
[Frontiers in Bioscience 17, 2140-2157, June 1, 2012] 

2140 

Ubiquitin and its binding domains 
 
Leah Randles1, Kylie J Walters1 
 
1Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA 
 
TABLE OF CONTENTS 
 
1. Abstract 
2. Introduction: ubiquitin and protein ubiquitination 
3. Ubiquitin: a protein modifier 

3.1. Monoubiquitin: placidity for multifaceted recognition 
3.2. Polyubiquitin: diversity in chains 

4. Ubiquitin-binding domains (UBDs) 
4.1. Structural diversity of UBDs 

4.1.1. Alpha-helical motifs  
4.1.2. Zinc finger (ZnF) 
4.1.3. Pleckstrin-homology (PH)  
4.1.4. Ubiquitin conjugating (Ubc)-related 
4.1.5. Src homology 3 (SH3)  
4.1.6. Additional UBDs  

4.2. UBD regulation  
5. Perspective: summary and future 
6. Acknowledgments 
7. References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT 
 
 Post-translational modification by ubiquitin 
(ubiquitination, ubiquitylation, ubiquitinylation) is used as 
a robust signaling mechanism in a variety of processes that 
are essential for cell homeostasis. Its signaling specificity is 
conferred by the inherent dynamics of ubiquitin, the 
multivalency of ubiquitin chains, and its subcellular 
context, often defined by ubiquitin receptors and the 
substrate. Greater than 150 ubiquitin receptors have been 
found and their ubiquitin-binding domains (UBDs) are 
structurally diverse and include alpha-helical motifs, zinc 
fingers (ZnF), pleckstrin-homology (PH) domains, 
ubiquitin conjugating (Ubc)-related structures and src 
homology 3 (SH3) domains. New UBD structural motifs 
continue to be identified expanding the ubiquitin-signaling 
map to proteins and structural families not previously 
associated with ubiquitin trafficking. In this manuscript, we 
highlight several ubiquitin receptors from the multiple 
UBD folds with a focus on the structural characteristics of 
their interaction with ubiquitin.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION: UBIQUITIN AND PROTEIN 
UBIQUITINATION 
  
 The 76-amino acid protein ubiquitin is attached 
covalently to other proteins to in turn, modify or expand 
their cellular activities. The most common sites of ubiquitin 
attachment are Lys epsilon-amino groups and the 
substrate’s amino terminus, as reviewed in (1). In rare 
cases, ubiquitin can also be attached to Ser hydroxyl and 
Cys thiol groups (2, 3). Ubiquitination is tightly regulated 
and generally requires a 3-step catalytic cycle that includes 
E1 activating, E2 conjugating, and E3 ligating enzymes 
(Figure 1A). The human genome has been demonstrated to 
encode two E1 (Uba1 and Uba6), ~40 E2, and greater than 
600 E3 enzymes, as reviewed in (4). E1 enzymes activate 
ubiquitin with a two-step ATP-dependent reaction to form 
an E1-thiolester~ubiquitin intermediate (5), from which 
ubiquitin is transferred to an E2 catalytic Cys by a thioester 
transfer reaction, as reviewed in (6, 7). The transfer of 
activated ubiquitin to a substrate generally requires an E3 
ligase. Depending on the E2-E3 pair, ubiquitin is either 
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Figure 1. Ubiquitination: (A) E1-E2-E3 enzymatic cascade leading to substrate ubiquitination, (B) Diversity of ubiquitin 
modification. 
 
transferred to the target substrate directly from the E2 or 
after passage to an E3 catalytic Cys. The former 
mechanism is performed by RING (Really Interesting New 
Gene) domain E3s, which are the most populated class of 
E3. These act as scaffolds by orienting E2s for ubiquitin 
transfer to a substrate, as reviewed in (4). HECT 
(Homologous to E6AP C-Terminus) domain E3s, by 
contrast, form a thioester bond with ubiquitin en route to its 
substrate transfer, as reviewed in (8). Recently, the 
mechanistic distinction between RING and HECT E3s has 
become blurred as two E3s that belong to the RING-in-
between-RING (RBR) family were proposed to act as 
RING/HECT hybrids by forming a thiolester~ubiquitin 
intermediate via a conserved RING domain cysteine prior 
to ubiquitin transfer to substrate (9). 
 

A single passage through an E1-E2-E3 enzymatic 
cascade results in a monoubiquitinated substrate. 
Additional passages yield multiubiquitinated substrates, 
with ubiquitin moieties at multiple sites, and/or 
polyubiquitinated substrates, with additional ubiquitins 
ligated to previously attached ones (Figure 1B). Ubiquitin 
moieties are linked by an isopeptide bond between a Gly76 
carboxyl group and either a Lys sidechain primary amino 
group (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, or 
Lys63) or the ubiquitin amino terminus (Met1) (10-12). 
Quantitative mass spectrometry (MS) experiments in 
Saccharomyces cerevisiae (13) and mammalian cells 
(HEK293) (14) revealed differences in polyubiquitin 
linkage abundance. Although Lys48 and Lys63 linked 
chains are abundant in both cell types, their population is 
greater in HEK293 cells, as S. cerevisiae contained more 
Lys6 and Lys11 linkages (Table 1). It is possible that these 
differences are of physiological origin, but they may also 
be due to the use of different experimental procedures. The 
S. cerevisiae study captured His-tagged ubiquitin 

conjugates for MS analyses, whereas isotope enriched 
media was used to grow the HEK293 cells with total cell 
lysate used for subsequent MS experiments (13, 14).  
 

