
[Frontiers in Bioscience 19, 1300-1319, June 1, 2014] 

1300 

Calorie restriction and NAD+/sirtuin counteract the hallmarks of aging 
 
Shaday Michan1 
 
1Instituto Nacional de Geriatria, Institutos Nacionales de Salud, D. F., Mexico 
 
TABLE OF CONTENTS 
 
1.Abstract 
2. Introduction 
3. Effect of calorie restriction (CR) in normal cognition and neuroprotection 
4. CR counteracts hallmarks of cellular aging 

4.1. Genome instability is reduced by CR 
 4.2. Telomere erosion is decreased by CR 

4.3. Epigenetic alterations are counteracted by CR 
4.4. Proteostasis imbalance is modified by CR 
4.5. Mitochondrial dysfunction is relieved by CR 
4.6. Cellular senescence is reversed by CR 
4.7. Stem cells depletion is attenuated by CR 
4.8. Impaired nutrient sensing is reprogramed by CR 
4.9. Altered intercellular communication is improved by CR 

5. The NAD+/sirtuin pathway 
6. CR effects mediated by the NAD+/sirtuin pathway 
7. Sirtuin-activating compounds mimic CR  
8. Concluding remarks 
9. Acknowledgement  
10. References 
 
  
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT  
 

Among diverse environmental factors that 
modify aging, diet has a profound effect. Calorie restriction 
(CR), which entails reduced calorie consumption without 
malnutrition, is the only natural regimen shown to extend 
maximum and mean lifespan, as well as healthspan in a 
wide range of organisms. Although the knowledge about 
the biological mechanisms underlying CR is still incipient, 
various approaches in biogerontology research suggest that 
CR can ameliorate hallmarks of aging at the cellular level 
including telomere erosion, epigenetic alterations, stem 
cells depletion, cellular senescence, mitochondrial 
dysfunction, genomic instability, proteostasis imbalance, 
impaired nutrient sensing and abnormal intercellular 
communication. Currently, the NAD+/sirtuin pathway is 
one of the few mechanisms described to mediate CR effects 
and sirtuin-activating compounds (STACs) mimic many 
effects of CR. Herein, we discuss the effects of CR on 
healthspan with emphasis on neuroprotection, how CR 
counteracts cellular aging, how sirtuin pathways intertwine 
with CR, and the relevance of STACs in mimicking CR 
effects. 

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

It has been nearly eighty years since Clive M. 
McCay first demonstrated that a decrease in energy intake 
by 30 % increased lifespan in white rats (1). Since then a 
large body of experiments has confirmed that calorie 
restriction (CR), .i.e., a reduction of calorie consumption to 
60-90% of a normal balanced diet without malnutrition can 
increase longevity of a variety of species, from unicellular 
yeast to multicellular fungus and metazoans including fruit 
flies, worms, fish, rodents, non-human primates and 
probably humans as well (2–8). Houseflies are an exception 
to the rule, however (9). The findings in primates are less 
clear, with conflicting results in the only two large-scale 
primate studies reported thus far. While CR did not 
increase the average lifespan of the rhesus monkey cohort 
at the NIH, a cohort of similar monkeys housed in 
Wisconsin lived longer on a CR diet (10,11). Although 
both cohorts were fed a 30%-reduced calorie diet, factors 
such as differences in food composition, genetic 
background and experimental design may account for these 
discrepancies. Nonetheless, CR is the only non-genetic 
strategy known to extend not only mean and maximum 
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lifespan but also healthspan by delaying the onset of age-
related disorders such as cancer, cardiovascular disease, 
diabetes, inflammation, arthritis, diverticulosis, 
neurodegeneration, and cognitive and motor impairment 
(10–13). Experiments in rodents and monkeys have shown 
that CR ameliorates several changes asociated with aging 
including sarcopenia, high blood pressure, osteoporosis, 
endometriosis, body fat accumulation, and glucoregulation 
imbalance (5). CR decreases basal metabolic rate and 
energy expenditure but maintains higher physical activity 
in rhesus monkeys (14). Reduced body core temperature 
has been associated to a prolonged life (15), yet it is not 
surprising that by regulating energy homeostasis CR may 
induce hypothermia. In fact, similar to rodents and 
monkeys, humans fed a CR diet for 6 years sustained lower 
body temperature as compared with subjects who 
consumed a typical Western diet (16).  
 
3. EFFECTS OF CR IN COGNITION AND 
NEUROPROTECTION 
 

CR has been shown to protect against age-related 
cognitive decline and associated brain changes. For 
example, CR attenuates cognitive decline due to normal 
aging in rodents (17) and improves motor coordination, 
locomotor activity and maze leaning (18). CR also 
enhances associative memory in the mouse and facilitates 
synaptic plasticity through mechanisms dependent on 
NMDA receptors (19). In rats, CR stabilizes age-related 
loss of synaptic proteins in the hippocampus as well as 
sustains hippocampal-dependent spatial learning at old age 
as revealed by the Morris water maze (20). In the 
senescence-accelerated mouse strain P8 (SAMP8), CR 
reduces performance defects in a passive avoidance task 
(21), while in humans, short-term CR facilitates memory 
performance (22).  
 

CR ameliorates many markers of brain aging in 
non-human primates, such as the accumulation of non-
heme iron, white matter atrophy, pathogenic amyloid-beta 
deposition and astrogliosis in non-human primates (23–25). 
It also delays motor neurons death due to aging in rats (26). 
Similarly, at the mouse skeletal neuromuscular junctions, 
CR reverses age-associated deterioration including pre- and 
postsynaptic abnormalities and loss of motor neurons and 
muscle fibers (27). Alternatively, CR exerts a 
neuroprotective role in the nervous system by stimulating 
astrocytes functioning including glutamate uptake and 
glutamine synthetase activity in the rat hippocampus (28). 
Also, CR increases resistance to seizures in rats (29). 
 

