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1. ABSTRACT 
 

Tumor necrosis factor, a regulatory cytokine, is 
extremely important signaling protein in the immune 
system. Among TNF family, TNF-α, TNF-β are most the 
significant family members. Receptor of TNF namely 
TNFR1 and TNFR2 stimulates two different signaling 
pathways. TNFR1 signaling induces apoptosis pathway. 
Conversely, TNFR2 signaling triggers cell survival 
pathways. In this paper, we discuss about the TNF family 
with special reference to TNF-α / TNF-β, different 
hypothesis related to autoimmunity and role of TNF, 
structure of TNF-α / TNF-β, distribution and normal 
activity in human body of TNF, receptors and   signaling 
pathway for drug targeting. Finally, we also discuss about 
the therapy for autoimmune diseases and immune-mediated 
inflammatory diseases (IMIDs) using small molecules or 
therapeutic proteins.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

In 1975, tumor necrosis factor was first termed 
and identified by a group of scientists when they were 
studying "hemorrhagic necrosis".  Scientists found that 
endotoxin induced serum factor is the basis for the necrosis 
of tumors (1). Later, this phenomenon was described by Dr. 
William Coley, in New York, and he was the first to 
investigate the phenomenon of tumor necrosis (2). A same 
line of research was performed during in the early hours of 
1980s which brought into the notice about the function of 
the function of TNF-α into spotlight. These groups of 
scientists described that Cachectin has an immediate role in 
the wasting that is characteristic of chronic diseases (3, 4). 
Later on, it was confirmed that these molecules were same 
(5, 6). Slowly, it came into view that TNF-α was a central 
biological mediator, associated with different 
immunological and inflammatory signaling processes. 
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TNF, a regulatory cytokine, is very crucial in 
signaling the protein in the immune system. This protein 
organizes cross-talk between immune cells and direct many 
of their functions (7). It has been noted that TNF-α 
regulates immune cell (8), as well as expression of MMP-9 
and integrin αvβ6 during tumor progression (9). This 
cytokine also help to release other cytokines (10). During 
the signaling process, the interaction of TNF-α was noted 
with any one of the receptors such as TNF receptor 1 
(TNFR1) or TNF receptor 2 (TNFR2). TNFR1 and TNFR2 
stimulate two different signaling pathways. Usually, 
TNFR1 signaling induces the cascade related to apoptosis 
(11).  However, it is related to the cell type, the condition 
of activation of the cell as well as the cell cycle. 
Conversely, TNFR2 signaling trigger cell survival pathways 
particularly in the stimulated T cells which can cause cell 
proliferation (12, 13). After the attachment with the receptor, 
TNF- α is also related to the activation of the transcription 
factors NFkB and Jun Kinase (14). It has to be noted that a 
protein named ‘nuclear factor kappa-light-chain-enhancer of 
activated B cells’ (NFkB) plays a significant role in regulating 
the immune response.  This nuclear factor, NFkB, regulates the 
in vivo production of many pro-inflammatory cytokines 
including TNF-α, and related proteins which are actively 
involved in the immune-inflammatory diseases (15). Through 
a common feedback loop, the expression level of TNF-α as 
well as expression level NFkB is regulated (16). 

 
  Defective immune cells provoke destruction of the 
body’s own proteins, cells and tissues within the autoimmunity 
and this situation can direct to the development of autoimmune 
diseases (17).  It is also estimated that 50 distinct diseases and 
syndromes are related to the autoimmune diseases which affect 
about 5% of the population in Europe and North America and  
among them with two thirds of the patients being female (18). 
Some examples of autoimmune diseases are multiple sclerosis, 
rheumatoid arthritis, juvenile diabetes, lupus erythematosus, 
type 1 diabetes cardiomyopathy, anti phospholipid syndrome, 
Guillain-Barré syndrome, Crohn's disease, Graves' disease, 
Sjogren's syndrome, alopecia, myasthenia gravis, , and 
psoriasis. (19). Patients of rheumatoid arthritis and crohn’s 
disease are treated with anti-TNF therapies along with other 
immune-suppressive therapies which are being regulatory 
approved (20, 21). Inflammatory disorders include the vast 
variety of human diseases and immune system and its 
components are regularly involved in inflammatory 
disorders (22). Some examples are allergic reactions and 
inflammatory bowel diseases (IBD).  Anti-TNF therapies 
are also available IBD (23). Some of these inflammatory 
disorders are Immune-mediated inflammatory diseases 
(IMIDs). IMIDs are developed along with cytokine 
dysregulation and acute or chronic inflammation (24). As 
improper or unnecessary immune responses, therapy can be 
given through the corticosteroids, immunosuppressants, 
which are targeting tumor necrosis factor (TNF) (25). 
 