Ubiquitin’s seven lysines can be used to 
synthesize homotypic chains of one linkage type or 
heterotypic chains with multiple linkage types, as reviewed 
in (15). Certain E2-E3 enzyme pairs have been shown in 
vitro to synthesize exclusively homotypic chains, as in the 
case of UbcH5-Nedd4, or heterotypic chains, as in the case 
of UbcH5-Mdm2 (16). UbcH5-Mdm2 has an added 
capacity of forming branched heterotypic chains (Figure 
1B) in vitro. The physiological role and abundance of 
branched heterotypic chains is speculative, but they have 
been proposed to act as dominant negative inhibitors of the 
proteasome (16). Distinct functional roles have been 
associated with certain ubiquitin chain linkage types. 
Lys48-linked chains target their substrates for degradation 
by the 26S proteasome, as reviewed in (17), or lysosome, 
as reviewed in (18). Lys63 linked chains function in NF-
kappaB signaling, DNA repair, and receptor endocytosis, as 
reviewed in (19, 20). Linear ubiquitin chains have also 
been implicated in the regulation of NF-kappaB activity, as 
reviewed in (21). Function specific to the other linkages has 
not yet been assigned, although some associations exist. 
Lys29-linked chains can target proteins for degradation by 
lysosome and are synthesized in vitro by the E3’s AIP4 
(Atrophin-1-Interacting Protein 4) and UBE3C/KIAA10, 
although both of these enzymes also synthesize Lys48-
linked chains (22, 23). Heterotypic Lys29/Lys33-linked 
chains are found on ARK5/NUAK1 (AMPK Related 
Kinase 5) and MARK4 (Microtubule-Affinity-Regulating 
Kinase 4). These two substrates belong to the AMPK-
related kinase family, which is involved in cell polarity and 
proliferation and blocking kinase activation by interfering 
with phosphorylation sites (24). Homotypic Lys11-linked 
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Table 1. Ubiquitin linkage abundance determined by quantitative 
mass spectrometry  

HEK293 Mammalian Cells (14)  
Lys6 ≤ 0.5% 
Lys11 2% 
Lys27 ≤ 0.5% 
Lys29 8% 
Lys33 ≤ 0.5% 
Lys48 52% 
Lys63 38% 
Saccharomyces cerevisiae (13)  
Lys6 10.9% ± 1.9% 
Lys11 28.0% ± 1.4% 
Lys27 9.0% ± 0.1% 
Lys29 3.2% ± 0.1% 
Lys33 3.5% ± 0.1% 
Lys48 29.1% ± 1.9% 
Lys63 16.3% ± 0.2% 

 
chains are associated with many cellular processes, 
including ERAD (Endoplasmic Reticulum Associated 
Degradation), endocytosis, TNF (Tumor Necrosis Factor) 
signaling, WNT signaling, and cell cycle control, as 
reviewed in (25). Lys6- and Lys27-linkages are the least 
well characterized; however, Lys6 may regulate DNA 
repair (26) and Lys27 may function in stress response 
pathways (27).  
 
3. UBIQUITIN: A PROTEIN MODIFIER 
 
3.1. Monoubiquitin: placidity for multifaceted 
recognition 

Ubiquitin adopts a compact globular fold that is 
formed by a 5-stranded beta-sheet, a short 310 helix, and a 
3.5-turn alpha-helix (Figure 2A). This fold is also the 
foundation of a larger family of ubiquitin-like (UBL) 
domains, which will not be discussed in this manuscript, 
but are reviewed in (28, 29). The majority of UBDs interact 
with a hydrophobic patch formed on the surface of 
ubiquitin’s beta-sheet by Leu8, Ile44 and Val70 (Figure 
2A). The amino acids surrounding this hydrophobic triad 
are disparate in terms of charge and size enabling diverse 
UBD binding modes to this common surface (Figure 2B) 
(30). For example, TSG101’s UEV (Ubiquitin-conjugating 
enzyme E2 Variant) domain directly contacts ubiquitin’s 
Gln62 (31), whereas this amino acid is not contacted by the 
Hrs DUIM (Double-sided Ubiquitin-Interacting Motif) 
(32). Comparison of multiple UBD:ubiquitin complexed 
structures demonstrates differences in ubiquitin with its 
various binding partners. This variability is not generated 
by UBD binding, but rather present in free ubiquitin due to 
its intrinsic motions, according to NMR experiments (33). 
UBDs thus appear to select for their optimal conformer 
from ubiquitin molecules that have variable amino acid 
sidechain exposure for the canonical UBD recognition 
surface, including Leu8 and the beta1-beta2 loop (Figure 
2A) (33). Despite its conformational placidity, ubiquitin is 
a very stable protein that retains its fold at pH 4 up to 
~75°C (34); for comparison, ubiquitin-like protein SUMO 
(Small Ubiquitin-like MOdifier) of similar fold and size 
denatures at ~52°C (pH 5.6) (35). Ubiquitin’s placidity, 
coupled with its multifaceted recognition surface, enables a 
broad spectrum of structural folds to be used as UBDs, 24 
of which are listed in Table 2.  

