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1. ABSTRACT

The tumor susceptibility gene 101 (TSG101)
encodes a multidomain protein that contains a UEV
(ubiquitin e2 variant) domain at is N-terminus and a
putative DNA-binding motif at its C-terminus. In addition
to being a bona fide component of the ESCRT (endosomal
sorting complexes required for transport) complex 1 and
playing a critical role in endosomal sorting and trafficking,
TSG101 has also been implicated in an array of cellular
functions including, cytokinesis, protein ubiquitination,
transcriptional regulation, cell cycle and proliferation, as
well as viral budding. The major focus of this article is on
the role of TSG101 in tumorigenesis.

2. INTRODUCTION: INITIAL DISCOVERY AND
CONTROVERSY

TSG101, originally known as CC2, was initially
identified as a putative coiled-coil domain-containing
protein that interacts with stathmin in a yeast two-hybrid
screen in 1995 (1). Shortly after, the full-length TSG101
was cloned and its initial function was revealed as a
potential tumor suppressor from a controlled homozygous
functional knockout screen. Inactivation of TSG101 in
NIH3T3 mouse fibroblasts led to focus formation in
monolayer cell cultures, anchorage independent growth in
soft-agar, and in vivo tumor formation in nude mice.
Interestingly, the same study also showed that
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Figure 1. Major structural motifs and functions of TSG101. TSG101 contains four individual structural motifs: the N-terminal
UEV domain, the protein-rich region (PRR), the coiled-coil (CC) region and the C-terminal α-helical/steadiness box (SB)
domain, each interacts with different partners and exerts distinctive functions.

overexpression of the TSG101 also resulted in cellular
transformation as evident from focus formation and colony
growth in soft agar (2). Subsequent studies mapped human
TSG101 to chromosome 11, subbands p15.1–15.2, a region
showing loss of heterozygosity (LOH) in a variety of
human malignancies. Moreover, it was found that seven of
the fifteen uncultured primary human breast carcinomas
had intragenic TSG101 deletions, on the basis of the
presence of truncated transcripts observed RT-PCR and
Southern blot analysis of PCR products of genomic DNA,
while no TSG101 abnormalities were observed in matched
normal breast tissue from these breast cancer patients (3).
Immediately after the original publication showing that
TSG101 was often mutated in human breast cancers,
several studies using larger numbers of tumor samples
failed to detect intragenic TSG101 deletions. Lee and
Feinberg analyzed 72 samples of primary breast cancer
samples. Identical digestion patterns were observed for all
tumors, matched and unrelated normal tissues by Southern
hybridization of genomic DNA. Analysis of 46 breast-
tumor samples and matched blood control samples, as well
as multiple breast cancer cell lines, by Southern blot
experiments, failed to confirm that TSG101 gene undergoes
large rearrangements in a significant portion of breast
tumors and breast cancer cell lines as originally suggested
(4).  Several additional follow-up studies, analyzing
genomic DNA and mRNA isolated from cancer and normal

samples, verified the occurrence of “aberrant TSG101
transcripts” but again failed to detect significant intragenic
deletions, insertions or mutations of TSG101 (5-7). It was
suggested that these apparently aberrant transcripts were
the products of either PCR artifacts (7) or
alternative/aberrant splicing variants and present in both
cancer and normal tissues (6).  However, further
comparative analysis of human and mouse TSG101 genes
revealed additional introns within the human TSG101 gene
and determined that these shorter TSG101 transcripts were
not aberrant splicing variants, but true alternative splicing
variants generated exclusively by exon skipping (8). These
convincing results called into question the existence of
TSG101 mutants in breast cancer, as well as the role of
TSG101 as a tumor suppressor, which led to the retraction
of the original publication (9).