A number of studies show that CR improves 
signs of neurodegeneration in diverse disease models. For 
instance, it sharply suppresses age-related paralysis in 
nematode models of both Huntington’s disease (HD) and 
Alzheimer’s disease (AD) in which a 35 polyglutamine 
track or human amyloid-beta 42, respectively, are 
expressed in the body wall. In addition, CR was able to 
extend median and maximum survival of the AD worm 
model (30). Similarly, in a genetic mouse model of AD, 
3xTgAD, CR lowered the levels of pathogenic amyloid-
beta peptides 40 and 42, and phospho-tau in the 

hippocampus as well as improved age-related cognitive 
performance (31). Furthermore, a 4 month CR regimen 
benefitted mice with double knockout of presenilin-1 and 
presenilin-2 specific to the forebrain, which recapitulate 
many of the neurodegenerative phenotypes of AD, 
improving novel object recognition and contextual fear 
conditioning memory and attenuating ventricle 
enlargement, caspase-3 activation, astrogliosis and tau 
hyperphosphorylation (32). In a neurotoxin-induced model 
of Parkinson's disease in the rhesus monkey, CR was 
shown to mitigate the severity of neurochemical deficits 
and motor dysfunction, presumably by increasing the levels 
of glial cell line-derived neurotrophic factor, which may 
promote the survival of dopaminergic neurons (33).   
 
4. CR COUNTERACTS HALLMARKS OF 
CELLULAR AGING 
 

At present it is not well understood how CR 
impacts cellular processes nor which specific molecular 
mechanisms underlie its effects. Nonetheless, research is 
accumulating that reduced caloric intake may counteract 
cellular hallmarks of aging. This next section reviews how 
CR is known to impact the nine hallmarks of cellular aging 
as proposed by López-Otín and colleagues, which include: 
1) genomic instability, 2) telomere erosion, 3) epigenetic 
alteration, 4) proteostasis imbalance, 5) impaired nutrient 
sensing, 6) mitochondrial dysfunction, 7) cellular 
senescence, 8) stem cells depletion and 9) abnormal 
intercellular communication (34). 
 
4.1. Genomic instability is reduced by CR 

CR has been shown to protect the genome from 
damage in organisms ranging from yeast to mammals. In 
yeast, CR decreases rDNA recombination and the 
formation of extrachromosomal DNA circles, where this 
accumulation is considered a cause of aging (35,36). In 
rodents, CR ameliorates DNA repair inefficiencies that 
tend to increase with age in many repair processes 
including non-homologous end joining  (NHEJ), 
nucleotide excision repair  (NER), and base 
excision repair  (BER). For instance, CR improves 
NHEJ by increasing XRCC4, which forms a complex 
with ligase 4 to enhance joining activity (37). Also, CR 
increases the fidelity of both polymerases alpha and beta 
in aged animals (38) and decreases the age-dependent 
decline in NER across the genome (39). Reduced BER 
is detected in many aged animal tissues such as brain, 
liver, spleen and testes and is counteracted by CR 
through upregulation of the rate-limiting enzyme in the 
BER pathway, DNA polymerase beta, at the level of 
protein, mRNA and enzyme activity. Interestingly, CR 
also stimulates BER in young animals, possibly 
conferring an anti-tumor effect at early ages (40). In 
BER pathway as well, the apyrimidinic/apurinic 
endonuclease  (APE) is a key protein for removing 
oxidative DNA lesions. CR counteracts the amelioration 
of APE activity with age in different areas of the brain, 
e.g., the frontal/parietal cortex, cerebellum, brainstem, 
midbrain and hypothalamus (41). CR does not however 
appear to reduce chromosomal aberrations related to 
aging in adult rhesus monkeys (42). 
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4.2. Telomere erosion is decreased by CR 
The gradual loss of DNA at the ends of 

chromosomes, regions known as telomeres, is associated 
with a number of aging phenotypes and illnesses including 
dementia, diabetes mellitus, ulcerative colitis, cancer and 
metabolic syndrome. Telomeres deplete after 
approximately 50–70 cell divisions in humans, which 
eventually impairs cell reproduction leading to aging and 
death (43). Studies in mice show that CR attenuates age-
associated telomere erosion in leukocytes and various 
tissues including lung, kidney-cortex and muscle fiber, and 
this effect synergizes with the increase in healthspan and 
longevity observed with overexpression of telomerase 
reverse transcriptase (TERT), a catalytic subunit of 
telomerase enzyme that elongates telomeres (44). Similarly, 
CR reduces telomere shortening in lens epithelial cells and 
leukocytes of brown Norway rats and humans, respectively. 
In contrast, however, no reversion of age-dependent 
telomere shortening was detected in skin or leukocytes in 
caloric-restricted rhesus monkeys (45,46).  
 
4.3. Epigenetic alterations  are counteracted by CR 

CR modifies DNA methylation and histone 
remodeling, two major epigenetic pathways, which are 
commonly dysregulated with aging and lead to aberrant 
expression of key genes (47). CR influences activity of 
DNA methyltransferases  (DNMT) to regulate TERT, p16 
and p21 (48). In the mouse hippocampus, CR decreases 
immunoreactivy of DNMT3a, potentially impacting 
synaptic plasticity and cognition (49). In agreement, CR 
attenuates age-related changes in the levels of the 
epigenetic molecules 5-methylcytidine (5- mC) and 5-
hydroxymethylcytosine (5-hmC) in the mouse 
hippocampus (50). Interestingly, 5mC and 5-hmC levels 
are significantly decreased in the hippocampus of AD 
patients and this negatively correlates with amyloid plaques 
and neurofibrillary tangle load (51) 
 
  As for histone remodeling, CR activates NAD+-
dependent deacetylase SIRT1 and histone deacetylase 
HDAC1, inducing expression of master regulator genes, 
including HIF-1alpha, HSF1, p53, PGC-1alpha, Foxo, 
Ku70, as well as regulators of brain functions such as 
CLOCK, ADAM-10, BDNF, MAO-A, RARbeta and Tau 
(52,53). Furthermore, CR may prevent age-related 
epigenetic changes induced by altered levels of HDAC2 in 
the mouse hippocampus (54). Thus, through modifications 
of epigenomic architecture, CR plausibly causes massive 
transcriptome changes. For instance, studies in Drosophila 
demonstrate that CR delays age-related loss of gene 
silencing (55). In addition, CR induced by intermittent 
fasting, upregulates 1708 genes involved in aging and 
stress response in C. elegans (56), while in mouse liver, CR 
significantly alters the expression of 2500 genes (57). Other 
DNA microarray analyses show that CR produces a shift 
towards a younger and healthier gene transcription profile 
in the skeletal muscle of mice, rats and humans (58,59). 
Also, the transcription profile of the presenilin double 
knockout mouse brain, revealed that besides mitigating 
various signs of AD, CR induces the expression of 
neurogenesis related proteins, while inhibiting transcription 
of genes involved in inflammation (32). In rhesus monkeys, 

CR may reverse age-dependent microRNA expression to a 
younger profile in skeletal muscle (60). A recent study 
shows that the level of microRNA-80, which targets 
histone acetyltransferase CBP-1, is decreased by CR in C. 
elegans , leading to induction of CBP-1-dependent 
metabolic pathways such as the forkhead transcription 
factors daf-16/FOXO and heat shock factor-1 (HSF-1), 
which promote longevity and healthspan (61).  
 