3.2. Polyubiquitin: diversity in chains 
Ubiquitin chains contribute an additional layer of 

diversity to the ubiquitin modifier, as these vary in both 
length and linkage type, as discussed in Section 2. They 
also expand the placidity present in monoubiquitin, as the 
linker region connecting ubiquitin moieties is flexible and 
allows diverse configurations for UBD-bound complexes 
(Figure 3).  For example, Lys63-linked diubiquitin adopts a 
more compact conformation when bound to a Lys63-
linkage specific antibody (36) than when bound to AMSH 
(Associated Molecule with the Src Homology 3 domain of 
signal-transducing adapter molecule), an endosome-
associated ubiquitin isopeptidase (37). When not bound to a 
UBD, Lys48-linked tetraubiquitin exchanges (38) between 
a compact configuration with its ubiquitin moieties packed 
tightly against each other (39) and a more extended one 
(40) . The canonical UBD-binding surface is not accessible 
in the compact form of Lys48-linked diubiquitin (41) 
(Figure 3B) or tetraubiquitin (39) and UBDs are therefore 
expected to bind moieties in the extended form. For 
example, hHR23a’s C-terminal UBA (UBiquitin-
Associated) domain interacts with the hydrophobic patches 
of both ubiquitin moieties from Lys48-linked diubiquitin 
(Figure 4C), which are inaccessible in its compact form 
(42). 
 

Steric clashes prevent the ubiquitin moieties of 
Lys63-linked and linear polyubiquitin from packing against 
each other (43) (Figure 3C and D), whereas this 
configuration is possible for Lys11-linked chains as 
demonstrated by X-ray crystallography (44, 45) (Figure 
3A) and predicted by molecular modeling (46). Lys6 and 
Lys27 linkages are predicted to enable a compact 
conformation, whereas Lys29 and Lys33 linkages are not 
(46). It is possible that the isolation of ubiquitin 
hydrophobic patches that occurs in compactly configured 
ubiquitin chains prevents them from engaging in non-
specific interactions. 
 
4. UBIQUITIN-BINDING DOMAINS (UBDs) 
 
4.1. Structural diversity of UBDs 
 No general ubiquitin binding consensus element 
has been identified, requiring all UBDs to be discovered 
experimentally. As a group, UBDs use all structural 
elements to bind ubiquitin, and new UBDs continue to be 
identified. UBDs can be alpha-helical, ZnF, PH, Ubc-
related, SH3, or WD40 beta-propellers. The following 
sections describe binding modes and functions of various 
UBD structural folds (summarized in Table 2). 
 
4.1.1. Alpha-helical motifs 

Ubiquitin binding surfaces are most commonly 
formed by alpha-helices (Table 2). A single alpha helix can 
define a UBD, as in the case of the UIM (Ubiquitin 
Interacting Motif), IUIM/MIU (Inverted UIM/Motif 
Interacting with Ubiquitin), UMI (UIM- and MIU-related) 
and DUIM (Double-sided UIM) domains. Ubiquitin 
binding is localized to a single surface of UIMs, MIUs, and 
the UMI. Experimentally derived structures of UIMs and 
an MIU have been solved complexed with ubiquitin; 
however, no experimental structure is available for the 
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Table 2. UBD structural folds 
Structural Fold Subclass Example Proteins Ubiquitin Signaling Role References 
Alpha-helical UIM Rap80 DNA repair  (57, 58) 
  Vps27 Endocytosis  (55) 
  S5a/Rpn10 Proteasomal degradation  (53, 54, 130) 
  STAM Endocytosis  (82) 
  Epsins Endocytosis  (131) 
  Ataxin 3 Deubiquitination  (56) 
 IUIM/MIU Rabex-5 Endocytosis  (90, 91, 132) 
  RNF168 DNA repair  (50) 
 DUIM Hrs Endocytosis  (32) 
 UBM Polymerase iota DNA repair  (133, 134) 
  Reversionless 1 DNA repair  (133) 
 UBAN NEMO NF-kappaB signalling  (63, 65) 
  ABIN1/2/3 NF-kappaB signalling  (135) 
 UBA hPLIC/Dsk2 Proteasomal degradation  (136, 137) 
  hHR23/Rad23 Proteasomal degradation  (75, 137, 138) 
  NBR1 Autophagy  (139) 
  p62 Autophagy  (140) 
 CUE Vps9 Endocytosis  (70) 
 GAT TOM1 Endocytosis  (79, 141) 
  GGA3 Endocytosis  (80, 142) 
 VHS STAM Endocytosis  (81, 83) 
  GGA3 Endocytosis  (143) 
 UMI RNF168 DNA repair  (47) 
Zinc-finger (ZnF) UBZ Polymerase eta DNA repair  (144) 
  Polymerase iota DNA repair  (145) 
  TAX1BP1 NF-kappaB signaling  (146) 
 NZF TAB2/3 NF-kappaB signaling  (85, 86, 88) 
  Vps36 Endocytosis  (87) 
  Npl4 ERAD  (89) 
 ZnF A20 Rabex-5 Endocytosis  (90, 91, 132) 
  A20 NF-kappaB signalling  (147) 
 ZnF UBP IsoT/USP5 Deubiquitination  (92) 
  HDAC6 Autophagy  (148, 149) 
Pleckstrin-homology (PH) PRU Rpn13 Proteasomal degradation  (94, 95) 
 GLUE Eap45 Endocytosis  (93, 96, 97) 
Ubiquitin conjugating (UBC)-related UEV TSG101 Viral budding and VPS  (31, 150) 
  Mms2 DNA repair  (151) 
 UBC UbcH5c Ubiquitin conjugation/chain assembly  (103) 
Src homology (SH) SH3 Sla1 Endocytosis  (108, 110) 
  CIN85 Endocytosis  (109) 
WD40 WD40 beta-propeller PLAA/Doa1 ERAD  (112) 
  Cdc4 Ubiquitin chain assembly  (112) 
Additional UBDs PFU PLAA/Doa1 ERAD  (115, 152) 
 JAB1/MPN Prp8 Pre-mRNA processing  (153) 
 DC-UbP_N DC-UbP Ubiquitinated substrate delivery  (111) 
 MDA-9/ syntenin UBD MDA-9/syntenin Endocytosis  (113) 

