
[Frontiers in Bioscience 17, 2059-2069, June 1, 2012] 

2059 

Src-mediated regulation of E-cadherin and EMT in pancreatic cancer 
 
Nagaraj S. Nagathihalli1, Nipun B. Merchant1,2,3 
 
1Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA, 2Department of Cancer Biology, 
Vanderbilt University School of Medicine, Nashville, Tennessee, USA, 3Vanderbilt-Ingram Cancer Center, Vanderbilt University 
School of Medicine, Nashville, Tennessee, USA 
 
TABLE OF CONTENTS 
 
1. Abstract 
2. Introduction 
3. Src structure  
4. Src function in PDAC 
5. E-cadherin and EMT in PDAC 
6. Src regulates E-cadherin expression and EMT in PDAC 
7. Transcription factors to repress E-cadherin expression in PDAC 
8. Targeting Src in PDAC 
9. Conclusions 
10. References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT 
 

The Src family of non receptor tyrosine kinases 
are integrators of divergent signal transduction pathways 
which regulate numerous cellular processes, including 
tumorigenicity and angiogenesis. In pancreatic 
adenocarcinoma, c-Src (Src) is frequently activated and 
results in increased tumor progression, invasion and 
metastasis. Dysfunction of the E-cadherin-mediated cell 
adhesion system plays an important role in tumor 
progression to invasive, metastatic carcinoma. Src has been 
shown to play a role in E-cadherin regulation and epithelial 
to mesenchymal transition (EMT). Increased Src activity 
promotes EMT while Src inhibition suppresses this process. 
Recent studies have focused on Src dependent regulation of 
E-cadherin and other tumor progression-related events such 
as EMT with the development of metastasis. Src has also 
been shown to be involved in chemoresistance of PDAC 
cells by promoting EMT. Although the molecular events 
associated with Src-dependent regulation of E-cadherin are 
becoming better defined, the cellular processes that trigger 
the onset of EMT remain unclear. Here we highlight recent 
work that advances our understanding of Src signaling as it 
relates to E-cadherin associated regulation and EMT in 
PDAC.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Pancreatic cancer remains a major therapeutic 
challenge. Five-year survival remains around 5%, and has 
not changed over the past 30 years (1). Pancreatic ductal 
adenocarcinoma (PDAC) is associated with numerous 
genetic mutations and activated signal transduction 
proteins. Understanding the critical molecular events that 
promote PDAC carcinogenesis and how they contribute to 
its maintenance and progression will facilitate the 
development of effective targeted therapeutic modalities.  
 

PDAC is associated with a high frequency of K-
ras, p53, p16, and Smad4 mutations in conjunction with 
over expression of tyrosine kinase receptors and their 
ligands resulting in activation of numerous mitogenic 
signaling pathways (2, 3). The high frequency of mutations, 
inter-dependence of redundant signaling pathways and 
feedback loops remain significant challenges to treat 
PDAC. Analysis of resected human PDAC tumor 
specimens has led to the development of the histologic and 
genetic framework for initiation and progression of PDAC 
(4, 5). Preinvasive lesions termed pancreatic intraepithelial 
neoplasias (PanINs), manifest distinct nuclear and 
architectural changes as they progress with increased 
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Figure 1. Src structure. Human Src is a non-receptor kinase comprised of a myristylation site (Myr), four unique Src homology 
(SH) domains and amino-terminal domain of unknown function - a SH4 domain involved in targeting Src to the plasmatic 
membrane, a region U that is specific of each Src family member, a SH3 and a SH2 domain involved in the interaction of Src 
with other intracellular proteins. The SH1 domain contains the kinase domain and a conserved tyrosine residue involved in 
autophosphorylation. Phosphorylation of the Tyr419 residue of the SH1 domain is required for maximum kinase activity. Placed 
immediately adjacent to the SH1 domain is a negative regulatory domain. After phosphorylation of the Tyr530 residue in the 
negative regulatory domain, Src becomes inactive. In the active configuration, Tyr530 is de-phosphorylated, and the SH2 and 
SH3 domains are released from the intra-molecular interactions and are available for binding. 

 
grades of dysplasia from PanIN-1 to PanIN-2 to PanIN-3, 
or carcinoma in situ (4). Additionally, the rate of cellular 
proliferation increases with advancing stages of PanINs, 
ultimately resulting in invasive adenocarcinoma (4, 6, 7).  
Moreover, these progressive histologic changes have been 
correlated with progressive genetic mutations and signaling 
alterations which are integral in establishing the evolution 
and progression of PDAC (2, 3). 
 