4.4. Proteostasis imbalance is modified by CR 

The cellular proteome is vulnerable to 
environmental stress such as heat shock, oxidative damage 
and heavy metals. To maintain integrity under challenging 
conditions, cells mount a dynamic yet precise response, 
including changes in folding, trafficking, synthesis, 
breakdown and concentration of proteins. Thus, CR may 
confer protection against pathology and aging through 
counteracting protein imbalance at multiple regulatory 
levels (62). 
 

A decrease in protein translation has a profound 
effect on aging (63), thus it is not surprising that the effects 
of CR are linked to mRNA translational changes. Inhibition 
of translational elongation machinery by eukaryotic 
elongation factor 2 kinase  (eEF2K) promotes survival of 
cells and worms under nutrient deprivation (64). In 
addition, studies indicate that CR slows down translation 
rates by modulating the levels of critical components of 
mRNA translational machinery, e.g., 60S ribosomal subunit 
or the translational repressor 4E-BP (65,66). In fact, 4E-BP 
is required to extend fly lifespan under CR (66). The 
increase of 4E-BP by CR reduces global mRNA 
translation, while stimulating nuclear-encoded 
mitochondrial gene expression. Interestingly, 5’UTRs of 
upregulated mitochondrial products are shorter and have 
weaker secondary structures compared to the whole fly 
genome. Under this scenario CR seems to trigger 
differential regulation of protein translation within cells, 
favoring mitochondrial protein synthesis. Though the 
mechanisms of differential mRNA upregulation mediated 
by 4E-BP are not yet clear, this study suggests that it may 
be faster and require less energy than other forms of 
regulation, such as transcription or posttranslational 
modifications.  

 
In line with the reduction in protein translation, a 

large-scale proteome study in mouse liver reveals that long 
term CR produces a massive decay in absolute protein 
synthesis and proteolytic rates. However, here it is suggested 
that rather than increasing mitochondrial translation, CR 
prolongs half-live specifically of mitochondrial proteins. It is 
important to highlight that in the context of this study, 
functionally related proteins displayed similar relative 
concentrations and replacement rates, suggesting a fine-tuned 
regulatory mechanism for coordinating the proteome turnover 
decay in CR (67). Whether CR stimulates protein synthesis, 
particularly in the mitochondria, remains controversial since 
several lines of evidence support the notion that CR stimulates 
protein biogenesis and degradation (68–70) instead of 
lessening protein turnover as discussed above. 
Additionally, no changes in protein levels have been 
detected in diverse rodent tissues under CR (71–73) 
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Autophagy regulates major clearance of long-
lived proteins and cytoplasmic organelles including 
damaged mitochondria by sequestering deteriorated 
material into autophagosomes and delivering it to 
lysosomes for degradation (74). Studies show that CR 
enhances autophagy in several species including worms 
and mammals (75–77). In rats, CR increases the autophagy 
markers in the kidney and reverses age-dependent decay of 
a similar proteolytic pathway in liver cells (78,79). In 
addition, intact autophagy genes are essential to extend C. 
elegans lifespan in a genetic model of CR (80). Autophagy 
plays an important role in neuroprotection (81). Indeed, 
genetic specific ablation of the autophagy gene Atg5 in 
neurons causes progressive signs of neurodegeneration, 
including deficits in motor function and aggregation of 
cytoplasmic inclusion bodies in neurons (82). Similarly, 
lack of Atg7 specifically in the central nervous system 
causes massive neuronal loss, behavioral deficits and 
premature death in mice (83). Not unexpectedly given its 
large neuroprotective effect, CR causes a marked 
enhancement of autophagy in mouse neurons (84,85). In a 
mouse model of amyotrophic lateral sclerosis CR-induced 
autophagy stimulates degradation of mutant SOD1 
aggregates early in the disease process, resulting in 
potential protective effects (86). 
 

The proteasome is a proteolytic complex that 
targets proteins for degradation through the ubiquitin-
proteasome system (UPS). Conflicting data show that either 
an increase or decrease in proteasome activity has been 
linked to aging (87,88). For instance, neurons of aging 
worms display reduced levels of UPS-mediated proteolysis 
(89) and also a depletion of UPS activity is linked to 
neurodegeneration (90,91). CR, however, enhances this 
pathway in yeast and rat brown adipose tissue (92–94). 
Accordingly, studies in worms indicate that proteins 
involved in the ubiquitination of substrates, including a E3 
ubiquitin ligase (WWP-1) and a E2 ubiquitin conjugating 
enzyme (UBC-18), are indispensable for the prolongation 
of lifespan by CR (95). In agreement, recent large-scale 
approaches aimed at analyzing transcriptional pathways 
involved in CR reveal that intermittent fasting induces 
UPS-dependent protein degradation in worms (56). In 
contrast, CR improves cardiac functioning in rats by doing 
the opposite, i.e., by counteracting the age-associated 
increase of the UPS (96). This agrees with several other 
studies, which demonstrate that activity of proteasome 
system increases with aging in yeast, mole rats, and 
centenarians (97–99).  
 