Abbreviations: UIM (Ubiquitin-Interacting Motif), IUIM/MIU (Inverted UIM/Motif Interacting with Ubiquitin), DUIM 
(Double-sided UIM), UBM (Ubiquitin Binding Motif), UBAN (Ubiquitin Binding in ABIN and NEMO), UBA (UBiquitin 
Associated), GAT (GGA And TOM), CUE (Coupling of Ubiquitin conjugation to Endoplasmic reticulum degradation), 
VHS (Vps27/Hrs/STAM), UMI (UIM- and MIU-related), UBZ (Ubiquitin-Binding ZnF), NZF (Npl4 (Nuclear protein 
localization 4) Zinc Finger), ZnF A20 (Zinc Finger A20), ZnF UBP/PAZ (Zinc Finger UBiquitin-specific 
Protease/Polyubiquitin Associated Zinc finger), PRU (Pleckstrin-like Receptor for Ubiquitin), GLUE (Gram-Like 
Ubiquitin-binding in Eap45), UEV (Ubiquitin-conjugating enzyme E2 Variant), UBC (UBiquitin-Conjugating), SH3 (Src 
Homology 3), PFU (PLAA Family Ubiquitin binding), Jab1/MPN (Jun Activation-domain Binding protein 1/Mpr-Pad1-N-
terminal), DC-UbP_N (Dendritic Cell-derived UBiquitin-like Protein N-terminal domain), WD40 beta-propellers (WD40 
beta-Prps), MDA-9/syntenin (Melanoma Differentiation Associated gene 9), ERAD (Endoplasmic Reticulum Associated 
Degradation), VPS (Vacuolar Protein Sorting) 
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Figure 2. Features of monoubiquitin: (A) Ribbon diagram of monoubiquitin (PDB 1D3Z) highlighting its seven lysines (blue), 
hydrophobic triad (Leu8, orange; Ile44, yellow; Val70, pink), and termini (Met1 and Gly76, beige). Secondary structural 
elements are labeled. (B) Electrostatic surface diagram of monoubiquitin rendered over its ribbon diagram with positive and 
negative charges displayed on the surface in blue and red, respectively, and hydrophobic regions in white. Heavy atoms of 
several charged amino acids, as well as those mentioned in the text are rendered as sticks and labeled.  

 
UMI, which is expected to be alpha-helical based on its 
sequence composition and so-named because of its 
sequence similarity to UIMs and MIUs (47). UIMs use a 
conserved LeuXXAlaLeu motif to bind the hydrophobic 
patch of ubiquitin, reviewed in (48, 49), whereas MIUs 
bind in an opposite orientation (LeuAlaXXLeu). The 
RING-finger ubiquitin ligase RNF168 contains two MIUs 
and a UMI (47, 50), which uses a dileucine motif and not 
the conserved Ala residue of UIMs and MIUs to interact 
with ubiquitin (47). DUIMs harbor two ubiquitin-binding 
surfaces at opposite sides of a helix, as displayed in the X-
ray crystallographic structure of Hrs (Hepatocyte growth 
factor-Regulated tyrosine kinase Substrate) complexed with 
two monoubiquitin molecules (32); Hrs functions in protein 
sorting during endocytosis, as reviewed in (51, 52).  
 

Alpha-helical ubiquitin-binding elements are 
invariably just one functional module within a multi-
domain ubiquitin receptor, which can have multiple UBDs 
that are used together in novel ways to increase affinity for 
ubiquitin chains and in some cases, to define ubiquitin 
chain linkage specificity. Proteasome component S5a (53, 
54), endosomal sorting protein Vps27 (55), 
deubiquitinating enzyme Ataxin-3 (56), and DNA repair 
protein Rap80 (57, 58) are examples of ubiquitin receptors 
with multiple UIMs. In all cases, the UIMs are separated by 
flexible linker regions that are exploited to fit the signaling 
needs of the ubiquitin receptor. S5a’s two UIMs are poorly 
defined relative to each other when unbound or complexed 
with monoubiquitin (53). In binding to Lys48-linked 
diubiquitin, however, S5a’s flexible linker region adapts to 
enable each UIM to contact a ubiquitin moiety 
simultaneously and thereby confer a significant increase in 
affinity compared to that for monoubiquitin (8.9 microM 
versus 350 microM to UIM1 and 73 microM to UIM2) (54) 
(Figure 4A). The pliability of the region linking S5a’s 
UIMs likely contributes to its ability to also bind Lys63-
linked chains with similar binding affinity (53, 59) and 
Lys29-, Lys6-, and Lys11-linked chains, albeit with lower 
affinity (59-61).  The adaptability of S5a’s UIM region may 

contribute to the proteasome’s capacity to degrade 
substrates of all ubiquitin chain linkages, an ability 
indicated by mass spectrometry-based experiments in S. 
cerevisiae (13). By contrast, the region linking Rap80’s 
UIMs undergoes a conformational switch to generate a 
continuous helix that spans its two UIMs and orients them 
optimally to bind Lys63-linked chains (57, 58). The 
resulting specificity for Lys63-linked chains is consistent 
with Rap80’s role in DNA damage response (DDR) 
pathways, as reviewed in (62). 
 

