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1. ABSTRACT 
 

Epilepsy is a disorder characterised by recurrent 
seizures and molecular events, including the activation of 
early expression genes and the post-translational 
modifications of functional proteins. These events lead to 
changes in neurogenesis, mossy fibre sprouting, network 
reorganisation and neuronal death. The role of these events 
is currently a matter of great debate, especially as they 
relate to protection, repair, or further brain injury. In recent 
years, accumulating data have supported the idea that 
erythropoietin (EPO) regulates biological processes 
including neuroprotection and neurogenesis in several 
diseases, such as epilepsy. This review summarises the role 
of EPO in some of the molecular mechanisms involved in 
these events that could direct a more detailed approach for 
its use as a therapeutic alternative in reducing epileptic 
seizures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

According to data from the World Health 
Organization (WHO), epilepsy is a common chronic brain 
disorder affecting approximately 50 million people 
worldwide. It is a complex disease characterised by the 
repeated occurrence of sudden and transitory episodes of 
motor, sensory, autonomic and psychic aura known as 
seizures. The anatomical, synaptic and functional 
consequences of seizures have been most extensively 
studied in the hippocampus, an epileptogenic structure that 
plays a central role in the generation of seizures. Epilepsy, 
particularly temporal lobe epilepsy (TLE), can be acquired 
following insults to the brain, including head injury, stroke 
and tumours (1, 2). Our understanding of epilepsy 
pathogenesis has increased considerably over the last 
decades from both clinical and laboratory observations. 
Considering epileptogenesis results in circuitry 
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reorganisation that can occur at either the synaptic or 
network level, there are multiple and diverse molecular 
pathways involved in epileptogenic plasticity (3, 4). 
Among the signalling pathways, those mediated by 
erythropoietin (EPO) have recently been considered 
neuroprotectant during the process of status epilepticus 
(SE). Moreover, studies in rodent models of TLE revealed 
that EPO significantly antagonised the development of SE 
(5-7). 
 
3. EPILEPSY 
 

Epilepsy is the second most common 
neurological disorder after stroke (8; 9). The incidence of 
epilepsy is highest in the first decade of life and after the 
age of 60 years (10). Chronic brain disorders have a 
profound impact on quality of life because most are 
associated with cognitive impairment and personality or 
behaviour disturbance. Epilepsy is one example of a prevalent 
and severe neurological condition (11). Traditionally, the 
Commission on Classification and Terminology of the 
International League Against Epilepsy (12, 13) has classified 
epilepsies based on aetiology as idiopathic epilepsy 
(cryptogenic) of unknown origin, epilepsy with predisposing 
pathology (symptomatic), or epilepsy with a suspected, but not 
precisely known cause (presumably symptomatic). Seizures 
typically arise in restricted regions of the brain and may remain 
confined to these areas (focal or partial) or spread to the whole 
cerebral hemisphere (generalised seizures).  
 

Our understanding of epilepsy pathogenesis has 
increased considerably over the last decades through both 
clinical and laboratory observations (14-16). The mechanisms 
underlying seizures are complex and not uniform across the 
numerous seizure types that exist; however it is known that an 
epileptic seizure results from physiological dysfunction in the 
brain caused by the hypersynchronous discharge of neurons 
(17). The behavioural outcome of seizure events depends on 
the brain regions that are affected by overactivity; seizures can 
cause a spectrum of effects from auras accompanied by 
sensations such as euphoria, altered autonomic functions, loss 
of consciousness and motor changes, including whole body 
convulsions (8). These characteristics are clearly 
exemplified in temporal lobe epilepsy (TLE), the most 
frequent type of human epilepsy (18). 
 
3.1. Mesial Temporal Lobe Epilepsy 
 

Temporal lobe epilepsy (TLE) is the most 
common form of human epilepsy; it can evolve after an 
initial insult, such as complex febrile seizures, stroke, brain 
infections, head trauma, ischemic lesions, brain tumours or 
status epilepticus (19, 20). After damage, the majority of 
these patients suffer from symptomatic focal epilepsies 
(“simple partial” seizure), which arise in a restricted part of 
the limbic system. Moreover, the seizures can also spread 
to other regions of the temporal lobe, such as the amygdala 
(“complex partial”), and may subsequently spread to the 
whole brain (“secondarily generalised”) (16). In the 
majority of TLE cases, the initial epileptogenic focus 
involves the hippocampal formation, which displays major 
neuropathological features described with the term 

“hippocampal sclerosis” (HS) (21-23). This features the 
selective loss of neurons that are typically asymmetric 
between the hippocampus regions. For example, granule 
cells in the dentate gyrus are remarkably resistant to 
neuronal damage caused by most insults, including seizures 
(24), while pyramidal neurons are extremely vulnerable, 
particularly in the CA1-region (25). Additional features can 
include axonal sprouting and the dispersion of neurons in 
different layers and gliosis in the hippocampus (3, 26).  