Aberrant protein folding and aggregation are 
linked to various age-related pathologies and 
neurodegenerative disorders such as Alzheimer's, 
Parkinson's, and Huntington's diseases. The heat shock 
response is a cytoprotective mechanism against 
proteotoxicity that plays a critical role in the maintenance 
of proteostasis. It involves the prompt and massive 
expression of molecular chaperones besides additional 
protective components that stabilize and fold nascent 
products, prevent misfolding and conformational changes 
to proteins by denaturing conditions and/or promoting 
recovery of damaged proteins (100). Experiments in C. 

elegans demonstrate that CR synergizes with heat shock to 
induce the heat shock response (101). CR protects against 
proteotoxicity, although without clearing aggregation, in 
three different worm models of disease, including 
polyglutamine tracts, amyloid-beta 42 and an accumulation 
prone form of GFP. Instead, the activity of the heat shock 
transcription factor (HSF-1), a master regulator of heat 
shock response conserved from yeast to humans, is 
required for thermotolerance, protection against 
proteotoxicity and lifespan extension by CR (30). 
Interestingly, recent investigations suggest that heat shock 
response controls autophagy (102). Thus, it remains to be 
elucidated how the molecular mechanisms of protein 
homeostasis are intertwined in response to CR.  
 
 4.5. Mitochondrial dysfunction is relieved by CR 

It is well accepted that CR protects mitochondrial 
integrity and function, though the mechanisms underlying 
these beneficial effects are still a matter of controversy. 
Experiments in diverse models from yeast to mammals 
demonstrate that CR prolongs lifespan by increasing 
respiration (103–105). In line with this, CR induces 
the expression of a number of genes encoding proteins 
involved in energy metabolism (106). Also, it raises 
mitochondrial membrane permeabilization, electron 
transport chain and ATP production, while reducing energy 
expenditure and the steady-state levels of reactive oxygen 
species  (ROS), thus minimizing oxidative damage to DNA 
and proteins (73,107–110). The reduction of ROS by CR, 
in addition to bursting antioxidant defenses, may be 
explained by a decrease in mitochondrial proton leak (i.e., 
proton flux across the mitochondrial inner membrane 
independent of ATP formation) (109). Accordingly, it has 
been suggested that CR lowers the steady-state reduction 
degree of complex I, thus decreasing the release of ROS 
per unit electron flow, without changing oxygen 
consumption (111). Thus, it has been proposed that CR 
may induce lifespan extension and cellular protection by 
reducing the generation of ROS in the mitochondria (112). 
This premise agrees with the inverse correlation between 
H2O2 generation and maximum lifespan revealed by a study 
with several species including fly, mouse, rat, guinea pig, 
rabbit, pig, and cow (113), as well as with studies in yeast 
showing that disruption of mitochondrial superoxide 
dismutase (SOD2) significantly shortens lifespan by CR 
(114). Likewise, CR prevents neurodegeneration caused by 
increased oxidative damage in worms (115) and in the 
aging rodent nervous system (116–118). A decrease in 
oxidative stress by CR may be due to the induction of the 
peroxisome proliferation-activated receptor coactivator 1 
alpha (PGC-1alpha), which is a master regulator of 
mitochondrial function that acts in response to specific 
metabolic demands to enhance bioenergetics (70). 
 

In contrast, several lines of evidence indicate that 
CR favors the generation of damaging agents that induce 
hormesis (119). This concept was first adapted in a 
biogerontological context by Rathan (2001) and refers to 
the beneficial effects triggered by the exposure to a mild 
repeated stress, which activates cellular responses that 
protect against damage or that repair the damage once it 
occurs (119). Thus, mitochondrial hormesis strengthens 
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cells by keeping stress resistance machinery “awake” ready 
for coping with challenging conditions. Consistent with this 
concept, experiments show that CR increases ROS 
formation, catalase activity, oxidative stress resistance and 
survival rates in worms, and treatment with different 
antioxidants and vitamins no longer sustains lifespan 
extension (104). Inhibition of mitochondrial complex I, 
which is known to increase ROS, mimics CR effects in 
C.elegans, such as increase lifespan extension, activity and 
stress resistance. Animals treated with complex 1 inhibitors 
do not respond to lifespan extension by CR and neither do 
those with ablation of redox-sensing neurons, suggesting 
that redox signal is essential for mediating CR effects on 
longevity (120). CR also provides neuroprotection to the rat 
brain by preventing apoptosis through counteracting 
cytochrome c release from the mitochondria and decreasing 
caspase-2 activity, in an event mediated by ARC  
(apoptosis repressor with a caspase recruitment domain) 
(121). However, other studies have detected no changes in 
mitochondrial metabolic parameters by CR (122) 
 

Whether CR exerts its protective effect by 
increasing the synthesis of mitochondrial material has also 
been a long-standing debate. A number of studies suggest 
that CR enhances mitochondrial biogenesis (68–
70,123,124). For instance, the many mitochondrial 
proteins, including cytochrome c oxidase, citrate synthase, 
and mitofusin, increased in the brain, as do respiration 
rates, in a nitric oxide-dependent way to promote neuronal 
survival under CR conditions (125). Conversely, other data 
show that CR improves mitochondrial function without 
increasing mitochondrial content, by reducing protein 
translation as reviewed in the section above 
(72,73,105,114). In accordance, recent studies reveal that 
CR may confer protection against mitochondrial 
proteotoxicity through the upregulation of prohibitin levels 
(126). Prohibitins are evolutionary conserved proteins 
located in the inner mitochondrial membrane, which 
mediate mitochondrial protein folding, assembly of the 
electron transport chain, regulation of mitochondrial 
proteases, and maintenance of mitochondrial membrane 
and cristae structure (127). Lack of prohibitins promotes 
proteotoxicity and induces a mitochondrial unfolded 
protein response. Interestingly, CR counteracts proteotoxic 
stress in prohibitin mutants of yeast and worms through the 
reduction of cytoplasmic mRNA translation (114).  
 
4.6. Cellular senescence is reversed by CR 

Cellular or replicative senescence prevents cells 
from proliferating indefinitely. Telomere attrition, DNA 
damage and impaired mitogenic signals may cause a 
senescent phenotype that is characterized by: 1) growth 
arrest unresponsive to mitogens, 2) resistance to apoptosis, 
and 3) adoption of abnormal differentiated functions (128). 
Studies in the skin of baboons show that senescent cells 
increase exponentially with age (129). However, 
senescence does not appear to be restricted to dividing cells 
since postmitotic cells may also adopt a senescent 
phenotype. For instance, neurons of aging mice show 
multiple pro-inflammatory and pro-oxidant markers of 
senescence in response to DNA damage such as 
accumulation of reactive oxygen species, interleukin 

secretion, activation of the lysosomal hydrolase beta-
galactosidase (sen-beta-Gal) and heterochromatinization. 
The canonical senescence pathway, p21 (CDKN1A), 
mediates these effects in neurons (130).   
 

