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1. ABSTRACT  
 
 The motivation for this work was to derive a 
theoretical model for the combined motion of a sample of 
muscle tissue with a small number (approximately 12) of 
myosin molecules. This was then compared to data 
collected at the University of North Texas Health Science 
center. A theoretical model of the motion of the myosin 
cross-bridges has been derived. The solution is a 
combination of solutions from the classical harmonic 
oscillator, Brownian motion, and Maxwell-Boltzmann 
statistics. The model illustrates the myosin behavior as a 
function of the number of myosin molecules, the 
temperature of the sample, and the spring constant. The 
results show that there is good agreement between the 
theoretical model and experimental data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 The motivation for this work was to derive a 
theoretical model for the combined motion of a sample of 
muscle tissue with a small number (approximately 12) of 
myosin molecules. This was then compared to data 
collected at the University of North Texas Health Science 
center. A theoretical model of the motion of the myosin 
has been derived. The solution is a combination of 
solutions from the classical harmonic oscillator, 
Brownian motion, and Maxwell-Boltzmann statistics. 
The model illustrates the myosin behavior as a 
function of the number of myosin molecules, the 
temperature of the sample, and the spring constant. The 
results show that there is good agreement between the 
theoretical model and experimental data
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Figure 1. Dipole radiation from fluorescent molecule. 
 
3. THEORETICAL MODEL 
      
       The preparation of myofibrils, expression of LC1 
and labeling is elaborated in the first referenced paper1 in 
the reference section. Here we will focus on the basic 
physics of the measurement of the position of the myosin. 
In Figure 1 we see the fluorescent molecule and the dipole 
radiation pattern emitted once excited. In Figure 2 we see 
that the fluorescent molecule has been attached to the 
myosin cross-bridge of the myosin and radiates when 
excited by a laser1. As the myosin oscillates back and forth 
it is clear that the intensity of the radiation changes, 
depending on the angle of the fluorescent molecule and the 
associated parallel and perpendicular components will vary. 
The light emitted is collected by the apparatus, split into 
two beams, and then each beam passes through a polarizer 
filter each oriented to absorb one of the two components 
and allow the other to pass to the detector. This then allows 
each detector to measure the intensity of either the parallel 
or perpendicular component of the total field, from this 
information we may apply equation 1 to compute the 
average angular position (12,13,14,15,16). A PicoQuant 
MT 200 confocal system (PicoQuant, Berlin, Germany) 
coupled with an Olympus IX71 microscope had been used 
to acquire the fluorescence data. 
 
 Muscular contraction is achieved by sliding of 
thin actin filaments over the myosin heads with the 
chemical energy derived from ATP hydrolysis. In the 
various sub steps of the ATP hydrolysis induced myosin 
cross-bridge cycle, it is during the power stroke state that 
much of the angular displacement of the myosin head is 
attributed to. To study the motion and distribution of the 
orientations of myosin cross-bridges we used a sensitive 
fluorescence polarization based assay. The essential light 
chain 1 domain containing a single cysteine residue was 
labeled with a Setau maleimide or Rhodamine 
iodoacetamide dye (1). Therefore, each myosin has a 
fluorophore attached to the lever arm which fluoresces 
when excited by a laser1. The light emitted is passed 
through a beam splitter and then passed through polarizers 

that are oriented to allow light that is either horizontally or 
vertically polarized to pass to a detector (shown in Figure 
2). The position is then calculated by the following 
equation 

 

 
(1) 

 
Where, I|| is the intensity of the horizontally polarized light 

detected, I⊥ is the intensity of the vertically polarized light 
detected 
 
 Therefore, the measurement made is an average 
position of N number of myosin as shown in Figure 3. The 
total amount of light emitted by the fluorescent molecules 
is analyzed to give an average position of the myosin. 
Where, x1, x2, x3, xN, xave are the positions of the first, 
second, third, and Nth myosin in the sample and their 
average position, respectively. 
 
 The data, at first glance, seemed to have a 
sinusoidal behavior with a random kick yielding a random 
radial angle of position with an upper and lower limit. This 
was due to the fact that each myosin was at a different 
phase as it cycled through its motion, which yielded an 
average position that was random.  
 
 The derivation of the theoretical model began by 
using a sinusoidal motion to calculate the position, and 
velocity, which is represented by a linear classical 
harmonic oscillator illustrated in Figure 4 below. 
 