3. TSG101 STRUCTURE AND FUNCTION

Human TSG101 protein is 390 amino acid
residues in length and contains four known structural
motifs: the N-terminal UEV domain, followed by a proline-
rich region (PRR), a coiled coil (CC) region, and a C-
terminal α-helical/steadiness box (SB) domain. Each of
these motifs possesses distinct structure and functionalities
that render TSG101 versatile in cellular functions (Figure
1).
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3.1. The UEV domain
The UEV domain of human TGS101

encompasses the first 145 amino acid residues. It shows
significant sequence homology to ubiquitin E2 ligases.
While catalytically inactive as it lacks the active-site
cysteine, replaced by a tyrosine residue (10, 11), TSG101
UEV domains retains the ability to bind ubiquitin, which is
essential for TSG101’s functions in sorting protein cargo
into multivesicular bodies (MVBs) and late endosomal
compartments and facilitating viral budding. The three-
dimensional structure of the TSG101 domain has been
solved by both NMR and X-ray crystallographic techniques
(12, 13). The TSG101 UEV domain folds into a typical
ubiquitin-conjugating (UBC)-like structure (E2 fold) with
four α-helices packed against one side of a four stranded
anti-parallel β-sheet.  The X-ray crystal structure of
TSG101 UEV-ubiquitin complex reveals that ubiquitin
molecule binds to a concave surface on the other side of the
β-sheet to form a highly solvated interface that buries a
1,250 Å2 solvent accessible surface area (14).  The crystal
structures of the free and ubiquitin-bound TSG101 UEV
are essentially identical, with an RMSD (root-mean-square
deviation) of 2 Å that exclusively involves amino acid
residues Asp45 and Asp46 in the β-hairpin formed by
strand 1/2 (13).

In addition to binding ubiquitin, the TSG101
UEV domain also binds P(T/S)AP sequence motifs in both
viral and cellular proteins. For example, interaction of
TSG101 UEV with the PSAP motif located within an
intrinsically flexible region of the Hrs subunit of ESCRT-0
is believed to responsible for the recruitment of the
ESCRT-1 complex by ESCRT-0 (15). Again, both NMR
and X-ray crystal structures of TSG101 UEV-PTAP
peptide complexes are available (16, 17). The solution
structure of TSG101 UEV domain in complex with a nine-
residue PTAP peptide from the late domain of HIV-1 Gag
protein shows that the PTAP peptide binds to a bifurcated
groove independent of the ubiquitin surface with each of
the PTAP residues making extensive contacts with the
protein. Unlike the binding of ubiquitin, PTAP binding
induces noticeable conformational changes in TSG101
UEV (16). While the crystal structure TSG101 UEV-PTAP
complex qualitatively confirms the overall binding
architecture of the peptide, detailed interactions between
the peptide and the protein differs significantly between the
two structures.  The peptide backbone between P and T is
flipped 180° between the crystal and the averaged NMR
structure. The peptide connecting T and A is also in a
sharply different orientation (17). At present, the causes of
these structural differences are not entirely clear.
Nonetheless, these structural data demonstrate that TSG101
UEV can simultaneously interact with both ubiquitin and
the PTAP motif from different protein partners or from the
same protein.  These interactions are essential for TSG101
to participate in different cellular processes, such as the
organization of the ESCRT complex, cargo recruitment,
transcriptional regulation and cytokinesis (14, 18, 19).

3.2. The proline-rich region (PRR)
The proline-rich region of TSG101, spanning

approximately 70 residues with a 30% Pro content,

connects the UEV domain to the core of ESCRT-1
complex. Presumably, the TSG101 PRR is unstructured
and not as well studied as the UEV domain. The function of
the PRR was not revealed until recently (20, 21).   It was
reported that a proline-rich sequence,
154QATGPPNTSYMPG166, within the PRR of TSG101
competes with a similar proline-rich sequence on ALIX
(ALG-2-interacting protein X), an ESCRT associated
protein, for binding to the central hinge region of CEP55A
(21). CEP55A is a mid-body protein required for abscission
(22). The presence of ESCRT-I and ALIX lead to further
recruitment of the ESCRT-III complexes, which are
believed to possess membrane scission activity and to be
responsible for cell abscission during cytokinesis (19).
Depletion of TSG101 and ALIX inhibits cell abscission,
suggesting that both proteins are required for cytokinesis
(20). In addition to CEP55A, TSG101 PRR also binds
ALG-2 (apoptosis-linked gene 2), a dimeric Ca2+-binding
EF hand protein, in a Ca2+-dependent manner (23). While
the binding site for ALG-2 on ALIX has been mapped to
overlaps with the CEP55-binding sequence described above
(24), the corresponding sequence in TSG101 has not been
mapped in detail. Nor has the function of TSG101-ALG2
interaction been determined.