UBDs can also gain ubiquitin linkage specificity 
by oligomerization. The UBAN (Ubiquitin Binding in 
ABIN and NEMO) domain of NEMO (NF-kappaB 
Essential MOdifier) (63-65) forms a coiled-coil homodimer 
that binds preferentially to Lys63-linked (64-67) and linear 
ubiquitin chains (43, 63, 64). Its affinity for linear ubiquitin 
chains however is 100-fold higher than Lys63-linked 
chains (64), as the UBAN monomers bind in a bipartite 
manner to neighboring ubiquitin moieties of linear chains. 
Hydrophobic amino acids of one monomer interact with the 
Leu8-Ile44-Val70 triad of the distal ubiquitin while polar 
amino acids of the other monomer interact with a surface 
adjacent to the proximal ubiquitin’s hydrophobic patch (63) 
(Figure 4B). When binding to Lys63-linked chains, NEMO 
recapitulates the interactions of the hydrophobic residues 
only, resulting in a single site-binding mode (65). The 
bipartite binding mode of UBAN to linear ubiquitin chains 
appears to be important for NEMO’s function as an NF-
kappaB activator, as mutation of either ubiquitin-binding 
site leads to the loss of IkappaBalpha degradation following 
TNF-alpha induction (63). 
 

Multiple alpha-helices can also define a UBD, as 
in the case of the UBM (Ubiquitin Binding Motif), CUE 
(Coupling of Ubiquitin conjugation to Endoplasmic 
reticulum), GAT (GGA and TOM), UBA (UBiquitin 
Associated), and VHS (Vps27/Hrs/STAM) domains. The 
UBM domains of the Upsilon DNA polymerase iota (Pol 
iota) and Reversionless 1 (Rev1) are the smallest multiple 
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Figure 3. Diversity of ubiquitin polymers: Ribbon representation of diubiquitin with the ubiquitin moieties linked via Gly76 and 
(A) Lys11 (PDB 2XEW), (B) Lys48 (PDB 1AAR), (C) Lys63 (PDB 2JF5), and (D) Met1, so-called linear (PDB 2W9N). In all 
cases, the ubiquitin moiety with its Gly76 available for conjugation to a substrate is displayed in light blue whereas the more 
distal moiety is dark blue. The hydrophobic triad is colored as in Figure 2A and the lysine ligated to Gly76 is displayed in green 
for Lys11, Lys48, and Lys63 linkages or beige for Met1. 

 
helical UBDs with two amphipathic helices that bind a 
ubiquitin surface centered on Leu8 (68, 69). CUE, GAT, 
and UBA domains make up the bulk of the multiple alpha-
helical domains and are comprised of a three-helix bundle. 
CUE and UBA domains are structurally similar, despite 
low sequence identity (17% between Vps9p CUE and 

Rad23 internal UBA (UBA1)) (70). Both use their alpha1 
and alpha3 helices to bind ubiquitin’s hydrophobic patch, 
but UBA domains use a conserved Met/Leu-Gly-Phe/Tyr 
motif (71), whereas CUE domains use an Met-Phe-Pro 
motif (70). UBA domains are diverse in their preferences 
for ubiquitin chains of certain length and linkage type (59). 
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Figure 4. Alpha-helical ubiquitin-binding motifs: Ribbon representation of (A) S5a’s UIM region (purple and pink) bound to 
Lys48-linked diubiquitin (PDB 2KDE), (B) NEMO’s UBAN domains (pink and magenta) bound to two linear diubiquitins (PDB 
2ZVO), and (C) hHR23a’s UBA domain (gold) sandwiched between the two ubiquitin moieties of Lys48-linked diubiquitin 
(PDB 1ZO6). The coloring scheme for diubiquitin follows that of Figure 3. 
 
Whereas the UBA from hPLIC1 (ubiquilin1) shows little 
preference between Lys29-, Lys48-, and Lys63-linked 
polyubiquitin (59, 72), hHR23a’s C-terminal UBA domain 
(UBA2) prefers Lys48 linkages over Lys63 linkages, as it 
sandwiches between neighboring ubiquitin moieties of 
Lys48-linked chains (Figure 4C) (42, 59, 73).  Full length 
hHR23a has two UBA domains that can bind 

concomitantly to ubiquitin (74), and its UBA1 also exhibits 
stronger affinity for Lys48-linked chains (75). Whereas 
dimeric UBA domains become monomeric to bind 
ubiquitin (76), CUE domains can bind to monoubiquitin as 
homodimers, as in the case of the Vps21p GTPase 
exchange factor Vps9p (70). CUE domains are published to 
prefer monoubiquitin, based on S. cerevisiae two-hybrid 
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Figure 5. Zinc-finger domain of TAB2: Ribbon diagram of TAB2’s NZF domain (green) complexed with K63-linked diubiquitin 
(PDB 3A9J). TAB2’s single zinc ion is rendered as a gold sphere and the coloring for diubiquitin follows that of Figure 3. 
 
screens with ubiquitin mutants that lack primary sites for 
ubiquitin chain formation (77). They have however been 
found to bind to Lys48-linked chains in vitro (78). In 
contrast to CUE and UBA domains, GAT domains have 
been reported to bind two ubiquitin molecules through two 
distinct binding sites, or one ubiquitin molecule and an 
additional binding partner, as in the case of ESCRT 
(Endosomal Sorting Complex Required for Transport) 
pathway proteins Tom1 (Target of Myb1) and GGA3 
(Golgi-localized, Gamma-ear-containing, ARF-binding 
protein 3) (79, 80).  
 