3. TNF FAMILY AND TNF-α / TNF-β 

 
The TNF family has nearly about 15 cytokines, 

and most of these cytokines play an important role in 
inflammation and immune response (26). Few examples of 
the family member are CD27, CD30, CD40, CD134, 

CD137, Fas, TNFR1 and TNF-α-related apoptosis-inducing 
ligand (TRAIL). These are related to 
development/suppression of some autoimmune diseases or 
IMIDs (27,28). The cytoplasmic death domains are one of 
the main characteristic of TNF superfamily. They stimulate 
apoptosis and activate receptors (28). Among the 
superfamily members, no homology was identified between 
the cytoplasmic tails (29). Targeting TNF superfamily 
members are associated with various diseases, including 
autoimmune diseases as well as immune-mediated 
inflammatory diseases (IMIDs) and accomplished 
significant success over the therapy (30-32). 

 
However, TNF-α (known as TNF), TNF-β 

(known as lymphotoxin-α), is the most significant of the 
family members (33). Tumor necrosis factor-β, a 
lymphokine cytokine, is produced by Th1 type of T-cells.  
It induces vascular endothelial cells for their further activity 
(34). TNF-β is also associated with a number of diseases 
such as chronic obstructive pulmonary disease (35), 
pathogenesis of chronic hepatitis C virus (HCV) (36), 
coronary artery disease and myocardial infarction (37), 
aortoiliac occlusive disease (one type atherosclerosis  (38) 
and Graves' disease(39). The structure-based design of 
therapeutic agents is a novel approach. Presently, several 
scientists are routing towards structural based drug 
discovery (40, 41). However, understanding the structure of 
TNF-α / TNF-β can aid in small molecular designs that   
augment/suppress autoimmune diseases and IMIDs.   
 
4. TNF AND AUTOIMMUNITY: DIFFERENT 
HYPOTHESIS 

 
Throughout the life, TNF especially TNF-α / 

TNF-β and their receptor play a regulatory role of different 
immune cells by activating different genes that are 
responsible for inflammation, proliferation, differentiation 
as well as apoptosis (42, 43). TNF family members 
effectively take part in the communication to respond to 
chemical messengers in the immune system. This protein 
also provides security to several infectious diseases, cancer 
and autoimmune diseases (44). TNF first binds with the 
two receptors TNFR1 and TNFR2. This cytokine act on 
TNFR2 for any function related to T-cell survival and 
TNFR1 for apoptosis (45). 

 
  The progenitors T cells, as well as other different 
immune cells, produce and grow-up in the thymus during 
the development of autoimmunity. The majority of these 
immature immune cells will die through the process of 
apoptosis (46). However, it is necessary to eradicate the 
imperfect immune-cell progenitors. In this process, a few 
cells will discriminate into autoreactive T cells.  Some of 
the T-cells are produced as autoreactive T cells. This cell 
pupation is also called native autoreactive T cells (47, 48). 
This T cell population escapes from the apoptosis during T-
cell education, which enters into the blood circulatory 
system (49). Actually, T-cell education in the thymus 
engages in the process of positive and negative selection 
(50). However, the cell population differentiates into 
autoreactive T cells to encounter particular self-antigens 
(51). Failed T-cell education (through the process of 
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Figure 1. Amino acid composition in TNF (A) amino acids composition of TNF-α (B) amino acids composition of TNF- β. 
 
positive and negative selection) can lead to various 
autoimmune diseases. In this state, TNF may have a vital 
role on the infection of autoimmunity and lineage in pledge 
of T cells (52-54). Another hypothesis by Kollias and 
Kontoyiannis (55) described that the deregulation of TNF 
production of low or high, characterizes many autoimmune 
diseases. Kodama et al. (56) proposed a hypothesis in an 
animal model that TNF has a possible therapeutic value, 
because of its ability to selectively kill autoreactive 
(pathogenic) T cells and leaving normal cells in animal 
model.  They also showed that NOD mice have a 
deficiency in regulation of transcription factor NF-kB. In 
NOD mice, NF-kB dysregulation makes the pathogenic T 
cells selectively vulnerable to TNF-induced apoptosis (57, 
58). However, low TNF gene adaptations are present 
during the experiment with some animal models of 
spontaneous autoimmunity (59). One hypothesis proposed 
that the TNF-induced death is total concentration 
dependent (60). TNF has a major role in the modulation of 
the autoimmune diseases and immune-mediated 
inflammatory diseases (IMIDs). Presently several scientist 
are targeting both the TNF and its soluble TNF- receptor, 
for the small molecular discovery. However, the efficacy of 
the number of small molecules associated with anti-
inflammatory activity has shown a connection with the 
TNF concentration as well as the structure function 
relationship of this cytokine (61, 65). 
 