 
Abnormal hippocampal morphology and aberrant 

neuronal connections are characteristic in both temporal 
lobe epilepsy and in pilocarpine- and kainic acid- injected 
animal models (24, 27). Among the hypothetical 
mechanisms responsible for TLE are neuronal cell loss and 
gliosis in the CA1 and hilus and the formation of new 
recurrent excitatory circuits after mossy fibre sprouting. 
Other alterations include the dispersion of granule cells, the 
synaptic reorganisation of the mossy fibres and the 
degeneration of hilar interneurons with subsequent 
diminished inhibitory synaptic transmission onto distal 
dendrites of dentate granular cells as well as neurogenesis 
(28, 29). These long-lasting plastic changes in the brain are 
key factors in the conversion of a non-epileptic to an 
epileptic brain (30, 31). Therefore, the anatomical, synaptic 
and functional consequences of seizures have been most 
extensively studied in the hippocampus because that 
structure plays a central role in epileptogenesis (32).  
 
3.2. Epileptogenesis and the hippocampus 

The term epileptogenesis is often associated with 
the development of symptomatic, acquired epilepsy that 
presents with an identifiable structural lesion in the brain, 
and it is used to refer to a latency period between the 
occurrence of the insult and the appearance of the first 
spontaneous seizure (33). Epileptogenesis is characterised 
by a dynamic process that progressively alters neuronal 
excitability, establishes critical interconnections, and 
requires intricate structural changes, which include 
neurodegeneration, neurogenesis, gliosis, axonal damage or 
sprouting, circuitry rearrangements and individual 
synapses, the recruitment of inflammatory cells into brain 
tissue, and the reorganisation of the extracellular matrix 
(Figure 1). All of these structural changes produce 
modifications in both the intra- and extra-cellular signals of 
individual neuronal cells. Both the dynamic processes and 
the structural changes occur before the first spontaneous 
seizure (34, 35).  

 
If brain damage or aberrant plasticity following 

an insult is the major cause of subsequent epilepsy, the 
administration of a neuroprotective or neuromodulatory 
drug immediately after insult might be effective at 
preventing epilepsy development. Particularly, the 
hippocampal circuitry is endowed with plastic properties 
having important implications for epileptogenesis (31, 32). 
 
4.  NEUROGENESIS IN EPILEPSY 
 

The formation of the central nervous system 
(CNS) happens through successive phases during the 
embryonic and early postnatal periods with a vast majority 
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Figure 1. A schematic of the complexity of the cellular and molecular mechanisms in Epilepsy 
 

of cells; however, it is well accepted that new neurons are 
continuously added in specific regions of the mammalian 
brain throughout adulthood (36, 37). Adult neurogenesis is 
involved in physiological conditions such as learning and 
memory (38), and the impact of new neurons on the adult 
neuronal circuitry is determined by their physiological 
properties and synaptic connectivity (39). Neurogenesis in 
the hippocampus has been correlated with learning and 
memory; moreover, it is the only intrinsic response of the 
adult brain to injuries such as addiction, depression, 
epilepsy and schizophrenia (40, 41). In particular, the 
hippocampus is capable not only of re-organisation when 
intact but also when it is damaged. Among these changes, 
perhaps the most basic of all structural changes is the 
addition of new neurons (neurogenesis). Additionally, 
dynamic modifications continually form in dendritic 
extension and retraction as well as in synapse formation 
and elimination (42-44).  

 
Aberrant neurogenesis and neuronal cells loss is 

characteristic of the cellular response to prolonged seizure 
activity (45). These alterations can contribute to the 
detrimental long-term consequences of status epilepticus 
(Figure 1) (46). A dramatic increase in the production of 
new neurons was observed in the granule cell layer of the 
DG following pilocarpine-induced SE (47) or kindling 
stimulations (48). A proliferative surge occurs in neural 
stem cells (NSCs) of the subgranular zone shortly after SE, 
leading to the increased production of new neurons after a 
seizure episode (49, 50) mediated by excitatory stimuli 
(51). However, gamma-Aminobutyric acid (GABA) has a 
crucial role in regulating various steps of adult 
neurogenesis, including the proliferation of neural 
progenitors and the synaptic integration of new-born 
neurons (52). Additionally, increased levels of 
neuropeptide Y (NPY) enhance proliferation (53) and also 
modulate neuron-restrictive silencing factor (NRSF) 
activity, increasing neurogenesis after acute seizures (54). 
The involvement of neurotrophic factors and other proteins 
increase the proliferation of NSCs in the hippocampus. 
These factors include nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), fibroblast growth 
factor-2 (FGF-2), vascular endothelial growth factor 
(VEGF) and Sonic hedgehog (Shh) (55, 56, 53).  
 