 Because the fluorescent molecule is attached to 
the lever arm of myosin, only the motion of the lever arm is 
being measured. For this reason a theoretical model 
employing simple harmonic motion is appropriate in 
comparison with experimental data. 
 
 The general solution for the harmonic oscillator 
model is given below. It is simply a sinusoidal motion, 
sin(wt) with an initial random position, xrandom, calculated 
by Brownian motion and Maxwell-Boltzmann velocity 
distribution to calculate the kick in position, xATP. The 
derivation of the following model is given in section V 
below. 
 
 

 (2) 
 
 The standard Gaussian distribution, or normal 
distribution, shown below for both the velocity and 
position, gives the probability distributions of finding the 
myosin at a velocity v or position x respectively. 
 
 

 

(3) 

 

 

(4) 
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Figure 2.  Measurement of dipole radiation from fluorescent molecule.  
 
 Two approaches may be taken at this point. First, 
we may treat the data as a single myosin simply by taking 
into account the number of myosin molecules in the 
sample. Second, we may treat the data as a bulk sample of 
an unknown number of myosin molecules. Each will 
employ a different spring constant, which we will see in the 
results below. 
 

In the first case the standard deviation for both 
the velocity and position, respectively, are given as, 
 

 
 

 

(5) 

 

 

 

 

(6) 

 
 These distributions reflect the standard deviation 
treating the myosin as an individual. To treat the myosin in 

bulk, there is no need to divide by the number of myosin in 
the sample yielding the following standard deviations for 
velocity and position respectively. 
 

 

 

 

 

(7) 

 

 

 

 

 

(8) 

 
The initial position is given by a randomly selected position 
between the limits of the Gaussian weighted by the 
distribution. 
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Figure 3.  Superposition of myosin sample producing average position. 
 

 
 
Figure 4. Average position of myosin sample translating to linear 1-D harmonic oscillator model. 
 
 

 
 

 
 

(9) 

In addition to the random position, we also 
calculated an initial random velocity. The values are 
randomly selected between the limits of the Gaussian 
weighted by the distribution. 

 

 
 

 
(10) 

 
 The ATP molecule supplies the energy required 
to displace the myosin and do work. Therefore, the position 
change due to that energy can be calculated from Hooke’s 
law. Because the average position seems to be perturbed at 
random in either the positive or negative direction the sign 
is randomly selected. 
 

 

 

 

(11) 

4. DATA INTERPRETATION 
 
 
 Because of the large number of data points a 
method of quantifying the data became necessary. A 
method of plotting the data and its best-fit linear line 
became the simplest approach for quantifying the data. 
 
 The output of the calculation is shown below. We 
have plotted the data and the best-fit line in a phase space 
plot (velocity versus position). From this we can visualize 
the distribution of the data and from the slope we can 
calculate how the physical properties of the myosin change 
under different conditions.  

The velocity is given in meters per second (m/s), 
the x-position is given in meters (m), and the slope is given 
in inverse seconds (1/s). This slope could also be 
interpreted as an average frequency of oscillation. 

 
 

 The velocity of the myosin are calculated by 
taking the difference in position from one data point to the 
next and divided by the sample rate (sample rate = 0.0.1 
seconds). This is not the true velocity of the myosin since 
we are not tracking the position of each myosin 
individually; rather we are calculating the velocity from the 
average position, which is random when measured. The 
velocity is calculated with the following expression. 

 

 
 

 
(12) 

Where vi is the velocity of the ith data point, xi is 
the ith x-position data point, xi-1 is the ith minus one data 
point, and Delta-t is a constant 0.0.1 seconds which is 
dictated by the sample rate of the data acquisition. 
 
5. RESULTS 
 
 The outputs of the simulations are given in this 
section along with experimental data, for cardiac muscle, 
collected at the University of North Texas Health Science 
center by Dr. Julian Borejdo and Dr. Krishna Midde. 
 
 Plotting the slope calculated for each file per trial 
represents the data. In Figure 5, Figure 7, and Figure 8 the 
plots show 19 output files run 7 times to generate 133 
simulated slopes plotted against 19 actual data files 
generating a single slope each. In Figure 6 and Figure 9 the 
plots show 26 output files run 7 times to generate 182 
simulated slopes plotted against 26 actual data files 
generating a single slope each. The spread of simulated 
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Figure 5. Phase space plot, velocity vs. x-position, of a myosin sample. 
 

 
 
Figure 6. Simulation (Sim.) output (spring constant k = 0.66) and Phosphorylated relaxation experimental data. 
 
data gives the range that you would expect the actual data 
to fall within given a spring constant.  
 