A hallmark of PDAC cells is their ability to 
invade and metastasize (8-11). Invasion and metastasis are 
complex processes, and their cellular, genetic and 
biochemical determinants are still largely unknown. During 
tumor progression, primary tumor cells invade adjacent 
tissues and intravasate into the surrounding 
microvasculature. This event is central to the development 
of metastasis, during which cells circulate to distant organs 
and form new tumor colonies (12).  
 

Multiple lines of evidence support the importance 
of epithelial to mesenchymal transition (EMT) in 
promoting PDAC aggressiveness. Histological loss of 
cellular differentiation is a highly accurate predictor of poor 
outcome in PDAC (13, 14) and reduced expression of E-
cadherin, a specific EMT marker, correlates with poor 
survival (15, 16) and invasion (17). In PDAC, E-cadherin-
negative patients have been noted to have larger tumors, 
distant metastases and increased stage (18). Further 
evidence suggests that Src plays a critical role in promoting 
intracellular signaling pathways that lead to the induction 
of E-cadherin repressors and subsequent E-cadherin down 
regulation to allow tumor cell migration/invasion (19, 20). 
In this review, we will focus on Src regulation of E-
cadherin expression and discuss options to target this 
process in human PDAC tumors. 
 
3. SRC STRUCTURE  
 

There are nine members of the Src family, 
including c-Src (Src), c-Yes, Fyn, Lyn, Lck, Hck, Blk, Fgr, 
and Yrk (21, 22). Src, c-Yes, and Fyn, however, display a 
more ubiquitous pattern of expression with particularly 
high levels in platelets, neurons, and epithelial tissues (23). 
The structure of Src is shown in Figure 1. It consists of a 
myristoylation site (Myr), amino (N)-terminal region, four 
unique Src homology domains (SH1, SH2, SH3 and SH4) 
and a carboxy (C)-terminal tail containing a negative 
regulatory tyrosine residue (24). A Myr site at the SH4 

domain on the N-terminal tail is involved in translocating 
Src to the cell membrane. Adjacent to the SH4 domain is a 
region that is specific to each Src family member followed 
by a SH3 and a SH2 domain, both of which are involved in 
the interaction of Src with other intracellular proteins. The 
inactive conformation occurs when the phosphorylated C-
terminal Tyr530 binds to the SH2 domain with SH3 bound 
to the kinase domain. The SH1 domain is involved in 
adenosine tri-phosphate (ATP) and substrate binding and 
shows tyrosine kinase activity, phosphorylation of which is 
required for maximum kinase activity (25). The SH3 
domain binds amino acid sequences rich in proline 
residues. This domain is critical for intracellular 
localization of Src and the recruitment and binding of Src 
substrates (26). The SH3 domain stabilizes the inactive 
conformation by binding to the poly-proline motifs of the 
linker domain, and then positioning itself together with the 
SH2 domain on the back side of the catalytic domain (25).  
Together, the SH2 and SH3 domains cooperate in 
regulating Src catalytic activity. Phosphorylation of Src on 
Tyr530 is catalyzed by two known kinases, C-terminal Src 
kinase and the C-terminal Src kinase homologue kinase 
(27). Phosphorylation of the C-terminal tail by C-terminal 
Src kinase (Csk) results in a closed, less active protein 
conformation. Autophosphorylation of the kinase domain 
alters the conformation to increase the intrinsic kinase 
activity. This relative simplicity of regulation belies the fact 
that Src can be activated by a host of interacting proteins 
including growth factor receptors, integrins and G protein–
coupled receptors (24). Upon signal stimuli, Src 
translocates from the cytosol to the membrane where it is 
activated by phosphorylation. Maintaining the intracellular 
localization of Src is therefore one of the key regulatory 
mechanisms that controls Src activation. 
 