3.3 The coiled-coil (CC) region
The CC region was initially identified in a yeast-

hybrid screen for its ability to bind stathmin, a cytosolic
phosphoprotein implicated in tumorigenesis (1).
Crystallographic analyses of the yeast ESCRT-1 complex,
which is conserved from yeast to humans, reveals that the
CC region of Vps23, the yeast ortholog of TSG101,
interacts with Vps37 and Mvb12 to form a 130 Å long,
rigid stalk of triple coiled helices (25).  These structural
studies confirm that the CC region of TSG101 is essential
for the structural integrity of the ESCRT-1 complex.  In
addition, it has been reported that the CC domain is
essential for TSG101-mediated suppression of ligand-
induced transactivation of estrogen receptor and other
nuclear hormone receptors (26).  Further studies have
demonstrated that TSG101 CC interacts with Daxx, a Fas
interacting protein and transcription regulator, and co-
localizes with Daxx in the nucleus, where TSG101 and
Daxx cooperatively repress glucocorticoid receptor-
mediated transcriptional activity (27). Moreover, a TSG101
isoform without the CC resulted from alternative slicing
has been shown to be expressed exclusively in Burkitt's
lymphoma cells and non-Hodgkin’s lymphomas, but not in
normal cells (28, 29).

3.4. The C-terminal α-helical/steadiness box (SB)
domain

The C-terminal α-helical/Steadiness box (SB)
domain of Vps23/TSG101, the N-terminal half of Vps28,
and the C-terminal half of Vps37 form the headpiece of the
ESCRT-1 complex core (30, 31). The SB domain forms a
hairpin structure consisting of two long antiparallel α
helices. Despite a lack of detectable sequence similarity,
the three subunits of the ESCRT-1 headpiece assume a
strikingly similar overall structure and are arranged side-
by-side at nearly identical ~30° angles with Vps23 in the
middle making direct interactions with the Vps28 subunit
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on one side and Vps37 subunit on the other. There is no
direct contact between Vps28 and Vps37 (30, 31). These
results suggest that the SB domain, along with the CC
domain, plays an important role in maintaining ESCRT-1
stability.

Besides being a critical structural component of
the ESCRT-1 complex, the SB domain also plays an
important role in maintaining the homeostasis of cellular
levels of TSG101. Considering that both depletion and
overexpression of TSG101 lead to oncogenic
transformation and abnormal cell growth, it is not
surprising that the levels of TSG101 are controlled within a
narrow range in normal cells. Feng and colleagues report that
the TSG101 protein is maintained at a steady-state level in
cultured murine and human cells. Ectopic expression of
TSG101 results in a down-regulation of endogenous TSG101.
It is further revealed that the cellular level of TSG101 is
controlled in an auto-regulatory manner through a
posttranslational process involving a "steadiness box," located
near TSG101's COOH-terminal end (32). Subsequent studies
demonstrate a mechanism of TSG101 autoregulation that
involves Tal (TSG101-associated ligase), a novel ring-finger
containing E3 ubiquitin ligase (33). Tal contains an N-terminal
leucine-rich repeat (LRR), followed by an ezrin-radixin-
moezin (ERM) domain, a coiled-coil (CC) region, an α sterile
alpha motif (SAM), and a C-terminal RING finger (RF), as
well as a tandem PT(S)AP motif immediately N-terminal to
the RF. Tal interacts with TSG101 in a bimodal fashion,
while the PT(S)AP motif recognizes the UEV domain of
TSG101 the central region of Tal binds to the SB domain.
Monoubiquitination of TSG101 at multiple lysine residues at
the C-terminal SB domain by Tal shuttles TSG101 from
membrane bound fractions to cytoplasm and inactivates its
cargo sorting activities such as receptor tyrosine kinase
internalization and viral budding (34). Subsequent studies
reveal additional Tal functions in controlling TSG101 protein
stability, where Tal polyubiquitinates lysine residues in the C-
terminus SB domain of TSG101, therefore targeting TSG101
for proteasome-mediated degradation (33). Complex formation
with Vps28 or Vps37 as described above for the ESCRT-1
headpiece prevents Tal-mediated polyubiquitination
presumably by blocking the access of the lysine residues
within the SB domain.  While essential for maintaining cellular
homeostasis of TSG101 level, polyubiquitination of the SB
domain by Tal does not seem to be important for other ESCRT
related TSG101 functions (33). Another ring finger
containing E3 ubiquitin ligase, Mahogunin, has been
reported to interact with TSG101 in a similar fashion as
Tal. Mahogunin binds to TSG101 UEV domain via its
PSAP motif and catalyzes monoubiquitination of TSG101
at multiple lysine sites. However, it is not clear if
Mahogunin and Tal target the same lysine residues located
within the SB domain. In addition, Mahogunin does not
polyubiquitinate TSG101, and ectopic expression of
Mahogunin does not result in TSG101 degradation (35).