Results and spring values when oscillators are accounted as 
a single myosin are shown in Figure 6, Figure 7, and Figure 
8. 
 
Results and spring values when oscillators are accounted 
for in bulk are shown in Figure 9, Figure 10, and Figure 11. 
 
6. SIMULATION 
 
 Refer to section 9. MathCad Worksheet for the 
following description. The MathCad worksheet is divided 
into sections and each section is described below. 
 
Input – The input section of the code consists of 
definitions of constants used in the calculations section; 
they are as follows. 

A0 – amplitude of the myosin, which is the 
maximum length that the myosin can reach. 
M – mass of the myosin and cross-bridge 
combined. 
Nmyosin – number of myosin being simulated. 
Nfiles – Number of files to be simulated. 
Tsample – Temperature of sample. 
kb – Boltzmann’s constant  
k – spring constant of myosin. 
EATP – is the energy released by ATP when it 
attaches itself to the myosin and breaks down into 
ADP. 
Delta-t – sample rate of actual experiment. 

 
 Line #1 is a for-loop going from 0 to Nfiles-1 
myosin being simulated. Line #2 is the random initial 
position for each of the myosin and line #3 is the random 
initial velocity. The fourth line is the for-loop that each 
myosin will go through to simulate one full cycle of a 
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Figure 7. Simulation (Sim) output (spring constant k = 0.32) and Dephosphorylated relaxation experimental data. 
 

 
 
Figure 8. Simulation (Sim.) output (spring constant k = 0.66), Phosphorylated and Dephosphorylated contraction experimental data. 
 
sinusoidal wave. Line #5 is a random number generator 
which outputs a number between 0 and 2-Pi which will be 
used later to determine if the value of the random position 
shift due to the ATP will be positive or negative. Line #6 is 
the normal (Gaussian) distribution, which is the assumed 
distribution of values scaling the random shift in position 
which is then added to the position of the harmonic 
oscillator; the distribution is centered about the initial 
velocity (v0). Line #7 is where the value from the velocity 
distribution is scaled by multiplying it by the maximum 
displacement due to the energy from ATP. Line #8 is the 
calculated position of the myosin, calculated by the 
solution of the harmonic oscillator and a random kick. The 
iteration number n is scaled by the inverse of the coefficient 
multiplied by 1000 seconds so that we get a range of values 
from 0 to 2-Pi and cancels the dimensions. Line #9 stores 
the value for that iteration for each myosin building an 
array of values. Line #10 assigns the array to the variable x. 
 
 Next we calculate the velocity of the myosin. 
Line #1 is a for loop iterating through each myosin being 
simulated. Line #2 is the for-loop that each myosin will go 
through to simulate one full cycle of a sinusoidal wave. 
Line #3 where we calculate the velocity by taking the 
change in position from one element to the next and 

dividing it by the change in time. Line #4 stores the value 
for that iteration for the velocity of each myosin building an 
array of values. Line #5 assigns the array to the variable v. 
 
 Now that we have arrays with values for the 
position and velocity of the myosin we want to calculate a 
best fit line for our data when we plot the position and 
velocity in a phase space plot (v vs. x). In line #1 we are 
iterating through each array of data for each of the myosin. 
Line #2 I calculate the slope (velocity/position) for each of 
the myosin. And in the remaining two lines I store each 
slope as an element of an array and assign it to the variable 
mySlope. The same is done for calculating the y-intercept. 
 
 The results for the slope and y-intercept are then 
averaged below in the first two lines. Then a range for the 
best-fit line is defined and finally the values for the best-fit 
line are computed. 
 
 In the error analysis section we compute the R2 
deviation and the standard deviation of the data from the 
best-fit line. First we calculate the best-fit line for each of 
the data sets for each of the myosin. Then the R2 deviation 
is computed for each of the data sets for each of the 
myosin. Then the mean value for the R2 deviation is 
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Figure 9. Simulation (Sim.) output (spring constant k = 7.2) and Phosphorylated relaxation experimental data. 
 
 

 
 
Figure 10. Simulation (Sim.) output (spring constant k = 3.5) and Dephosphorylated relaxation experimental data. 
 
computed. Below that we compute the standard deviation 
of the slope and y-intercept values calculated above. 
 
Output – The output of the calculation is shown below. 
We have plotted the data and the best-fit line in a phase 
space plot. From this we can visualize the distribution of 
the data and from the slope we can calculate how the 
physical properties of the myosin change under different 
conditions. 
 