VHS domains contain the most alpha helices of a 
UBD known to date with eight alpha-helices, and this UBD 
has recently been found to have Lys63-linkage specificity 
(81, 82). A surface that is primarily composed of amino 
acids from alpha2 and alpha4 is used by the VHS domains 
of ESCRT proteins Stam1 (83, 84) and Stam2 (81) to bind 
ubiquitin.  
   
4.1.2. Zinc finger (ZnF) 
 The second most abundant UBD structural fold is 
the ZnF domain, which is relatively small and stabilized by 
its coordination of one or more Zn ions. These have been 
shown to bind to three different regions of ubiquitin. Some 
bind to the Leu8-Ile44-Val70 hydrophobic patch, such as 
UBZ (Ubiquitin-Binding ZnF) and NZF (Npl4 (Nuclear 
protein localization 4) Zinc Finger) domains. NF-kappa B 
activator proteins TAB2 (TAK1-Binding protein 2) and 
TAB3 (TAK1-Binding protein 3) contain NZF domains 
that contact the Ile44-centered surface of neighboring 
ubiquitin moieties of Lys63-linked chains 
simultaneously (85, 86) (Figure 5) to preferentially bind 
this chain type (21, 85-88). The distal ubiquitin moiety 
binds a Thr-Phe dipeptide motif that is highly conserved 
among NZF domains and also used by Npl4’s NZF 
domain to bind monoubiquitin (85-87, 89). Direct 
contact to the Lys63 isopeptide linkage is not made by 
these NZF domains; however, the placement of the 
ubiquitin’s other lysines and Met1 demonstrates that 
concurrent contact to the two distinct binding surfaces is 
likely to be prohibited for chains formed by linkages 
other than Lys63 (Figure 5).  

  The ZnF UBD of the E3 ligase Rabex-5 (Rab5 
guanine exchange factor) binds to a ubiquitin surface 
centered on Asp58 (Figure 2B) to which its Ser36 forms 
two hydrogen bonds (90, 91). Key contacts are also formed 
by two aromatic amino acids (Tyr25 and Tyr26) of Rabex-
5 to ubiquitin’s Arg54, Thr55, Ser57, Asp58, Tyr59 and 
Asn60 (90, 91). This dityrosine motif plays an integral role 
in Rabex-5’s ability to bind to a ubiquitin-loaded E2 
(UbcH5c), as binding is lost by its mutation to Ala (91). 
 

Deubiquitinating enzymes disassemble ubiquitin 
chains by catalyzing the hydrolysis of the isopeptide bonds 
that link the individual moieties together. These linkage 
sites use ubiquitin’s C-terminal Gly76, which was 
demonstrated to be required for interaction between 
ubiquitin and the ZnF UBP/PAZ of deubiquitinating 
enzyme isopeptidase T (IsoT/USP5) (92). This UBD has a 
deep pocket into which Gly75 and Gly76 insert and IsoT 
amino acids that interact with these glycines are required 
for its catalytic activation (92). A newly deposited crystal 
structure of HDAC6’s UBP/PAZ domain bound to 
ubiquitin (PDB 3PHD) demonstrates ubiquitin’s C-terminal 
amino acids to be similarly sequestered into a deep pocket. 
IsoT/USP5 and HDAC6 use analogous contacts to 
ubiquitin’s C-terminal tail, as all but two of the seven 
interacting amino acids are conserved or functionally 
equivalent (92). 
 
4.1.3. Pleckstrin-homology (PH) 

Pleckstrin-homology (PH) domains are 
comprised of a 7-stranded beta-sheet with a C-terminal 
alpha-helix and many bind phosphoinositides (PIs) within 
membranes to function in intracellular signaling. Two PH 
domains have been reported to bind to ubiquitin, including 
that within ESCRT-II Eap45, termed GLUE (Gram-Like 
Ubiquitin-binding in Eap45) (93), and the proteasome 
component Rpn13, termed PRU (Pleckstrin-like Receptor 
for Ubiquitin) (94, 95). A region of Eap45’s GLUE domain 
that contains the C-terminal end of its alpha-helix, beta5, 
beta6, and the beta6-beta7 loop binds to the Ile44 centered 
surface of ubiquitin, as demonstrated by X-ray 
crystallography (96, 97) (Figure 6A). This ubiquitin-
binding surface is at an opposite location relative to the 
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Figure 6. Pleckstrin-homology domains: Ribbon representation of (A) Eap45’s GLUE domain (red) bound to monoubiquitin 
(PDB 2DX5) and (B) Rpn13’s PRU domain (grey with ubiquitin-binding loops in red) bound to Lys48-linked diubiquitin 
(generated from PDB 2Z59 and 1D3Z). The ubiquitin coloring is as described in Figure 3, but with His68 included in beige.  

 
proposed site that binds PIs, thereby suggesting that these 
two surfaces are used together to bring ubiquitinated cargo 
to the endosomal membrane (96-99).  