CR protects many different types of cells from 
senescence. It delays immune senescence in nonhuman 
primates, which may contribute to extended lifespan by 
decreasing vulnerability to infections (131). Short-term CR 
in rats retards renal senescence (132), while in mice, a mild 
decrease in energy intake of about 28% for 3 months 
starting at 14 months of age, is sufficient to decrease not 
only the numbers of senescent cells in mouse mitotic 
tissues like intestine and liver, but also markers of 
senescence in Purkinje neurons (130).  
 
4.7. Stem cells depletion is attenuated by CR 

Research in this field has shown that CR has the 
influence of enhancing the capacity of stem cells to self-
renew, proliferate, differentiate, and replace cells in several 
adult tissues as well as reprogramming stem-like cells 
(133). For instance, short-term CR promoted stem cells 
availability and activity in the muscle of young and old 
animals and this effect correlated with an increased amount 
of mitochondria and activation of metabolic and longevity 
regulators (124). Interestingly, CR not only improved 
endogenous muscle repair but also enhanced the 
contribution of donor cells to regenerating muscle after 
transplant in either donor or recipient animals (124). In the 
mouse hippocampus, long-term CR promotes survival of 
glial cells (134) and increases the number of divisions that 
neural stem and progenitor cells undergo in the aging brain 
(135). Experiments in rats reveal that CR enhances 
neurogenesis by reducing death of newly produced cells, 
instead of inducing cell proliferation. Interestingly, this 
effect was associated with an increase of brain-derived 
neurotrophic factor   (BDNF) in hippocampal cells of 
animals under CR (136). 
 
4.8. Impaired nutrient sensing is reprogrammed by CR 
 Only a few major evolutionary conserved 
pathways for sensing energy status have been identified as 
important regulators of healthspan and aging, namely, 
insulin/insulin growth factor I signaling  (IIS) (137–141); 
serine/threonine kinases Sch9/S6K/Akt or mouse target of 
rapamycin  (mTOR) (142–148); Ras/adenylate cyclase 
(AC)/cAMP-dependent protein kinase A  (PKA) (148–
150); adenosine monophosphate-activated protein kinase  
(AMPK) (151,152); and NAD+-dependent 
deacylases/ADP-ribosylases  (sirtuins) (153). In several 
species including humans, CR counteracts the changes in 
nutrient-sensitive pathways that occur during aging and 
disease (154); for example, CR inhibits IGF-1/insulin, 
Ras/AC/cAMP, Sch9/S6K/Akt, and mTOR pathways while 
increasing AMPK and situins (59,132,148,155–157). Also, 
transcription factors HSF-1 and SKN-1 as well as the eIF2α 
kinase general control nonderepressible 2  (GCN-2) 
mediate CR-induced longevity (30, 158, 159) (Figure 1). 
 
 These master regulators integrate energy signals 
to impact a diverse array of cellular processes in response 
to CR. For instance, a decrease in mTOR activity may 
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Figure 1. Molecular pathways that mediate the effects of calorie restriction. Scheme made with Cytoscape (239).  
 
preserve stem cell function, decrease cellular senescence, 
mitigate inflammation, reduce protein synthesis and 
enhance mitochondrial metabolism (160). Also, a decrease 
in mTOR activity by CR is linked to a massive increase in 
autophagy (84). Recent studies show that mTOR regulates 
lysosomal ATP-sensitive two-pore Na (+) channels to 
couple cell energy levels to endolysosomal function during 
food restriction (161). Additionally, mTOR may regulate 
the expression of others key regulators including AMPK 
and Akt. Reduction of mTOR may also underlie diverse 
protective effects of CR in diseases such as cancer, 
progeria, polycystic kidney disease, obesity, macular 
degeneration, cardiac disease and neurodegeneration (160). 
Also noteworthy, studies in rodents suggest that both CR 
and mTOR inhibition display a positive effect in epilepsy 
by having anticonvulsant and antiepiloptogenic effects 
(162–164). 
 

AMPK participates in the induction of autophagy 
and decreases oxidative stress to protect cells from 
senescence under CR (132). It also regulates lipid 
oxidation. Interestingly, studies in worms suggest that 

AMPK activity is required to promote lifespan extension 
under different CR regimens (165). AMPK also regulates 
mitochondrial fitness and stimulates mitochondrial 
biogenesis during food restriction through the activation of 
PGC-1alpha (166). It has been shown that AMPK 
suppresses cell growth and biosynthetic processes in 
response to energy stress, in part through inhibition of the 
mTOR pathway (167). Alternatively, AMPK may mediate 
the ability of CR to increase stress resistance by increasing 
the activity of FOXO transcription factors, similar to the 
effect seen by a decreased in IIS pathway (168,169).  
 

In many species, ablation of components of the 
IIS pathway, including, ligands (insulin, IGF-1, IGF2,), 
receptors (IGF-1R, INR, daf2), receptor substrates 
(CHICO, IRS1,2, IST-1), phosphoinositide-3-kinases  
(PI3K, AGE-1), PI3K antagonists  (daf-18, PTEN), protein 
kinases (PDK, AKT), and downstream effectors such as the 
forkhead transcription factors (daf-16, FOXOs) increase 
lifespan and stress resistance to oxidative stress (170). 
Accordingly, CR induces physiological changes associated 
to the IIS pathway, e.g., it produces a decrease in growth 
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hormone, insulin, and IIS hormone axis and increase in 
insulin sensitivity (171). Mitigation of IIS signaling by CR 
has positive effects in diseases, for example, reduced levels 
of IGF-1 induced by CR significantly decreases tumor 
growth and metastasis in mice. Conversely, IGF-I 
supplementation hampers the anti-tumorigenic effect of CR 
(172). Modifications of IIS pathway also have an important 
impact in protecting against proteotoxicity, a hallmark of 
many neurodegenerative diseases (140). 
 
