-terminal domain of ADAMTS-18 was inactive while 
antibody against C-terminal domain significantly inhibited 
ADAMTS-18 induced platelet fragmentation (33). Since C-
terminal portion of ADAMTS-18 might contain its 
functional properties interacting with GPIIIa, three 
truncated rADAMTS-18 were generated to determine the 
C-terminal function. They were rADAMTS-385-amino 
acid (AA) structure (contain the GPIIIa binding site), 
rADAMTS-188–amino acid structure (partial active) and 
rADAMTS-66–amino acid structure (do not contain the 
GPIIIa binding site) (33). Only rADAMTS-385-AA was 
potent with high platelet fragmentation. Furthermore, LDH 
release was measured to confirm that ADAMTS-18 C-
terminal could induce platelet fragmentation. Accordingly, 
ADAMTS-18 C-terminal peptide is likely to be the 

physiological ligand interacting with GPIIIa49-66 to induce 
platelet oxidative fragmentation (33).  
 

Thrombin is able to cleavage full length 
ADAMTS-18 into 85KDa and 45KDa molecular weight 
(MW) while the process could be inhibited by hirudin, the 
specific inhibitor of thrombin(33). The thrombin cleavage 
site was identified through mass spectrum assay and it is 
between Arg775 and Ser776 (31). Since thrombin was 
generated during the formation of thrombus formation and 
ADAMTS-18 was detected in plasma after thrombin 
stimulation (33, 46, 47), thrombin and ADAMTS-18 might 
interplay in the hemostatic process. These provocative 
findings highlight the physiologic processes regulating 
thrombus dissolution. However, the impairment of 
thrombin/ADAMTS-18–dependent platelet dissolution 
could conceivably produce a prothrombotic phenotype. It is 
also possible that thrombin/ADAMTS-18 could act as a 
safeguard in thrombin compromised situations (48, 49). 

 
However, it seems that there is no difference in 

platelet aggregation trace and activation and adhesion on 
immobilized ligand by in vitro experiments when 
comparing wild type and ADAMTS-18-deficient platelet 
mice (50). In addition, the expression profile data has not 
shown any ADAMTS-18 expression in megakaryocyte so 
far. Therefore, we can assume that ADAMTS-18 is not 
present in thrombocytes, neither WT nor ADAMTS-18-
deficient mice. In that case, the function of platelets from 
both WT and ADAMTS-18-deficient should be the same. 
Furthermore, in vitro assays cannot simultaneously 
reproduce the interactions of all of the components of the 
hemostatic process that occur in vivo nor do they reflect the 
importance of hemodynamic factors resulting 
from blood flow (51).  

 
It was reported in an ABSTRACT that 

ADAMTS-18 functioned as a pro-vasculature gene using 
ADAMTS-18-deficient mice model (50). It was confirmed 
that adventitial collagen deposition was increased in 
ADAMTS-18 knock-out mice by immunohistochemistry 
staining. In addition, ADAMTS-18-deficient mice had 
lower blood vessel density compared to wild type mice. 
Without ADAMTS-18, the vessels show a premature 
phenotype resulting in a lower blood flow. The 
hemodynamic change leads to a shorter time of thrombus 
formation. It was proven in a transient middle cerebral 
artery occlusion (tMCAO) model that knock-out mice got a 
bigger infarction size (50). Perhaps the vascular change 
finally affects thrombus formation in some extent. 

 
ADAMTS-18 had been reported to be down 

regulated in the rapid atrial pacing (RAP) model in pigs 
(52). RAP model was established to mimic the atrial 
fibrillation (AF). AF is the most commonly sustained 
cardiac arrhythmia disease. AF has been characterized 
as an independent and important risk factor of stroke 
(53-56). Since ADAMTS-18 was proven to have a 
protective role in several thrombosis models including 
stroke (33), the down-regulation of ADAMTS-18 might 
contribute to aggravating the hemostatic imbalance in the 
endocardium resulting in thrombus formation (52). 
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Figure 4. Interaction between thrombin and ADAMTS-18 in haemostatic balance. Endothelial cell can express ADAMTS-18. 
Thrombin increases the expression of ADAMTS-18 while have the ability to cleave it into 45KD active C-terminal. ADAMTS-
18 C-terminal inhibits while thrombin promotes the platelet aggregation. Notably, thrombin cleavage site is in the spacer domain 
between Arg775 and Ser776. Abbreviations: arrows indicate a stimulatory effect; perpendicular lines indicate an inhibitory 
effect. 