 
Rpn13’s PRU domain by contrast does not 

appear to bind to PIs, but rather uses a surface opposite to 
its ubiquitin-binding one to dock into the proteasome (95) 
(Figure 6B). It uses three loops to contact ubiquitin (Figure 
6B), including its beta4-beta5 loop, which contains two 
Asp’s (Asp78 and Asp79) that form hydrogen bonds with 
ubiquitin’s His68. Phe76 from this loop interacts with 
ubiquitin’s Ile44, Gln49, and Val70 and its mutation to Arg 
abrogates Rpn13’s ability to bind to ubiquitin (95). 
Rpn13’s PRU has a high affinity for ubiquitin (300 nanoM 
for monoubiquitin, 90 nanoM for Lys48-linked diubiquitin) 
(94) compared to S5a (54), the proteasome’s other 
ubiquitin receptor. This affinity however is reduced in the 
full length protein due to interactions between its PRU 
domain and its C-terminal Uch37-binding domain (100), as 
discussed further in Section 4.2. When binding to a Lys48-
linked chain, Rpn13 prefers the proximal subunit (Figure 
6B), most likely due to the loss of charge on its Lys48 (95). 
The use of loops to bind ubiquitin highlights the difficulty 
in predicting UBDs based on sequence information alone 
and the discovery that Rpn13 is a ubiquitin receptor in the 
proteasome (94) was 14 years after S5a was reported to be 
one (101).  
 
4.1.4. Ubiquitin-conjugating (Ubc)-related 
 Ubc (UBiquitin-Conjugating) domains are found 
in E2 enzymes and are comprised of ~150 amino acids that 
fold into four standard helices and a 4-stranded antiparallel 
beta-sheet, as reviewed in (102). Generally, Ubc domains 
contain a conserved catalytic Cys that forms a thiolester 
bond with ubiquitin, as discussed in Section 2. All E2’s 
interact with ubiquitin covalently, but noncovalent 
interaction surfaces have also been identified, as in UbcH5c 
(103). UbcH5c’s non-covalent ubiquitin-binding surface is 

opposite to the E2 catalytic Cys (Figure 7A) and is essential 
for the processive nature of BRCA1 (BReast CAncer type 
1)-mediated polyubiquitination, allowing multiple 
ubiquitination cycles to a bound substrate (103). UbcH5a 
and UbcH5b also use this non-covalent ubiquitin-binding 
surface (104), and UbcH5a has an additional ubiquitin-
binding surface that is proposed to govern Lys11-linked 
chain formation, as a surface adjacent to its catalytic Cys 
interacts with a ubiquitin surface that flanks its Lys11 
(105). 
 
 The UEV (Ubiquitin-conjugating enzyme E2 
Variant) domain has an alpha/beta fold similar to Ubc 
domains, but has an additional N-terminal helix, an 
extended beta-hairpin linking beta1 and beta2 and lacks 
Ubc’s two C-terminal helices (31). UEV domains are not 
E2’s as they lack the catalytic Cys residue, but they can 
bind ubiquitin non-covalently, as in the case of TSG101, 
which functions in Human Immunodeficiency Virus-1 
(HIV-1) budding and MVB (MultiVesicular Body) sorting 
(31). TSG101’s UEV domain and UbcH5c bind ubiquitin 
differently (Figure 7), as the extended beta-hairpin is used 
by this UEV as well as the loop that follows beta4 (Figure 
7B) (31, 103).  
 
4.1.5. Src homology 3 (SH3) 

Approximately 300 SH3 domains are encoded in 
the human genome (106). They are formed by ~60 amino 
acids, which assume a beta-barrel fold and tend to promote 
protein-protein interactions, most often by binding to 
proline-rich regions (PxxP) (107). SH3 domains of S. 
cerevisiae Sla1 (108), its mammalian orthologue CIN85 
(109), and amphiphysin (110) are reported to bind to 
ubiquitin. Sla1’s third SH3 (SH3-3) domain uses 
complementary hydrophobic residues from a shallow 
groove present in all SH3 domains to bind the hydrophobic 
patch of monoubiquitin, as revealed by solution NMR 
(108) (Figure 8). This shallow groove is typically used to 
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Figure 7. Ubc-like domains complexed with ubiquitin: Ribbon representation of (A) UbcH5c (cyan, PDB 2FUH) and (B) 
TSG101 UEV (green, PDB 1S1Q) bound to monoubiquitin colored as in Figure 3. UbcH5c’s catalytic cysteine (Cys85) is 
displayed in red. 

 
bind ProXXPro or ProXXProArg motifs (108-110), 
suggesting a competition between ubiquitin and 
ProXXPro/Arg binding partners. Like its yeast orthologue, 
CIN85 contains three SH3 domains, but in contrast to Sla1, 
all three bind ubiquitin (109, 110).  
 
4.1.6. Additional UBDs 
 Many other structural folds have evolved 
ubiquitin-binding surfaces. In the past year, novel UBD 
structural folds have been described in the N-terminal 
domain of DC-UbP (111), WD40 beta-propellers (112), 
and MDA-9/syntenin (113). DC-UbP’s N-terminal 
ubiquitin-binding domain forms an alpha-alpha-alpha-beta-
beta pattern with a short C-terminal alpha-helix (111). It 
binds to ubiquitin’s hydrophobic patch and C-terminal 
residues (Leu71, Arg72, and Leu72) by using amino acids 
from the alpha1-alpha2 loop, alpha2, alpha3, and the beta1-
beta2 loop (111). The C-terminal region of DC-UbP 
contains a UBL domain (114), thereby linking it to the 
UBL-UBA family of proteins, which include hHR23 and 
hPLIC, discussed in Section 4.1.1.  
 