4.9. Altered intercellular communication is improved by 
CR  

A number of studies in different models have 
shown that non-cell-autonomous signaling influences aging 
and age-related diseases. An example of this is the 
paracrine or endocrine function of insulin, insulin-like 
molecules and hormones of the IIS pathway, which may 
signal neighboring cells or those far from the tissue where 
it was produced. Accordingly, alteration of the IIS pathway 
either systemically or in a tissue specific manner including 
in fat cells, intestine, germ line or neurons, leads to lifespan 
extension (173). Consequently, CR modifies intercellular 
communication encompassing endocrine and paracrine 
function. Experiments demonstrate that worms rely on an 
endocrine mechanism mediated by two sensory neurons 
(ASIs) for achieving lifespan extension under food 
deprivation. In this system, CR induces the transcription 
factor SKN-1 in ASIs, which signal non-neuronal 
peripheral tissues to adjust metabolic status (158). At 
another site, CR enhances stem-cell function through 
inducing non-cell autonomous paracrine signaling in 
mammals mediated by mTOR. CR downregulates mTOR 
specifically in Paneth cells of the intestinal stem-cells 
niche, which stimulates the production of the paracrine 
factor, cyclic ADP ribose, to regulate stem-cell self-
renewal (174).  
 

In mammals, reduction of endocrine signals is a 
distinctive feature of CR, which decreases plasma 
concentrations of several different hormones such as 
insulin, triiodothyronine  (T3 ), thyroxine  (T4 ), growth 
hormone (GH), corticosterone and circadian rhythms of 
adenocorticotropic hormone  (ADCH) (175). Decreased 
secretion of pituitary, hypothalamic and target gland 
hormones influence a wide range of physiological 
processes and body functions, which in turn favor longevity 
and protect from age-related disorders.  
 
5. THE NAD+/SIRTUIN PATHWAY 
 

Sirtuins are a family of evolutionarily conserved 
proteins, which depend on the metabolic substrate NAD+ 
for the two types of enzymatic activities they display: mono 
ADP-ribosylation and deacylation. The latter enzymatic 
activity may include the removal of different acyl moieties 
of various carbon length, saturation, and chemical 
composition, such as acetyl, succinyl, malonyl, crotonyl, 
myristoyl, palmitoyl and lipoyl (176). Through these 
activities, sirtuins may target post-translationally either 
histones to regulate the epigenome or modify non-histone 
proteins to regulate the proteome. Seven members (SIRT1-
SIRT7) form the human sirtuin family of proteins. All are 

ubiquitously expressed in tissues, yet are specifically 
confined to cell compartments where they participate in 
cellular and physiological functions with specialized 
enzymatic activity (Table 1). For example, SIRT1, SIRT2 
and SIRT3, are the most efficient in removing acetyl 
groups from lysine residues of proteins in the nucleus, 
cytoplasm and mitochondria, respectively. While SIRT4 
has ADP-rybosil transferase and SIRT5 acts as a robust 
desuccinlyase and demalonylase in the mitochondria.  
 

The first sirtuin identified, Sir2, was first 
described for extending lifespan in yeast (177), and later a 
similar effect was confirmed for its orthologs in worms 
(Sir2.1) (178) and in flies (dSIR2) (179). More recently, the 
role of Sir2 in regulating lifespan in simple metazoans has 
been challenged (180), but nevertheless, a growing body of 
evidence supports the notion that sirtuins influence the 
hallmarks of aging, delay the onset and improve the 
prognosis of age-related diseases, or even extend lifespan 
in mice. For instance, overexpression of SIRT1 specifically 
in the brain or ubiquitous overexpresion of SIRT6 increases 
lifespan (181,182). SIRT1 is the most comprehensively 
studied sirtuin and as shown in Table 1 several 
protective functions have been described for it in the 
context of cancer, inflammation, cardiac hypertrophy 
and metabolic imbalance (52,183,184). In the brain, 
SIRT1 targets diverse pathways including circadian 
rhythms (CLOCK), anxiety (MAO-A), learning, 
memory and synaptic plasticity (YY1-CREB-BDNF and 
Insulin ERK1/2), neurogenesis and neuroendrocrine 
function (53,185–190). Mouse strains engineered to 
overexpress SIRT1 in brain display protective effects 
when bred to disease models of neurodegeneration; 
including models of Alzheimer’s, Huntington’s, and 
Parkinson’s (191–193). In contrast, genetic deletion of 
SIRT2 leads to neuroprotection in PD (194). Interesting, 
recent studies show that the pathogenic risk allele 
ApoE4 linked to AD reverses the SIR1/SIRT2 protective 
ratio, suggesting that sirtuin dysregulation might 
account for ApoE4 malignancy (195). Studies have 
shown that sirtuins also impact major metabolic 
pathways through deaceylation and succinylation of the 
mitochondrial proteome by SIRT3 and SIRT5, 
respectively (196).  
 
6. CR EFFECTS MEDIATED BY THE 
NAD+/SIRTUIN PATHWAY 
The role of sirtuins on aging was described 15 years ago 
and ever since remarkable progress has been made in 
understanding their participation in modulating cellular 
adaptations triggered by CR. At present there is mounting 
evidence that sirtuin pathway underlie healthspan effects of 
CR in different settings including aging, cancer, 
inflammation, cardiopathy, metabolic imbalance and 
neurodegeneration. SIRT1 and SIRT3 are induced by CR in 
diverse tissues (132,197–199); for example, increased 
levels of SIRT1 induced by CR promote mammalian cell 
survival (200). Together with mTOR and AMPK, SIRT1 
activation protects from kidney senescence (132). While 
sirtuin ablation hampers CR response, overexpression 
mimics phenotypes seen under CR (181,201). Studies in 
knockout mice show that SIRT1 is essential for lifespan
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Table 1. Features of the seven human sirtuins 
Sirtuin Cellular 

localization 
Enzymatic 
activities Cellular functions      Physiological involvement                    Targets 

 
SIRT1 Nucleous 

(euchromatin) 
and shuffles to 
cytoplasm 

Strong deacetylase 
Long fatty acid deacylase 
 
 

DNA repair, genome 
instability, intercellular 
communication, epigenetic 
regulation, cellular 
communication, proteostasis, 
nutrient sensing, glucose and 
lipid metabolism, 
mitochondrial function, 
cellular senescence, stem 
cells differentiation and 
proliferation, hypoxia 
cellular response, apoptosis, 
autophagy 