 
Together the current data apparently supports the 

concept that the interaction of ADAMTS-18 with thrombin 
may play an important role in maintaining the systemic 
hemostatic balance (Figure 4).  
 
5.2. Tumor 

The potential role of ADAMTS-18 in tumor 
mestastasis and tumor genesis was first suggested by the 
genetic linkage analysis (28). It has been shown that the 
loss of heterozygosity assay of 16q23 region is strongly 
associated with a variety of cancers. Since ADAMTS-18 
is one of these genes located around 16q23 region, it has 
been studied as a potential oncogene. The fact that the 
mutations and high methylated promoter of ADAMTS-
18 gene are strongly associated with a variety of tumors 
suggests that ADMATS-18 could be a tumor suppressor 
gene. (28, 57-62). 

 
ADAMTS-18 was down-regulated in multiple 

samples of carcinoma cell lines such as esophageal, 
nasopharyngeal (28). Research has shown that there was a 

homozygous 16q23.1. deletion in some types of carcinoma. 
However the decreased expression of ADAMTS-18 was 
not due to this deletion. In fact, ADAMTS-18 is not in this 
deletion in all these described cell lines (28). The silenced 
or reduced expression of ADAMTS-18 is likely due to the 
methylation of ADAMTS-18 CGI (CpG Island, (63-65)). 
The tumor-specific methylation of ADAMTS-18 CGI was 
further supported by the fact that there is little methylation 
of CGI of ADAMTS-18 in non-tumor cell lines. Both 
pharmacological inhibitors and genetic mutation were used 
for the demethylation indicating that ADAMTS-18 silence 
was directly mediated by CGI methylation (28). High-
resolution melting (HRM) analysis was used to determine 
the ADAMTS-18 methylation status in gastric, colorectal 
and pancreatic cancers as well as their adjacent normal 
tissues (58, 66-69). Data showed that ADAMTS-18 was 
highly methylated in tissues with tumor than in normal 
tissues. ADAMTS-18 expression level was inversely 
correlated with methylation status level and no evidence 
was identified between ADAMTS-18 methylation status 
and TNM staging in tumors (58, 70-72). Since ADAMTS-
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18 was silenced or down-regulated in tumor, re-express 
ADAMTS-18 in different tumor cell lines resulted in 
significantly reduced colony number both in monolayer and 
soft agar culture indicating ADAMTS-18 suppresses both 
anchorage-dependent and anchorage-independent tumor 
growth (28). Moreover, data showed that ADAMTS-18 
was methylated in a large collection of primary carcinoma 
samples (28). Thus, ADAMTS-18 could be used as a 
biomarker for both the  diagnosis and prognosis of cancer.  

 
Although ADAMTS-18 gene was not deleted in 

many carcinomas as described previously, it is reported that 
ADAMTS-18 gene was deleted in the breast cancer (57). 
Both single nucleotide polymorphism-comparative 
genomic hybridization (SNP-CGH) and the LOH analysis 
indicated ADAMTS-18 functioned as a tumor suppressor 
gene (TSG). The 16q deletion was associated with better 
prognosis (57).  
 

Despite the fact that ADAMTS-18 was 
methylated or deleted in some carcinomas, it was reported 
that ADAMTS-18 mutant was involved in the melanoma 
(59). It has been shown that ADAMTS-18 mutant 
promoted growth, migration, and metastasis of 
melanoma.(59). Melanoma is one of the skin diseases 
accompanied by a series of genetic changes (73-75). 408 
ADAMTS exons genes were extracted from genomic 
databases of 31 melanoma patients and was analyzed. Data 
showed that ADAMTS-18 was highly mutated and the 
mutant was positively selected during tumorigenesis. 
Analysis of cell adhesion to the extracellular matrix 
components indicated that mutant ADAMTS-18-expressing 
cells had lower adhesion ability to laminin-I compared with 
wild type (WT) cells resulting in facilitation of cell 
migration. Mutant ADAMTS-18 was identified as essential 
for the migration of melanoma by analysis of migration 
after ADAMTS-18 knock-down. This concept was further 
supported by in vivo experiment (59). 
 