7. DERIVATION OF THEORETICAL MODEL 
 
 To calculate the standard deviation for the 
velocity distribution we must calculate the average velocity 
and the square of the average velocity. 

 

 

(13) 

 

 

 
 

  

 

(14)   
Next we calculate the standard deviation for the initial 
velocity spread, shown below. 
 

 
(15) 

 
 

 

  

 
 
 

 

(16) 



Simulation model of myosin with experimental data 

1405 

 
 
Figure 11. Simulation (Sim.) output (spring constant k = 7.2), Phosphorylated and Dephosphorylated contraction experimental data. 
 

 
 

Figure 12. Probability distribution for position of myosin 
 

 

 

 

(17) 

 
To calculate the standard deviation for the 

position distribution we must calculate the average position 
and the square of the average position. 
 

 

 

           (18) 

 

 

(19) 

 

The reason for integrating from 0 to infinity is 
because the actual myosin start at an initial position swing 
out to a maximum position and then return to its starting 
position and not passed. Therefore, the probability of 
finding the myosin behind its starting position is zero. See 
Figure  12. 
 
Next we calculate the standard deviation for the initial 
position spread, shown below. 

 

 
 

 
(20) 

 
 

 

 

 

(21) 
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(22) 

 
The initial position and velocity distribution are then given 
by, 
 
 

 

 

 

(23) 

 
 

 

 

 

(24) 

 
The derivation for the motion of the oscillator is as follows. 
We know from Hooke’s law that the force is given by, 
 

 

 

 

(25) 

 
We can rewrite this as follows, 

 

 

 

 

(26) 

 
 
Which has the general solution, 
 

 
 

 
(27) 

Where, 
 

  
 
 

(28) 

 

 

 

(29) 

 
And at t = 0 the constant is, 
 

 

 
 

 
(30) 

 
 
Which gives the final solution, 
 
 

 
 

 
(31) 

 
8. CONCLUSION 
 
 From the results presented above there is 
good agreement between the experimental data 
collected and the range of data points predicted by 
the theoretical model. As seen above, a simple 
classical 1-D harmonic oscillator model is sufficient 
to model the behavior of the myosin. As the number 
of myosin molecules in the sample becomes greater 
than one, further application of Brownian motion and 
Maxwell-Boltzmann statistics are needed to predict 
the average behavior. Improving the agreement 
between the theoretical and experimental data can be 
achieved by measuring more accurately the 
temperature of the sample and routine calibration of 
experimental equipment. 
 
 We also see from the data presented above 
that the theoretical model can be used to study the 
effect of phosphorylation on myosin. A further 
application of this method of data interpretation 
would be in identifying individuals with Familial 
Cardiac Hypertrophy by comparing the results from 
healthy individuals, individuals with the disorder, and 
individuals whose result is unknown to determine 
whether or not they have the disorder. 
 
 The current model does not describe the low 
ATP case, further development of the model is 
needed to add the dependence of the quantity of ATP 
present. Also, further study is needed to compare this 
model with fluorescence data for the pre and post 
contraction states. If you look at the distribution of 
points for the Phosphorylated data in Fig 9 the wider 
distribution of points in the Phosphorylated data may 
suggest that a number of the myosin have entered the 
pre-power stroke. Our future work, current work in 
progress, will accommodate for ATPase activity and 
power stroke states. 
 
9. MATHCAD WORKSHEET 
 

The Input, calculations, calculation of velocity, 
calculation of best fit line, results of best fit line, error 
analysis of best fit line and plots are presented in figures 13 
- 18. 
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Figure 13. Input. 
 

 
 
Figure 14. Calculations. 
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Figure 15. Calculation of velocity and best fit line. 
 

 
 
Figure 16. Results of best fit line. 
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Figure 17. Error analysis of best fit line.  
 

 
 
Figure 18. Plots. 

 
 10. ACKNOWLEDGMENTS 
 
 I would like to thank Dr. Julian Borejdo at the 
University of North Texas Health Science Center in the 
department of molecular biology and Dr. Krishna Midde 
for offering the data they collected to compare with the 
theoretical predictions made in this paper; also, for their 
assistance in editing this paper in preparation for 
publication.I would also like to thank Stephanie Tziavaras 

and Kenny Leeson for their donations to help publish this 
work.  
 