Several studies have determined an increase in 

neurogenesis after acute seizures in rats (54, 45, 46), 
however the extent of neurogenesis declines radically in the 
chronic phase of epilepsy when significant numbers of 
spontaneous seizures manifest (57); both a gradual decrease 
at 1 week and a virtual loss of neurogenesis by 4–6 weeks 
after the initial seizure episode have been reported (58). It 
has also been reported that there were no changes in 
neurogenesis in the hippocampus after electrically evoked 
SE, while in lithium-pilocarpine models, epilepsy modestly 
increases neurogenesis 2 months post-SE (59, 60). The 
mechanisms underlying decreased neurogenesis in chronic 
epilepsy are unknown; it has been proposed that an 
unfavourable NSC milieu can be gleaned from decreased 
levels of some neurotrophic factors in chronic epilepsy (57, 
56). Thus, it has been proposed that diminished 
hippocampal neurogenesis might contribute to the 
persistence of spontaneous seizures, learning and memory 
impairments and depression that are prevalent in epilepsy 
(61). 
  
4.1. Involvement of EPO in neurogenesis 

EPO is a 30.4.-kDa glycoprotein consisting of 
165 amino acids and has a disulphide bond between the 
cysteines at positions 7 and 161. This bond is functionally 
important because it acts as a tether and ensures the 
molecular configuration required to maintain the bond with 
its specific membrane receptor (EPOR), thereby regulating 
erythropoiesis (62, 63) with a potential neuroprotective 
effect (64). 

 
The production and secretion of EPO and the 

expression of its receptor (EPOR) in several tissues are 
regulated by tissue oxygenation levels and exert pleiotropic 
activities (65). In the brain, the basal expression of EPO is 
found in both neurons and astrocytes, while both post-
ischemia and post-epilepsy EPO expression is localised in 
endothelial cells, microglia/macrophage-like cells, (66) and 
astrocytes (67, 68). The signalling mediated by EPO/EPOR 
is required for normal brain development (69) that 
stimulates neuronal progenitor cell production from 
pluripotent cells, increasing neurogenesis as well as neural-
progenitors migration in both the subventricular zone and 
the dentate gyrus into the cortex, striatum and hippocampus 
of neonatal rats (70, 71). Mark et al. (2008) showed that 
EPO stimulates the Akt signalling pathway and that the 
effects of EPO are related to axonal growth and neurite 
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Figure 2. Molecular events both neuroprotection and neurogenesis are mediated by erythropoietin, in brain damage 
 

outgrowth in hippocampal neurons. Pro-neuronal 
transcription factors, including Mash1 and Neurogenin1 
(Ngn1), promote neural-progenitor differentiation into 
neurons, demonstrating that Mash1 and Ngn1 regulate 
EPO-mediated neuronal differentiation (72). In addition, 
intracerebroventricular EPO infusion significantly 
enhanced the survival of NSCs but not neuronal 
differentiation or migration after kainic acid induced-SE. 
However, NSC transplantation increased the number of 
NPY- and glutamic acid decarboxylase 67-positive 
interneurons (73). In turn, the delayed administration of 
EPO after a damaging event also concurrently promotes 
oligodendrogenesis with increased neurogenesis, which is 
likely to contribute to the observed improvement in 
neurological functional outcomes (74).  
 
4.1.1. Additional pathways associated to EPO 

Wnt plays a role in a variety of cellular functions 
that involve embryonic cell proliferation, differentiation, 
survival and death (75, 76). Wnt signalling can prevent cell 
injury through a variety of mechanisms; it prevents 
apoptosis through β-catenin/Tcf transcription-mediated 
pathways (77), and it can also protect cells against c-myc-
induced apoptosis through cyclooxygenase-2 and (78) β-
amyloid toxicity, which may require the modulation of 
glycogen synthase kinase-3 β (GSK-3β) and β-catenin (79). 
Interestingly, EPO maintains the expression of Wnt1 during 
elevated glucose exposure in diabetic patients. More 
importantly, the blockade of Wnt1 with a Wnt1 antibody 
can neutralise the protective capacity of EPO, illustrating 
that Wnt1 is a critical component in the cytoprotection by 
EPO (79). The Wnt pathway inhibits GSK-3β activity that 
may increase cell survival during oxidative stress, and as a 
result, GSK-3β is considered to be a therapeutic target for 
some neurodegenerative disorders (80). It has been shown 
that EPO phosphorylates and inhibits GSK-3β activity 
(Figure 2) (81). 