5. STRUCTURE OF TNF-α / TNF-β 

 
 Several scientists have reported that TNFα are of 

two types, a membrane bound and a soluble form different 
function (66, 67). We presented the compositional analysis 
of amino acids (TNFα 232 amino acids precursor and TNF-
β 205 amino acids) of TNF in Figure  1. Molecular weights 
of these two proteins are 25.5 kdal (TNFα) and 22.3 kdal 
(TNF-β). However, TNFα seems to affix the polypeptide in 
the membrane (68). TNFα is first formed as a type II 

membrane protein. Amino acids 44 to 26 of the TNFα 
sequence comprise the hydrophobic transmembrane region 
and residues 76 to 50 comprise the intracytoplasmic region. 
This unprocessed protein has a molecular mass of 26 kDa 
which is cleaved into a 17 kDa active form. This protein 
was synthesized as pro-TNF-α is which was expressed on 
the plasma membrane. Next step, this protein, is cleaved 
through the action of metalloproteinase’s to form a mature 
soluble 17-kDa protein. It is interesting that both the forms 
are active (69). Solution form is processed in homotrimer 
form with total molecular mass of 52 kDa. This homotrimer 
form binds and cross-links the receptors (70). The TNF β 
has been structurally characterized (71, 72) and each 
monomer consists of two β -pleated sheet each of eight, 
anti-parallel β -strands with an N-terminal insertion. The N-
terminal insertion contains three additional β -strands. It 
was reported that the monomer is about 60Å long and 30Å 
wide (73, 74). TNF β share the same fold as TNFα (Figure 
2). Noatbly there exsist significant differences in the 
surface properties of these two molecules. 
  
6. TNF: DISTRIBUTION AND NORMAL ACTIVITY 
IN HUMAN BODY 

 
TNFα exists in different cell types whereas TNF-

β is available in very few cells. TNFα is created by 
extensive group of cells such as macrophages, CD41, 
CD81, T-lymphocytes, B-lymphocytes, LAK cells, NK 
cells, neutrophils, astrocytes, endothelial cells, smooth 
muscle cells, and a number of non-hematopoietic tumour 
cell lines (75). It has been noted that some cells can be 
induced to produce both of the two types of TNF. Several 
activities of TNFα are related to species-specific (76). 
Banner et al. (77) described the structure activity 
relationship and function by crystallization of X-ray 
structure of TNF-β in complex with TNFR-1. As a 
regulatory cytokine, TNF plays a vital role for 
communication between immune cells and controls many 
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Figure 2. The secondary structure of TNF-α ,TNF-β, TNFR1,TNFR2 (A)tumor necrosis factor alpha (PDB ID: 1a8m) (B)tumor 
necrosis factor beta (PDB ID: 1tnr) (C) tumor necrosis factor receptor 1 (PDB ID: 1ft4)(C) tumor necrosis factor receptor 2/TNF-
tnfr2 complex (PDB ID: 3alq) 

 
of their functions (78). TNFα play variable important 
functions such as immunostimulation (79), resistance to 
infection agents (79, 80), resistance to tumors (79, 80), 
sleep regulation (81-83) and embryonic development (84, 
85). It has been noted that TNFα mRNA is produced during 
the diurnal rhythm in the brain with highest levels during 
peak sleep periods (86). Conversely, lack of the TNFR-1 
receptors resulted in reduced sleep in animal models (87).  
However, IL-1 plays a similar kind of role (88). During 
normal embryonic development, TNF mediated apoptosis 
also plays a normal role. However, a number of receptor 
such as Fas, TNFR involved in this process (89, 90).   
 