11. REFERENCES 
 
1. Krishna Midde, Ryan Rich, Peter Marandos, Rafal 
Fudala, Amy Li, IgnacyGryczynski and Julian Borejdo: 
Orientation and Rotational Motion of Cross-Bridges 
Containing Phosphorylated and de-Phosphorylated Myosin 



Simulation model of myosin with experimental data 

1410 

Regulatory Light Chain. Journal of Biological Chemistry, 
Jan (2013) 
 
2. K. Midde, V. Dumka, J.R. Pinto, P. Muthu, P. Marandos, 
I. Gryczynski, Z. Gryczynski, J.D. Potter, and J. Borejdo: 
Myosin Cross-Bridges Do Not Form Precise Rigor Bonds 
in Hypertrophic Heart Muscle Carrying Troponin T 
Mutations. J Mol Cell Cardiol. September; 51(3): 409–418 
(2011) 
 
3. Midde, K., et al.: Evidence for pre- and post-power 
stroke of cross-bridges of contracting skeletal myofibrils. 
Biophys J, p. 1024-33 (2011) 
 
4. Evan Eisenberg, Terrell L. Hill, Yi-Der Chen: Cross-
Bridge Model of Muscle Contraction. Biophysical Journal, 
Volume29, (1980) 
 
5. Terrell L. Hill, Evan Eisenberg, Lois E. Greene: 
Alternate model for the cooperative equilibrium binding of 
myosin subfragment-l-nucleotide complex to actin-
troponin-tropomyosin. Proc. Natl. Acad. Sci. USA, 
Biochemistry, Vol.80, pp.60-64, January (1983)  
 
6. Terrell L. Hill, Evan Eisenberg, J.M. Chalovich: 
Theoretical Models for Cooperative Steady-State  ATPase 
Activity of Myosin Subfragment-1 on Regulated Actin. 
Biophys J. Biophysical Society, Volume 35, pp.99-112, July 
(1981) 
 
7. Terrell L. Hill, Evan Eisenberg: Theoretical 
Considerations in the Equilibrium Binding of Myosin 
Fragments on F-Actin. North-Holland Publishing 
Company, Biophysical Chemistry 11, pp.271-281, (1980) 
 
8. Huxley, A.F.: Muscle structure and theories of 
contraction. Prog. Biophys. biophys. Chem.7, pp.279–310, 
(1957) 
 
9. Terrell L. Hill: An Introduction to Statistical 
Thermodynamics. New York, Dover Publications, Inc. 
(1986) 
 
10. Einstein, A.: Investigations on the Theory of the 
Brownian Movement. New York, Dover Publications, Inc. 
(1956) 
 
11. Eisberg, Robert, and Resnick, Robert: Quantum Physics 
of Atoms, Molecules, and Particles. Second ed. New 
Jersey, Jon Wiley & Sons, Inc. (1985) 
 
12. Dos Remedios, C.G., Millikan, R.G., and Morales, 
M.F.: Polarization of tryptophan fluorescence from single 
striated muscle fibers. A molecular probe of contractile 
state. J. Gen. Physiol. 59, 103–120, (1972)  
 
13. Dos Remedios, C.G., Yount, R.G., and Morales, M.F.: 
Individual states in the cycle of muscle contraction. Proc. 
Natl. Acad. Sci. U.S.A. 69, 2542–2546, (1972)  
 
14. Nihei, T., Mendelson, R. A., and Botts, J.: Use of 
fluorescence polarization to observe changes in attitude of 

S1 moieties in muscle fibers. Biophys. J. 14, 236 –242, 
(1974) 
 
15. Tregear, R. T., and Mendelson, R. A.: Polarization from 
a helix of fluorophores and its relation to that obtained from 
muscle. Biophys. J. 15, 455– 467, (1975) 
 
16. Morales, M. F.: Calculation of the polarized 
fluorescence from a labeled muscle fiber. Proc. Natl. Acad. 
Sci. U.S.A. 81, 145–149, (1984)  
 
Key Words: Harmonic Oscillator, Simulation, Statistical 
Physics, Brownian Motion, Contractile Protein, Muscle, 
Myosin, Phosphorylation, Fluorescence Correlation 
Spectroscopy, Phosphorylation of the RLC, Fluorescence 
Polarization, Skeletal Myosin Cross-bridge 
 
Send correspondence to: Peter S. Marandos, 11774 Azalea 
Garden Way, Rancho Cordova, CA 95742, Tel: 916-509-
2789, Fax: none, E-mail: psmarandos@hotmail.com 
 
 
  
 
 
 