Neurodegeneration, retinopathy, 
learning and memory, anxiety, 
synaptic plasticity, dendritic 
branching, neurogenesis, immune 
response, cancer, cardiac hypertrop
diabetes, circadian rhythms, aging 

P53, p65, p73, FOXO3a, 
FOXO1, FOXO4, 
cortactin, Tau, RARbeta 
, MAO-A, HTT, Pax3, 
XPA-1, HIF-1alpha, 
STAT3, NF-1α, PGC-
1alpha, beta-catenin, 
TSC2, TORC, TIP60 y 
p300, CREB, HDAC1, 
APE1, FXR, H3, 
MeCP2, E2F1, BALM1, 
PER2, PLM, LXR, YY-
1,IRS-2, SOD2, Necdin, 
Ku70,  Atg5,  Atg7, 
Atg8, Nrf2, HES1, 
HEY2, TAF4, Mcm10, 
USP22, SAGA, 
Tat/HIV-1 

SIRT2 Cytoplasm and 
shuffles to the 
nucleus 

Strong deacetylase 
Long fatty acid deacylase 
 

Cell cycle regulation, stress 
tolerance, proteostasis, stem 
cell differentiation, 
programmed necrosis 

Brain inflammation, 
myelination, neurodegeneration, 
tumorigenesis, adipocyte and 
oligodendroglia differentiation 

Alpha-tubulin, p65, 
FOXO1, FOXO3a, H3, H4, 
HOXA10,  
14-3-3beta/gamma, 
cortactin, APC, CDC-
20,eIF5A, Par3, p65, 
TORC, CDK9, RIP1 
 
 

SIRT3 Mitochondria Strong deacetylase 
Long fatty acid deacylase 
 

Mitochondrial function, 
ketone metabolism, oxidative 
stress, fatty acids and urea 
cycle  

Tumorigenesis, cardiac 
hyphertrophy, hearing loss, 
metabolism 

Ciclofilina D, MDH, 
MRPL10, SOD2, 
HMGCS2, Idh2, LCAD, 
Ku70, CypD, FOXO3a, 
SDH, AceCS2, GDH, OTC, 
Skp2 
 

SIRT4 Mitochondria ADP-ribosyl transferase 
Weak deacetylase 
Long fatty acid deacylase 

Mitochondrial function, fatty 
acids oxidation, energy 
homeostasis, apoptosis,  

Tumorigenesis, insulin secretion, 
glutamine metabolism. 

GDH, IDE, ANT2, ANT3, 
MCD 
 

SIRT5 Mitochondria Strong desuccinylase 
Strong demalonylase 
Weak deacetylase 
Long fatty acid deacylase 

Urea cycle, apoptosis, 
oxidative stress 

Metabolism CPS1 
 

SIRT6 Nucleus 
(heterochromatin) 

ADP-ribosyl transferase 
Strong demyristoylase 
Weak Deacetylase 
Long fatty acid deacylase 

DNA repair, glucose 
homeostasis, genome 
stability, epigenetic 
regulation, cellular 
senescence, telomere 
maintenance, 

Aging, tumorigenesis, cardiac 
hyperthophy, inflammation, 
obesity, liver function 

CtIP, H3, GCN5, HIF1-
alpha, c-Jun, H3 
 

SIRT7 Nucleolus Weak deacetylase Apoptosis, epigenetic 
regulation, stress resistance 

Inflammatory cardiomyopathy, 
fatty liver, tumorigenesis 

p53, PAF53 
 

 
extension by CR and that it regulates metabolic rate and the 
increase in physical activity in response to low-calorie 
intake (202,203).  
 

Neuronal SIRT1 is required for CR-dependent 
reduction of somatotropic signaling, which modulates GH 
and/or IGF-I synthesis and availability. In contrast to other 
tissues, reduced SIRT1 in hypothalamic neurons, rather 
than elevated levels, is linked to this phenomenon, which 
agrees with the positive regulation of GH by SIRT1 (204). 
An interplay between SIRT1 and cAMP responsive-
element binding  (CREB)-1 —both necessary for CR 
response— may regulate in part the effects of low-calorie 
diet in behavior, memory and synaptic plasticity. CREB 
induces SIRT1 expression, which targets PGC-1alpha and 
NO synthase  (NOS) in neurons to initiate responses to 
enhance brain fitness (205). In worms, Sir2.1 is necessary 
for the protective effect of CR against neurodegeneration of 
dopaminergic neurons (206) and also mediates the 

 
induction of heat shock response to counteract 
polyglutamine proteotoxicity (101). In mice, CR-dependent 
induction of SIRT1 reduces amyloid-beta toxicity thorough 
downregulation of the serine/threonine Rho kinase 
(ROCK1), which in turns increases the activity of the non-
amyloidogenic alpha-secretase (207). Alternatively, in 
response to energy deficiency SIRT1 in cooperation with 
PGC-1alpha and PPARgamma  (peroxisome proliferator-
activated receptor gamma) reduces the expression of beta-
secretase (BACE1) —the rate-limiting enzyme for 
amyloid-beta generation— in the rodent brain (208). 
 

In the mitochondria both CR and SIRT3 play a 
large role in regulating protein acetylation and thereby 
cellular metabolism. SIRT3 is a major regulator of 
metabolic responses to CR through deacetylating proteins 
involved in mitochondrial function and metabolism (209). 
For instance, SIRT3 has been shown to mediate the 
protective effects of CR against oxidative damage by 
deacetylating and enhancing the activity of the 
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mitochondrial antioxidant enzyme superoxide dismutase 2 
(SOD2) (210). Also under CR, SIRT3 targets and induces 
isocitrate dehydrogenase 2  (IDH2), which increases both 
NADPH levels and reduced glutathione in mitochondria. 
This molecular mechanism, which decreases oxidative 
stress, also underlies the protective effects of CR against 
age-associated hearing loss (211). SIRT3 upregulation in 
the liver by low-energy uptake activates fatty acid 
oxidation (199). In contrast to the beneficial effects of 
SIRT3 induction by CR, a lack of SIRT4 in the 
mitochondria mimics the increase in amino acid-stimulated 
insulin secretion observed under CR (212). Higher levels of 
SIRT5 protein have been detected in the brain of calorie-
restricted rats compared to those fed ad libitum, but the 
physiological impact of elevated SIRT5 remains to be 
determined.  
 