4. TSG101 ROLE IN CANCER

Since the initial discovery and debate of TSG101
as a candidate tumor suppressor gene, major efforts have
been devoted to reexamine the role of TSG101 in

tumorigenesis. While the subject remains controversial,
significant amount of literature now describes TSG101 as a
tumor progression enhancer in various types of cancers.

4.1. TSG101 and Breast Cancer
The involvement of TSG101 in cancer was

initially reported in breast cancer, one of the most studied
human cancer types.  Li, et al in 1997 reported that
abnormal truncation of the coiled-coil domain of TSG101
could be detected in 7 out of 15 breast cancer samples. This
high frequency of coiled-coil domain deletion led to the
proposal of TSG101 as a tumor suppressor (3), which
seems to consistent with the fact that TSG101 gene is
located on chromosome 11, subbands p15.1–15.2, a region
associated with LOH in breast cancer (36). However, as
discussed earlier, further studies failed to verify intragenic
deletions, insertions or mutations of TSG101 in breast
tumors (4-7). In fact, targeted deletion of Tsg101 in mouse
embryonic fibroblasts does not lead to increased
proliferation and cellular transformation and actually
results in growth arrest at G1/S transition and cell death
(37). In addition, studies using mammary gland-specific
knockout mice show that Tsg101 is essential for the
growth, proliferation, and survival of mammary epithelial
cells and Tsg101 deficient mice do not develop mammary
tumors after a latency of 2 years (38). Results based on
three double knock-out models (Tsg101/p53, Tsg101/p21,
and Tsg101/p19Arf) further reveal that Tsg101 is essential
for cell survival regardless of the status of p53, p21 and
p19Arf (39). Taken together, these studies convincingly
demonstrate that TSG101 is required for normal cell
function of embryonic and adult tissues but not a tumor
suppressor for breast cancer.

Further challenging the notion that TSG101 is a
potential breast cancer tumor suppressor, it appears that the
expression levels of TSG101 in primary human breast
carcinomas are upregulated (40-42). On the other hand,
gene silencing of TSG101 via RNAi in MDA-MB-31 cells
resulted in growth inhibition and cell cycle arrest at the
G1/S checkpoint. In addition, TSG101 downregulation also
suppressed both colony formation potential and the
migratory capability of the cancer cells (43).  Similar
results were recently reported using MCF-7 cells (44). To
test if Tsg101 has oncogenic properties in vivo, Oh et al.
generated transgenic mice that overexpressed Tsg101 in the
developing mammary gland. While the mammary gland of
females overexpressing exogenous Tsg101 developed
normally throughout the reproductive cycle, the ectopic
expression of Tsg101 led to increased levels of
phosphorylation Erk1/2 and stat3, and slightly increased the
susceptibility of mammary epithelia toward malignant
transformation in aging females. These results suggest that
Tsg101 protein possesses only weak oncogenic properties,
i.e., instead of tumor initiation, Tsg101 is more likely
playing a role in the progression of a subset of
spontaneously arising breast cancers (41).

4.2. TSH101 and Ovarian Cancer
Ovarian cancer is another common gynecological

tumor where deletion of both regions at 11p15.5-15.3 and
11p15.1 is strongly associated with high grade
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nonmucinous epithelial ovarian cancer (45). Similar to
breast cancer, truncated TSG101 transcripts of the TSG101
is frequently observed in ovarian cancer (46-48). Again,
these truncated TSG101 transcripts most likely represent
splice variants as there is no evidence of genomic deletions
in the TSG101 gene in ovarian cancer (46, 47, 49).