7. TNF AND ITS RECEPTORS 

 
After binding with the receptor, the biological 

activity of the TNF starts. Trans-membrane glycoproteins 
TNFR1 and TNFR2 receptors are involved in the binding 
process have multiple cysteine-rich repeats in the N-
terminal domains (91). The molecular weight of TNFR-1 is 
55 kDa, and TNFR-2 is 75 kDa (92). Naismith et al. (93) 
proposed the complex structure of TNFR-1. TNFR-1 
comprises 434 amino acids and TNFR-2 comprises 439 
amino acids. It has been reported that these receptors share 
very limited similarity in the extracellular region (94). It 

has been reported that human TNFα binds with the TNF 
receptors compactly. The disassociation constant, Kd during 
binding is 0.5 nM for TNFR-1 and 0.1 nM for TNFR-2. It 
has been described that after binding with the TNFR-1 
receptor, the toxic effects of TNFα has become intercede 
(95, 96).   

 
Conversely, during binding of TNF-β with the 

receptor, properties of ‘TNF-β’ have been described by 
Banner et al (72).  At this time, LT-β can be able to 
form heterotrimer with TNF-β. This heterotrimer binds 
with the TNF receptors. Banner et al. (72) developed the 
Van der Waals surface of the TNF-β trimer structure 
with its receptor through Rasmol. There some 
differences between the primary characteristic of 
TNFR1 and TNFR2 (Table 1). A death domain is found 
in the TNFR1; were as the domain is not present in 
TNFR2 (97). The death domain of TNFR1 contains 80 
amino-acid which rapidly engages the apoptotic 
signaling pathway of the cells (98, 99). It was observed 
in mice model that TNFR1 are resistant to endotoxin-
induced lethality; whereas TNFR2 remain sensitive, 
(100, 101). Fiers (96) reported that TNFR-1 and TNFR-
2 are both N-glycosylated; conversely, TNFR-2 is only 
O-glycosylated. 
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Table  1. Differences between the primary characteristic of TNFR1 and TNFR2 
Sl. No. TNFR1 TNFR1 
1 Death domain is found in the TNFR1 No death domain is found in the TNFR1 
2 It is N-glycosylated This is both N-glycosylated and O-glycosylated 
3. It activates the pathway of apoptosis through cross talking with 

the adapter protein such as Fas-associated death domain (FADD) 
or TNFR1-associated death domain(TRADD) 

It tigers the T-cell survival pathway. It also  cross talk with protein the 
transcription factor nuclear factor-κB(NF-κB) ultimately cleave  NF-κB from its 
inhibitor Molecule, nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor(IκBα) 

4. It may performs some pro-survival functions which is based  on 
the crosstalk with TNFR2 

It may performs some pro-apoptotic functions which is related to immune 
response and some other pro-apoptotic functions which is based  on the crosstalk 
with TNFR1 

 
 
Table 2. TNF signaling pathway and its role in different disease 

Sl. No. Disease Defect/function in signaling pathway References 
1 Diabetes mellitus type 1 Pathogenic T cells and related defects in TNF signalling 125 
2 Multiple sclerosis Death of oligodendrocytes 126 
3 Cardial infarction Greater role in protecting from ischaemia specially to the females 127 
4 Rheumatoid arthritis Major differences in the role of p38 MAPK in inflammatory signaling and TNF-alpha 

regulation by p38 MAPK 
128 

5 Psoriasis  Decreases in T cell-inflammatory gene expression (IFN-gamma, STAT-1, granzyme B) and T 
cell numbers may be due to a reduction in DC-mediated T cell activation 

129 

6 Crohn's disease Alteration of the  sequence of tumor necrosis factor receptor-2 130 
7 Ulcerative colitis TNFR polymorphisms 131 
8 Systemic lupus erythematosus Altered expression of TNF-alpha signaling pathway proteins 132 
9 Ankylosing spondylitis single-nucleotide polymorphisms (SNPs)   133 
10 Sepsis TNF gene polymorphism 134 