5.3. Bone-related diseases 

ADAMTS-18 has been shown to be associated 
with several bone pathologies. Such discoveries were made 
through the use of genetic analysis and meta-analysis 
microarray (30, 76-78). It was reported that ADAMTS-18 
was a bone mass candidate gene in different ethnic groups 
(30, 76). Bone mineral density (BMD) was a prominent 
osteoporosis risk factor (79-81). Masses of single 
nucleotide polymorphisms (SNPs) were genotyped in 
different ethnic groups indicating that both ADAMTS-18 
and TGFBR3 were BMD candidate genes (30). In addition, 
Meta-analyses supported the significant associations of 
ADAMTS-18 and TGFBR3 with BMD (30). One SNP 
(rs16945612) was found to generate a binding site for the 
transcription factor TEL2. Furthermore, allele ‘‘C’’ of 
rs16945612 might enhance TEL2 factor binding ability and 
thus repressed the expression of ADAMTS-18 and 
subsequently enhanced the osteoporosis phenotype (30, 
82). Moreover, a genome-wide association study of BMD 
in premenopausal women shows an association between 
femoral neck BMD and rs1826601 near the 5’ terminus of 
ADAMTS-18 (76). The NCBI GEO expression profiles 
showed that the ADAMTS-18 level was significantly lower 

in subjects with nonunion fractures than normal subjects 
(83). Thus, decreased ADAMTS-18 expression may 
contribute to the non-healing of skeletal fractures (30). 

 
Evidence showed that ADAMTS-18 was 

correlated with kyphosis in swine (77). The human form of 
Kyphosis present a phenotypical over-curvature of the thoracic 
vertebrae , which could be either the result of degenerative 
diseases (such as arthritis), developmental problems 
(Scheuermann's disease),  osteoporosis with compression 
fractures of the vertebrae, or trauma(84). However, Spine 
curvature defects had been reported in swine herds for the past 
three decades (85). Single nucleotide polymorphism (SNPs) 
associations were performed with 198 SNPs and microsatellite 
markers in Duroc-Landrace-Yorkshire resource (USMARC) 
population and F2 population. Data showed that 
ADAMTS-18 on SSC6 was significantly associated with 
kyphosis trait in the F2 population of swine (P≤0.0.5) while 
it seemed no association with USMARC resource herd. 
Thus, the association of ADAMTS-18 with kyphosis might 
be differed by population(77). 

 
Studies have shown that ADAMTS-18 was 

approximately 2.6.4-fold up-regulated in permanent 
periodontal ligament (PDL) tissues compared with 
deciduous PDL by cDNA microarray analysis and 
quantitative reverse-transcription–polymerase chain 
reaction (qRT-PCR) analysis (78). Periodontal ligament 
(PDL) is known to be the most important tissue for the 
attenuation and conduction of masticatory forces and 
connection of the tooth to the alveolar jaw bone in the area 
surrounding the root surfaces (78, 86-89). It is reported that 
in permanent PDL cells IL-6 was up-regulated resulting in 
the increased expressions of ADAMTS-4 and ADAMTS-5 
(78, 90). However, ADAMTS-4 and ADAMTS-5 were the 
key enzymes degrading extracellular matrix (91). Although 
it is unknown whether IL-6 and ADAMTS-18 were related 
and what their mechanisms are, it is intriguing to examine 
whether ADAMTS-18 and IL-6 play a part in the turnover 
of the extracellular matrix in permanent PDL tissues. 
 
5.4. Eye-related diseases 

It has reported that ADAMTS-18 is a novel gene 
associated with Knobloch syndrome (KS) by combining 
exome and homozygosity mapping in 13 patients of Saudi 
in origin and consanguineous (32). Knobloch syndrome is 
an autosomal recessive disease characterized by developing 
disorder of the eye and the occipital skull bone defect (92-
96). After excluding COL18A1 (identified as the KS 
disease gene and 17 mutations have been reported to date 
(97-100)), analysis was undertaken to identify that 
ADAMTS-18 was associated with Knobloch syndrome 
(32). However the conclusion, was then corrected by the 
same group (92). It was reported that the KS case reported 
by this group was due to bi-allelic mutations in COL18A1 
and ADAMTS-18 variant probably did not influence the 
phenotype of Knobloch syndrome disease (92). 