Functional proteomic analysis of genetically-
defined human ovarian cancer models reveals that TSG101
is up-regulated in human ovarian epithelial cells expressing
oncogenic HRAS or KRAS (50, 51).  Suppressing TSG101
by siRNA in ovarian cancer SKOV-3 cells led to G2/M
arrest, growth inhibition and cell death. The levels of
hypoxia inducible factor 1α (HIF-1α) and CBP/p300-
interacting transactivator with ED-rich tail 2 (CITED2),
two closely related transcriptional factors important for cell
growth and survival, were markedly reduced after TSG101
knockdown (50).  Concurrent with down-regulation of
CITED2 and HIF-1α, the mRNA and protein levels of the
cyclin-dependent kinase inhibitor p21 are dramatically
increased (52). When ectopically implanted in athymic
nude mice, SKOV-3 cells transfected with TSG101 siRNA
induced significantly smaller tumors in vivo than those
from SKOV-3 cell treated with control non-specific siRNA
(50).

Consistent with the finding in genetically-defined
human ovarian cancer models, Immunoanalysis using
ovarian cancer samples and micro-tissue array containing
422 cases of primary ovarian cancer samples revealed
elevated TSG101 levels in more than 70% of human
ovarian carcinomas. While normal human ovarian surface
epithelium did not show significant expression for TSG101,
the expression of TSG101 was increasingly positive in
borderline tumors, low grade and high grade carcinomas
compared to normal human ovarian surface epithelium.
Compared to other histotypes, serous carcinoma, poorly
differentiated carcinomas and malignant mixed mullerian
tumors expressed higher levels of TSG101. There is a
positive correlation between the grade and stage of the
cancer and the levels of TSG101 expression in EOC.
Moreover, the levels of TSG101 expression have
significant impacts on the prognostic outcomes.  The 5-year
survival rate for ovarian cancer patients with low TSG101
expression is about 53% while only 33% patients with high
levels of TSG101 survive more than 5 years (52). Taken
together, these results suggest that elevated TSG101 is
associated with poor prognosis and a potential therapeutic
target for ovarian cancer.  Indeed, a recent study showed a
time-dependent down-regulation of TSG101 in human
ovarian cancer A2870 cells in response to Gleevec
chemotherapeutic treatment, suggesting TSG101
expression level may represent an important index of drug
efficacy for Gleevec in ovarian cancer (53)

4.3. TSG101 Cervical Cancer
Unlike that of breast cancer or ovarian cancer, the

development of cervical cancer is strongly associated with
human papillomavirus (HPV) infection (54). While HPV
infection is a necessary factor in the development of almost
all cases of cervical cancer (55), the development of
cervical cancer is a rare event that requires additional

genetic and epigenetic alterations. Similar to breast and
ovarian cancers, LOH for alleles on chromosome 11 has
been reported for cervical carcinoma (56, 57). Aberrant
splicing of TSG101 was also detected in both primary
cancer samples and immortalized cell lines (58-62).
However, no mutation and intragenic deletion was observed
in both normal and malignant cells, and there is no evidence of
direct connection between truncated transcript and cancer
progression (59, 61). On the other hand, a recent report
suggests that the expression level of TSG101 is down-
regulated in cervical cancer (63). This apparent down-
regulation of TSG101 observed in cervical cancer is likely a
direct consequence of HPV infection as decreased TSG101
levels are observed in non-tumor cervical cell infected by
HPV16. Since HPV infection has been shown to cause
epigenetic changes in cervical cancer (64), one possibility is
that the promoter of TSG101 is hypermethylated to inhibit its
expression. However, methylation analysis of TSG101
promoter suggests that TSG101 down-regulation in cervical
cancer cells is not regulated by epigenetic events (63).
Therefore, the mechanism of TSG101 down-regulation in
cervical cancer remains unclear.

4.4 TSG101 and Prostate Cancer
As in breast and ovarian cancers, abnormal

splicing variants of TSG101 were frequently observed (65,
66). For example, analysis of 15 cases of primary and
metastatic prostate cancer led to the detection of transcripts
with deletions in nine samples (65). Like breast cancer and
ovarian cancer, prostate cancer is also sex hormone related.
The development of this cancer type is closely associated
with the functions of androgen and its receptor (AR). Sun
and colleagues reported that TSG101 can interact with AR
to suppress it ligand-induced transcriptional activation.
Instead of a direct binding, interaction between AR and
TSG101 was shown to be mediated by a transcription co-
activator, CBP/p300, which is capable of binding to
TSG101 both in vitro and in vivo (67). In contract to the
initially reported role of AR transcription suppression, a
more recent investigation revealed that TSH101 functioned
as a coactivator of the AR by promoting it
monoubiquitination (18). This is consistent with the finding
that reduction of TSG101 protein has a negative impact on
prostate tumor cell growth (43).