 
8. RECEPTOR (TNFR1 AND TNFR2) RELATED 
SIGNALING PATHWAY FOR DRUG TARGETING  
   

There are two structurally distinct membrane 
receptors which are TNFR1 and TNFR2 (Figure 2). TNF 
can bind any of the two receptors (102,103). Afterwards, the 
downstream signaling events begin. Normally, when TNF 
binds with TNFR1; it activates the pathway of apoptosis. 
Conversely, when its bind with TNFR2; it tigers the T-cell 
survival pathway. At the time of the interaction, these 
pathways depend on several other factors such as the activation 
state of the cell, host specificity, and the other factors (104). It 
has been recorded that shortcoming TNF signaling may 
modify the balance between TNF’s pro-survival and apoptotic 
effects (105). Conversely, from the several literature, it has 
been well understood that several diseases can be treated 
through the targeting TNF signaling pathway specially 
autoimmune diseases such as type 1 diabetes (106,107), 
Sjogren’s syndrome (108), Crohn’s disease(109-110), multiple 
sclerosis(111,112), systemic lupus erythematosus (113) and 
ankylosing spondylitis (114) (Table 2). Exogenous TNF 
effectively kills autoreactive T cells to treat and reverse type-1 
diabetes in animal models (115-117). Surprisingly, it was also 
noted that TNF restore insulin production even in end-stage 
diabetes (118). TNFR signaling pathways play a vital function 
in the pathogenesis of several diseases. Among these two 
pathways related to two receptors (TNFR1 and TNFR2), 
several scientists were tried to demolish the autoreactive 
immune cells through the specific activation of TNFR2 and 
observed on autoreactive and normal T lymphocytes. This has 
a high potential of avoiding or reducing the toxicity (119). 
Therefore, TNFR2 pathway is now one of the therapeutic 
targets for several diseases especially autoimmune diseases. 
TNFR1 is expressed all over the body. Conversely, TNFR2 
has a more limited expression and agonists specifically 
targeting the TNFR2 pathway are having enormous promises 
as safer and more effective treatment than TNF or current 
therapies for various autoimmune diseases (120). 

 
9. IN THE CLINIC: THERAPY USING SMALL 
MOLECULES OR THERAPEUTIC PROTEINS 
 

Presently, small molecules or therapeutic proteins 
(such as monoclonal antibody) can be used for anti-TNF 
therapy and it is well established as an effective target to 
control certain human diseases especially autoimmune 
diseases. Several scientists have developed molecules for 
targeting the TNF specific signaling and synthesis 
pathways to develop the drugs (121,122). Several 
molecules were in the clinical or preclinical trial which can 
inhibit TNF (122-124). Here, we have listed some of the 
molecules which are in the clinical or preclinical trial 
(Table 3). These molecules may be a better drug for anti-
TNF- therapies in the near future and could either replace 
the existing therapies. 
 
10. CONCLUDING REMARKS 

 
Presently, several works have been performed on 

structure based drug design. The knowledge based 
onprotein structure can help in optimize specific inhibitors 
with the design. Nevertheless, our proteomics's analysis in 
this paper clearly illustrates the structure of TNF proteins. 
We have presented information such as - its distribution, 
normal activity in human body and receptors. We have also 
presented TNF signaling pathway which can be used for 
drug targeting for diseases and its inhibitors which will be 
used in the clinic. Our proteomics data and information will 
guide the future researchers in safer and more effective lead 
discovery as well as provide more understanding about the 
pharmacological properties of these two proteins. 
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Table 3. Some list of the small-molecules/therapeutic proteins for TNF inhibitor (TNF-Α / TNF-Β) for the therapeutic purpose 
Sl. No. Small-molecules/Therapeutic 

Proteins 
Target Indication for Treatment Reference 

1 Adalimumab (Human monoclonal 
antibody) 

TNF-alpha inhibitor  For the treatment of rheumatoid arthritis, psoriatic 
arthritis, ankylosing spondylitis, Crohn's disease 

135, 136 

2 Golimumab (Human monoclonal 
antibody) 

TNF-alpha inhibitor For the treatment of rheumatoid arthritis, psoriatic 
arthritis, and ankylosing spondylitis 

137, 138 

3 Certolizumab pegol 
(Human monoclonal antibody) 

TNF-alpha inhibitor For the treatment of Crohn's disease and rheumatoid 
arthritis 

139,140 

4. Etanercept (fusion protein produced 
through DNA Technology) 

TNF-alpha inhibitor Used to treat rheumatoid, juvenile rheumatoid and 
psoriatic arthritis, plaque psoriasis and ankylosing 
spondylitis 

141,142 

5. Infliximab (Human monoclonal 
antibody) 

TNF-alpha inhibitor for the treatment of psoriasis, Crohn's disease, 
ankylosing spondylitis, psoriatic arthritis, rheumatoid 
arthritis and ulcerative colitis 

143,144 

6 Pegsunercept TNF-alpha inhibitor for the treatment of rheumatoid arthritis 145,146 
8 Xanthine TNF-alpha inhibitor reduce inflammation 147,148 
9 Bupropion TNF-alpha inhibitor Crohn's disease and psoriasis.  149-152 
10 PEG-sTNFR1 TNF-alpha inhibitor Obstruction-induced renal injury, arthritis 153-156 
11 PEG-TRAIL TNF-alphainhibitor rheumatoid arthritis. 157-161 
12 CDP-870 TNF-alpha inhibitor airway inflammation, skin lesions 162-164 
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