 WD40 beta-propellers from functionally diverse 
proteins bind to ubiquitin’s hydrophobic patch through a 
conserved surface made up of loops; these include 
components of SCF ubiquitin E3 ligases and AAA ATPase 
Cdc48/p97 adaptor Doa1/Ufd3 (112). Doa1/Ufd3 also 
contains a PFU domain (PLAA family Ub-binding 
domain), which binds to ubiquitin (115). It is not yet known 
whether Doa1’s UBDs are used synergistically to confer 
specificity for ubiquitin chain linkage type, however it 
appears to bind preferentially to longer ubiquitin chains 
(116).  
  
4.2. UBD regulation 

There are many mechanisms to keep UBDs in 
check, which have perhaps arisen due to their widespread 

use and abundance. UBD regulation can occur through 
intramolecular activities involving the ubiquitin receptor or 
alternatively, by modification of the substrate. 
Intramolecular interactions between UBDs and other 
domains within a ubiquitin receptor or that involve a 
ubiquitin conjugated  to the receptor itself can reduce a 
receptor’s affinity for ubiquitinated substrates. Ubiquitin 
receptors hRpn13 and hHR23a, which function in 
proteasome-mediated protein degradation, have additional 
domains that interact with their UBDs. hRpn13’s PRU 
binds its C-terminal Uch37-binding domain, which reduces 
the exposure of its ubiquitin binding surface and in turn, its 
affinity for ubiquitin (100). hRpn13 docking into the 
proteasome appears to abrogate this intramolecular 
interaction, thereby functionally coupling its activity as a 
ubiquitin receptor to its localization to proteasome (100). 
hHR23a’s UBA and UBL domains similarly interact to reduce 
ubiquitin accessibility (117). Moreover, monoubiquitination of 
UBD-containing proteins causes the UBD to interact with its 
own conjugated ubiquitin rather than a substrate-attached one. 
This process, termed coupled monoubiquitination (118, 119), 
regulates Eps15 (UIM), Sts1 (UBA), Sts2 (UBA), Hrs (DUIM) 
and the MDA-9/syntenin UBD (118, 120, 121). 
Intermolecular interactions involving UBDs can also 
regulate ubiquitin receptor binding to ubiquitinated 
substrates, as in the case of p47, which is unable to bind 
monoubiquitin via its UBA domain unless it is complexed 
with p97 (122, 123). Post-translational modifications of 
substrates can also regulate UBD activity, including 
selective methylation of Lys residues, phosphorylation (as 
reviewed in (124)), and conjugation with ubiquitin-like 
proteins (such as SUMO, as reviewed in (29, 125)).  
Methylation of lysine side-chains prevents ubiquitination, 
causing loss of UBD interaction and prolonged protein 
half-life (126). A recent MS study done on the S. cerevisiae 
26S proteasome suggests that 43% of Lys methylation sites 
in over 40 proteins are also sites for ubiquitination (127). 
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Figure 8. SH3 domain of Sla1: Ribbon representation of the SH3 domain of Sla1 (yellow) bound to monoubiquitin colored as in 
Figure 3 (PDB 2JT4). 

 
5. PERSPECTIVE: SUMMARY AND FUTURE 
 
 Ubiquitin’s signaling prowess was first 
discovered for its ability to target substrates for degradation 
by proteasome (128, 129), but has now expanded to 
encompass a myriad of processes including regulatory roles 
in DNA repair, transcription, pre-mRNA splicing, 
endocytosis and autophagy, as reviewed in (18). Its 
function as a signaling molecule in such a broad spectrum 
of activities is tightly coupled to its multilingualism for a 
plethora of diverse receptors, which is contributed by 
monoubiquitin’s dynamic sampling of slightly different 
conformers, the diversity of the region connecting moieties 
within a ubiquitin chain, and the variations available in 
ubiquitin chain length and linkage. Structures of UBDs 
complexed with ubiquitin polymers have provided valuable 
insights into how ubiquitin signals for such a large 
repertoire of events with specificity. Some questions 
remain however. With the notable exception of ZnF 
domains, which can bind to three different ubiquitin 
surfaces, the vast majority of UBDs seek a common surface 
on ubiquitin, thus suggesting a packing problem as 
ubiquitin is shuttled from one receptor to another, or as 
multiple receptors are present and available for binding. It 
is tantalizing to speculate that these potential hurdles have 
been evolutionarily exploited, such as by preventing two 
receptors from distinct pathways from battling over where 
to shuttle their commonly bound substrate. Yet, the 
mechanisms that prevent such battles for substrates 
conjugated with long ubiquitin polymers, such as 
octaubiquitin, are difficult to fathom. New UBDs and 
mechanisms for their regulation continue to be discovered 

and it is interesting that so many structural domains can 
form surfaces that bind ubiquitin. Yet, it is not always clear 
how one domain type assumed ubiquitin-binding capacity 
for some of its members. Finally, it is often challenging to 
extrapolate the intricacies of a ubiquitin signaling cascade 
from the snapshots provided by UBD:ubiquitin complexes. 
It is hopeful that the future will offer atomic resolution 
images of ubiquitinated substrates complexed with their 
ubiquitin receptors as they are shuttled through a ubiquitin 
signaling pathway. Such information would provide a 
greater appreciation of how individual UBDs are integrated 
into the ubiquitin-signaling network. 
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