As a member of Vps protein family, TSG101 is
an integral component of the prostasomes, exosome-like
vesicles released by human prostate epithelial cells (68).
Prostasomes have been implicated in playing roles in
prostate cancer progression (69) and may be used as a
biomarker for prostate tumor metastasis (70).  Prostasomes
released from prostate cancer cells contain high levels of
protein kinases and concurrent lower ATPase activity
which may affect interaction between cancer cell and its
microenvironment through increased phosphorylation (71).
While the exact role of TSG101 in prostasomes formation
and secretion is not clear, a recent study shows that
TSG101 is important for increased release of endosome-
like vesicles in human prostate cancer cells response to
radiation treatment. Moreover, these TSG101 containing
exosome-like microvesicles were enriched in B7-H3
protein, a diagnostic marker for prostate cancer (72).
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4.5. TSG101 and Lung Cancer
Aberrant splicing but no intragenic deletion of

TSG101 is a common event in different cancer types,
including lung cancer (46, 73). Normal and shortened
TSG101 transcripts were detected in 89% of small cell lung
carcinoma (SCLC) cell lines while only the full-length
TSG101 transcript was detected in normal tissues, primary
non-small cell lung carcinoma (NSCLC) specimens, and
the majority of NSCLC cell lines. Single strand
conformational polymorphism (SSCP) analysis and direct
sequencing of TSG101 cDNAs failed to detect mutations or
deletions, suggesting suggest that TSG101 is not mutated in
lung cancer (74).

Contradicting results have been reported
regarding the expression level of TSG101 in lung cancer
(75, 76). TSG101 was identified from a cDNA library
constructed from Anip973, a highly metastatic lung
adenocarcinoma cell line, to be able to promote colony
formation and anchorage-independent growth on soft agar
when transfected in NIH3H3 cells. Further analysis reveals
that TSG101 is overexpressed in all fifteen lung cancer cell
lines and five lung cancer tissues examined as compared to
matching normal lung tissue. Ectopic expression of
TSG101 cDNA in A549, a lung adenocarcinoma cell line,
resulted in an increased cell proliferation (75).  These
results suggest that TSG101 is unlikely a primary tumor
suppressor gene, but is capable of promoting cell growth
the malignant phenotype in NIH3T3 and lung cancer cells.
However, Chang and colleagues reported that TSG101
level is decreased in human lung cancer samples (76, 77).
Downregulation of TSG101 protein was correlated with the
upregulation of Notch 3 receptor in lung cancer (78). The
exact reason for this apparent discrepancy is not obvious.
To understand the role of TSG101 in lung cancer, more
careful studies with larger sample sizes are required.

5. Conclusion and Perspectives
TSG101 is a versatile protein that has been

implicated in multiple cellular functions, including but not
limited to, endosomal sorting and trafficking (79-82),
transcriptional regulation (83, 84), cell cycle and
proliferation (37, 38, 85-87), protein ubiquitination
regulation (88, 89), and cytokinesis (20, 21, 90, 91).  While
initially discovered as negative regulator for tumorigenesis,
accumulating evidence now describes TSG101 as a positive
modulator of cancer progression. Consistent with this
notion, overexpression of TSG101 has been reported in
most cancer types, in addition to the five discussed above
such as, colorectal carcinoma (92), gastric carcinoma (93),
papillary thyroid carcinoma (94, 95), gallbladder
adenocarcinoma (96), and multi-drug resistant human
gastric adenocarcinoma cell (97).  The ability of TSG101
to serve both positive and negative roles in cellular
homeostasis places it alongside with an increasing family
of proteins that can regulate cellular functions in apparently
opposing manners under different physiological contexts.
The challenge will be to define precisely how TSG101
exerts its oncogenic properties in cancer development.
Important questions include: Which particular cellular
function is critical for TSG101’s role in cancer? Does
TSG101 play a similar role in all cancer types or is its

functions in cancer tissue-specific? What are the roles of
TSG101 splicing variants and how are they regulated?
Answers to these questions will not only clarify the current
controversy within the field but may also provide new
diagnostic and/or therapeutic tools for cancer.
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