 
Homozygosity mapping and whole exome 

sequencing were used to identify that ADAMTS-18 gene 
was responsible for autosomal recessive disease of retinal 
dystrophy (29). Inherited retinal dystrophies (IRD) were 
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heterogeneous disorders characterized by a progressive loss 
of visual acuity (VA) and deterioration of the visual field 
(VF) (101-103). Only a single homozygous missense 
variation named c.T3235 > C in the ADAMTS-18 gene 
was identified to be related to IRD by SNPs genotyping 
analysis. In addition, ADAMTS-18 was detected on human 
retina. Furthermore, ADAMTS-18 knockdown model was 
used to analyze its function. Data showed that there was a 
notable increase of light-induced rod photoreceptor damage 
in ADAMTS-18 knockdown compared with wild type fish 
by immunofluorescence analysis. In addition, there was a 
reduction of about 50% of the Rhodopsin-positive retinal 
areas in ADAMTS-18-deficient eyes as compared with 
wild type eyes. It is also important to mention that 
ADAMTS-18-deficient model had an aberrant central 
nervous system (CNS) phenotype which could be rescued 
by injecting the full-length coding human ADAMTS-18 
synthetic mRNA (29). 

 
The bi-allelic mutation in the gene on 16q23.1 

encoding ADAMTS-18 caused MMCAT syndrome (104). 
MMCAT syndrome is a distinct syndrome featuring 
microcornea, myopic chorioretinal atrophy, telecanthus 
(105). The data showed that MMCAT syndrome was an 
autosomal recessive disease linked to chromosome of 
16q23.1.  

 
Taken together, since ADAMTS-18 was detected 

in eyes and ADAMTS-18 had genetic linkage to some 
hereditary ophthalmological diseases, ADAMTS-18 might 
participate in the pathological process of eye-related 
diseases. 
 
5.5. Central nervous system 

It was reported that ADAMTS-18 was related to 
the brain’s white matter integrity (106). Genome-wide 
association analysis of 542,050 SNPs with gFA was 
undertaken in 72-74 years old healthy people. gFA is a 
global measure of white matter tract integrity which is 
derived from principal components analysis of tract-
averaged fractional anisotropy measurements, accounting 
for 38.6.% of the individual differences across the white 
matter tract. Among the genome-wide association study, 
the strongest association was with rs7192208 whose SNP 
was located in an intron of the gene ADAMTS-18. 
Although, rs7192208 was nominally associated with almost 
all 12 white matter tracts by post hoc analysis, rs7192208 
was most significantly linked to the left arcuate fasciculus. 
Moreover, the addition of the minor allele (G) in rs7192208 
was associated with decreased gFA. Furthermore, 30 exon 
probes that specific for ADAMTS-18 were tested by online 
resources indicated that 21 exon probes were associated 
with rs7192208 in brain tissue. However, rs7192208 was 
not associated with ADAMTS-18 in lymphoblastoid cell 
lines (SNPexp) or peripheral blood mononuclear cell tissue 
suggesting that rs7192208 influences ADAMTS-18 
expression through cisacting genetic regulation in the brain 
(106, 107). In contrast, the association of ADAMTS-18 
was not so strong by gene-based analysis possibly due to 
the underlying genetic architecture of the gene. It is 
important to mention that ADAMTS-18 was overexpressed 
in: the cerebellar vermis, cerebellum, cerebellar 

hemisphere, transverse colon, and the corpus callosum 
(NextBio Body Atlas; nextbio.com) (106). Further study 
the function of ADAMTS-18 in brain white matter would 
shed light on the role of ADAMTS-18 in central nervous 
system. 
 
6. SUMMARY AND PERSPECTIVE 
 

ADAMTS-18 has been shown to play a role in 
Osteoporosis and is genetically associated with some 
diseases such as: inherited retinal dystrophies (IRD), 
MMCAT syndrome and brain white matter integrity 
degeneration. In addition, ADAMTS-18 functions as a 
tumor suppressor gene, which is almost epigenetically 
silenced in all carcinoma cell lines resulting from 
methylation. It is deleted with some other genes in breast 
cancer. ADAMTS-18 C-terminal plays a unique role in 
maintaining hemostatic balance by inducing platelet 
fragmentation.  

 
It has been reported that ADAMTS-18 can 

cleave Aggrecan. This was an interesting discovery because 
ADAMTS-18  has low efficiency at the aggrecanase site of 
Glu373-Ala374. More research must be done to identify the 
substrates of ADAMTS-18. This is the key to 
understanding the molecular mechanisms underlying 
ADAMTS-18 regulations of various kinds of diseases and 
conditions. It is a reasonable speculation that ADAMTS-18 
interacts with its substrate around where it is present, such 
as endothelial cells. Growing evidence indicates that 
ADAMTS-18 is a metalloproteinase with multiple 
functions, the exact expression profiling, regulation and 
function of ADAMTS-18 in various pathophysiological 
processes, especially the signaling pathways and molecular 
events, remain to be delineated. Further research would 
help us to understand better of the function and regulation 
of ADAMTS-18.  
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