5. NEUROPROTECTION AND EPILEPSY 
 

Hippocampal neuronal death, particularly in 
CA1-pyramidal cells, is common in the injuries caused by 
cerebral ischemia (82), epilepsy (7, 67, 83) and subsequent 
seizures by acute hypoxia (84). Recent studies clarify the 
domain of anti-epileptogenic and neuroprotective strategies 
for protecting and repairing neurons in post-SE conditions 
(31, 85). The developments of strategies for the use of 
candidate neuroprotectants as a therapeutic approach to 
prevent epileptogenesis are the most appealing; an 
emerging molecule for this treatment is likely EPO. 
 
5.1. Neuroprotective effect of EPO 

As previously mentioned, the role of EPO in 
neurogenesis appears to be its ability to prevent metabolic 
damage, vascular and neuronal degeneration and 
inflammatory responses through different signalling 
pathways (Figure 2) (86, 87). It has been proposed that this 
molecule is a critical mediator of protection and the plastic 
phenomena generated by a damaging event (88). The 
neuroprotective effect of EPO results in the beneficial 
modification of cognitive functions in humans and in 
animals (89, 90). Both EPO and EPOR are expressed in the 
hippocampus of rodents and primates (91, 92) and have 
been shown to be involved in synaptic plasticity and 
memory improvement (89, 93). Evidence in hypoxia-
ischemia and trauma models in both adult and neonatal 
rodents have shown that the effect of insulin (94), 
hypoglycaemia (95) and intense neuronal activity leads to 
the synthesis of EPO in neurons and astrocytes (96, 97). 
In turn, EPO administered exogenously has a 
neuroprotective role through regulating anti-apoptotic 
and anti-inflammatory mechanisms (98, 99), and 
secondly, EPO administration itself leads to gene 
transcription and the production of both EPO (100) and 
EPOR (101).  
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A mouse toxicity model induced by kainate 
administration (20 mg/kg) generally results in seizures 
(102, 103) and death 18 minutes after SE; the mice 
receiving EPO (5000 UI/kg) had delayed onset of status 
epilepticus and reduced motor involvement (104). 
Moreover, in the developing rat brain after pilocarpine-
induced SE, EPO administration (4000 UI/mL) may 
preserve the number of neurons and decrease apoptosis. 
The mode of action of EPO on seizure activity is 
presumably different from that of conventional anti-
epileptic drugs (105). Furthermore, EPO administration 
prevented BBB leakage, neuronal death, microglia 
activation and inhibited the generation of ectopic granule 
cells (106). EPO administration coupled with astroglial 
induction of EPO following SE is protective (6). EPO 
infusion can enhance the survival of grafted NSCs, with 
NPY-positive cells in the dentate gyrus ameliorating 
spontaneous recurrent seizures after a KA lesion (73). 
  
5.1.1. EPO Signalling pathways.  

The protective role of EPO in neurons is 
established by binding to its receptor. The signalling 
pathway involves the activation of Janus tyrosine kinase 2 
(JAK2), which propagates the signal through signal 
transducer and activator of transcription (STAT), mitogen-
activated protein kinase (MAPK) and phosphatidylinositol-
3-kinase (PI3K/Akt) (107). The activity of these pathways 
contributes to different cellular functions and is an essential 
regulator of proliferation and cell survival (108). Akt can 
phosphorylate different members of the pro-apoptotic Bcl-2 
family, such as Bad (109) and Bim (110); once 
phosphorylated bind to the chaperone 14-3-3 in the 
cytoplasm, thereby inactivating pro-apoptotic functions 
(109, 110). The inactivation of pro-apoptotic factors p53 
and p73 by Akt has also been described (111). It has been 
shown that EPO activates the PI3K/Akt pathway in a 
variety of experimental models of injury (112, 113), such 
as epilepsy (Figure 2) (114). These effects can involve 
transcription factor regulation, maintenance of ∆Ψm, the 
prevention of cytochrome c release and the blockade of 
caspase activity modulating calcium influx in KA-induced 
epilepsy (62, 114, 115). 