7. SIRTUIN-ACTIVATING COUMPOUNDS MIMIC 
CR  
 

The search for sirtuin activating compounds 
(STACs) led to the identification of resveratrol —a plant-
derived polyphenol –as a potent SIRT1 inducer in a study 
that screened about 500 natural compounds (213). 
Resveratrol was found to extend lifespan in diverse species 
including yeast (213), worms (214), bees (215) and the fish 
Nothobranchius furzeri (216).  

 
Likewise, resveratrol increases the survival and 

healthspan of mice fed a high-fat diet (60 % fat), reversing 
their physiological patterns to those observed with a normal 
diet. Resveratrol increases insulin sensitivity and reduces 
levels of IGF-1. It also increases the number of 
mitochondria and induces SIRT1 and the activity of the 
master regulators of energy metabolism AMPK and PGC -
1alpha (217,218). While resveratrol does not extend the 
lifespan of mice fed a normal diet, it does lead to changes 
in gene expression in multiple tissues similar to those 
observed with CR and delays symptoms of age-related 
deterioration, including inflammation, vascular endothelial 
apoptosis, albuminuria and cataract formation, and 
increases elasticity of the aorta, motor coordination and 
bone mineral density (219). In line with this, transcriptional 
shifts in heart, skeletal muscle and brain induced by 
resveratrol mimic those observed by CR. For instance, both 
CR and resveratrol downregulate gene pathways involved 
in cardiac and skeletal muscle aging, thus reducing age-
related dysfunction in those tissues. Resveratrol parallels 
the effects of CR in insulin mediated glucose uptake in 
muscle (220). Strikingly, treatment with resveratrol for 30 
days in obese humans also produces metabolic changes 
mimicking the effects of CR. Specifically, resveratrol-
treated subjects slept less, had a lower 
resting metabolic rate, and their muscles showed elevated 
SIRT1 and PGC-1alpha proteins, increased activity of 
AMPK and citrate synthase as well as increased 
mitochondrial respiration without changing mitochondrial 
content (221).  

A large body of research has documented the 
effects of resveratrol in multiple pathologies and aging-
related disorders (222). For example, it reduces vascular 
endothelial inflammation by increasing autophagy through 

concerted activation of various components of the CR 
response, including cAMP-PKA-AMPK-SIRT1. Also, 
autophagy activation by resveratrol through AMPK-SIRT1 
plays a neuroprotective role in cellular models of PD. 
Likewise, this polyphenol, protects from neurodegeneration 
in model organisms of diseases, such as multiple sclerosis 
(223), HD (224,225), PD (226) and AD (227). Noteworthy, 
by activating SIRT1, resveratrol alleviates the premature 
aging phenotype in a mouse model of progeria including 
adult stem cell exhaustion, body weight loss, trabecular 
bone structure and mineral density impairment. 
Consequently, progeroid mice live longer on a CR diet 
(228). 
 

At present, other pharmacologically synthetized 
STACs have also been tested, e.g., SRT1720, SRT3657, 
and A3. For instance, SRT1720 promotes healthspan and 
survival in obese mice by alleviating metabolic disorders 
induced by a high fat diet (229,230). SRT365 has a 
neuroprotective effect against DNA damage in neurons 
(231) as well as in the mouse model of AD, CDK5-p25 
(232). As for compound A3, it decreases infarct volume in 
a model of cerebral ischemia (233). In addition to 
regulating SIRT1 by an allosteric mechanism (234), STACs 
are also thought to act through parallel pathways including 
AMPK, S6 kinase, NF-kappaB, interleukins, FOXO3 and 
ERK1/2 (222,235–238).  
 
8. CONCLUDING REMARKS 
 

CR has a large effect on aging and healthspan by 
counteracting the nine cellular hallmarks of aging: 1) 
genomic instability, 2) telomere erosion, 3) epigenetic 
alteration, 4) proteostasis imbalance, 5) impaired nutrient 
sensing, 6) mitochondrial dysfunction, 7) cellular 
senescence, 8) stem cells depletion and 9) abnormal 
intercellular communication.  However, it not clear as yet 
to what extend CR impacts each of the cellular hallmarks. 
For example, it is not well understood how CR affects 
telomeres, genomic instability and stem cell function, 
whereas the mechanisms though which it prevents 
mitochondrial dysfunction and modifies protein 
proteostasis are matters of controversy. Neither is it 
understood the differential regulation of nutrient sensing 
pathways implicated in CR in the variety of mammalian 
tissues. Furthermore, there are still several unresolved 
questions about the molecular mechanisms underlying the 
effects of CR. At present only a few pathways have been 
identified as mediators of CR effects including mTOR, 
AMPK, IIS and sirtuins, and although a crosstalk among 
them is likely, it is not clear how these pathways 
coordinately produce the benefits of CR. The NAD+ sirtuin 
pathway, discussed in some detail here, is a molecular 
mechanism that deserves further exploration. Although 
SIRT1 has been the focus of studies thus far, other sirtuins 
are emerging as important regulators, for example SIRT3, 
which has a striking effect on metabolism through 
deacetylating a large fraction of mitochondrial proteome. 
Despite the potential relevance of SIRT3, it is unknown 
how this sirtuin affects brain function, or how it may be 
linked to CR-induced neuroprotection. Besides 
deacetylation activity, sirtuins also regulate proteins by 
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removing others acyl groups such as malonyl, succinyl and 
long fatty acids. It therefore remains to be elucidated how these 
various activities are altered under CR conditions and how 
they may regulate cellular processes in different tissues. 
STACs, which mainly activate SIRT1, display CR-mimetic 
effects, yet activators for the other sirtuins still remain to be 
discovered. 
 

Whether CR extends lifespan in humans is still an 
open question, yet the diverse benefits of CR with respect to 
healthspan and longevity in many species including primates, 
indicate that future research in this field has important 
implications for humans. However, even if CR was 
unequivocally shown to promote healthy longevity in humans, 
the difficulties of adhering to a low calorie diet would limit the 
successful implementation of this diet. Thus, understanding the 
molecular mechanisms underlying the beneficial effects of CR 
is particularly important, and would allow for the exploration 
of novel avenues to mimic the metabolic and functional 
changes produced by CR. 
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