 
The classical function by STAT signalling 

pathways is through both pro-apoptotic and anti-apoptotic 
signals, depending on the conditions of cell stimulation 
(116). However, it has been shown that STAT5 is 
predominantly a pro-survival signal activated by several 
cytokines and growth factors, such as EPO and interleukins 
(117,92). STAT5 appears to be expressed in the 
hippocampus and cortex of both the embryonic and adult 
rat brain (118). The end effectors of STAT5 signalling 
include Bcl-xL and XIAP, both proteins with anti-apoptotic 
effects (Figure 2) (119, 120). 

 
EPO significantly activates ERK 1/2 in primary 

cerebral vascular cells during oxidative stress (121). 
Additionally, ERK1/2 signalling pathways mediate EPO-
modulated calcium influx in KA-induced epilepsy, 
suggesting that EPO may require these cellular pathways to 
confer cytoprotection (Figure 2) (114). 

 

Another direct effect on the apoptotic pathway 
by EPO involves the modulation of caspase activity, which 
may offer several avenues for protection against cell injury, 
including the prevention of specific caspase 1- and caspase 
3-like activities, inactivation by the phosphorylation of 
caspase-9, or the negative regulation of SAPK/JNK (115, 
122-124). EPO also can block genomic DNA degradation 
through the inhibition of cytochrome c release and the 
subsequent inhibition of caspase 3-like activity (115). 
Moreover, the regulation of caspase 3-like activity by EPO 
has recently been linked to a unique mechanism that blocks 
the proteolytic degradation of phosphorylated forkhead 
transcription factors (125, 126). It prevents cellular 
apoptosis through parallel pathways, preventing the 
induction of Apaf-1 and caspase 9 as well as preserving 
mitochondrial membrane potential in conjunction with 
enhanced Bcl-xL expression (115). Furthermore, EPO 
preconditioning, except direct neuroprotection in the acute 
phase of seizure-induced cell injury, can suppress apoptotic 
neuronal cell death by regulating the expression of Bim and 
Bid (7). 
 
5.2. EPO Variants  

Several strategies have been proposed in efforts 
to separate the neuroprotective effects from the 
erythropoietic effects of EPO. However, carbamylated 
erythropoietin (CEPO), a non-erythropoietic derivative of 
EPO that does not bind to the classical EPOR, is 
neuroprotective in acute stroke but does not elevate 
hematocrit levels (104). CEPO could activate the Shh 
signalling pathway and mediate its effect on neural 
progenitor cells (127). Repeated doses of EPO treatment 
immediately after hypoxic-ischemia contribute to 
neurovascular remodelling by promoting tissue protection, 
revascularisation and neurogenesis in the neonatal injured 
brain and improve neurobehavioral outcomes (70). Wang et 
al. (128) present a head-to-head comparison of the 
protective effect of EPO and CEPO in a rat model of stroke 
following embolic middle cerebral artery occlusion 
(MCAO). EPO, at dose of 500–5000 IU/kg, or CEPO, at a 
dose of 50 mg/kg, significantly reduced infarct volume and 
improved functional outcome when administered 6, 24 and 
48 h after embolic MCAO. Lower doses of EPO (500 
IU/kg), with less effect on the haematocrit, also resulted in 
significantly decreased neuroprotection. In contrast to this 
observation, CEPO (50 mg/kg) offered the same 
neuroprotection as 5000 IU/kg of rhEPO but without any 
haematological side effects. Moreover, asialo-
erythropoietin exhibited neuroprotection in rodent models 
of focal ischemia and hypoxia in the brain and in spinal 
cord compression when administered intravenously at the 
time of challenge or 24 h before (129). Therefore, because 
of its rapid clearance from the circulation, asialo-
erythropoietin administration in rodents is able to uncouple 
the stimulation of erythropoiesis from the neuroprotective 
effects associated with EPO (130, 131). 

 
The beneficial effects of EPO-variants using 

ischemia models have been successful but need to be 
expanded to therapeutic uses in other disorders, such as 
epilepsy, to help counteract epileptic seizures.  
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6. CONCLUSION 
 

Erythropoietin has proven to be a molecule that 
limits the extent of injury through the maintenance of 
neurogenesis and the survival of neurons undergoing 
damage produced by diverse pathologies, such as epilepsy. 
A therapeutic approach using EPO could help to reduce 
epileptic seizures because both molecular and cellular 
events are involved in the course of epileptogenesis. 
Therefore, it is of great importance to know the pathways 
activated by EPO to further a successful clinical application 
to reduce epileptic seizures. 
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