4. SRC FUNCTION IN PDAC 
 

Once activated, Src is involved in the regulation 
of normal and oncogenic processes (26). Increased Src 
activity is caused by enhanced transcription or deregulation 
associated with over expression of upstream growth factor 
receptors such as epidermal growth factor receptor (EGFR), 
human epidermal growth factor receptor 2 (HER2), 
platelet-derived growth factor receptor (PDGFR), fibroblast 
growth factor receptor (FGFR), vascular endothelial growth 
factor (VEGF) receptor, ephrins, integrin, or focal adhesion 
kinase (FAK) (28-30). Over expression of these receptors, 
their ligands, or both, is common in many tumor types (31). 
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Figure 2. Src-mediated transduction pathways. Src plays a key role in multiple cellular signaling pathways implicated in cell 
growth, survival, migration, invasion, and angiogenesis. Some of these events require nuclear translocation of downstream 
mediators followed by gene transcription. Src-mediated complex signal transduction pathways may also contribute to tumor 
progression. CAS, Crk-associated substrate; ERK, extracellular signal-regulated kinase; FAK, focal adhesion kinase; IL-8, 
interleukin 8; JNK, Jun N-terminal kinase; MEK, mitogen-activated protein kinase, MAPK/ERK kinase; NFκB, nuclear factor 
κB; PI3K, phosphatidylinositol 3-kinase; SOS, son of sevenless; STAT3, signal transducer and activator of transcription 3; 
VEGF, vascular endothelial growth factor. 

 
The major consequence of increased Src 

activity is to promote an invasive tumor phenotype 
characterized by breakdown of cell-cell adhesion, 
increased cell-matrix adhesion, and formation of focal 
adhesions (32, 33). Recent evidence suggests that Src 
activity, in concert with oncogenic Kras, plays a key role 
in the development of pancreatic tumors (34). Src 
channels phosphorylation signals through 
Ras/Raf/extracellular signal-regulated kinase (ERK) 1/2, 
phosphatidylinositol 3-kinase (PI3K)/AKT pathways and 
signal transducers and activators of transcription 
(STAT)3 signaling (35, 36) (Figure 2). Phosphorylation 
of FAK Tyr397 creates a binding site for Src, indicating 
that Src regulates cell adhesion (37). Paxillin is a 
substrate for the FAK-Src complex that functions as an 
adaptor molecule for various signaling and structural 
proteins associated with cell adhesion (38, 39). The 
mitogen-activated protein kinase (MAP kinase)/ERK 
cascade is a well-known target of FAK−Src signaling 
(40) and its activation can be facilitated by association 
with paxillin (41). Src can also be activated by 
dephosphorylation of tyrosine residue Tyr530 (Figure 1) 
and full Src activation requires the autophosphorylation 
of another tyrosine residue (Tyr419 in the human 
protein) present within the catalytic domain (42). 
Activation of STATs involves their tyrosine 
phosphorylation by either Janus associated kinase (JAK), 
receptor tyrosine kinase (RTK) s such as EGFR or non-
receptor tyrosine kinases (NRTK) such as Src. Following 
phosphorylation, STATs dimerize and translocate to the 
nucleus where they regulate transcription of target genes 
(43, 44) (Figure 2).  

Over expression of Src tyrosine kinase occurs in 
a ~70% of PDAC, resulting in increased EGFR activity 
during tumorigenesis and the development of a metastatic 
phenotype (45-48). Src kinase activity increases with 
progression from early PanIN through to late PanIN and 
invasive PDAC in a genetically engineered mouse model. 
Moreover, inhibition of Src kinase activity in this mouse 
model, inhibits the development of metastasis (11). Src also 
activates STAT3 signaling in PDAC (35, 49) and their 
linked activities act to control cell migration through the 
turnover of focal adhesions and the suppression of cell-cell 
contacts (50-52). Src dependent activation of STAT3 in 
turn contributes to the Myc mitogenic pathway (53). 
Furthermore, STAT3 also stimulates the production of 
VEGF and consequent angiogenesis, and may also have a 
role in invasion and metastasis (54, 55). Because serine 
phosphorylation is required for maximal activation of 
STAT3, a model has been postulated in which Src, in 
addition to mediating its tyrosine phosphorylation, also 
contributes to the activation of STAT3 by stimulating the 
serine/threonine kinase activity of p38 and JNK, both of 
which are known downstream effectors of Src (56).  
 

Hypoxia, a common characteristic of the tumor 
microenvironment (57, 58), can favor invasive growth and 
malignant progression by stimulating the 
Src/STAT3/VEGF pathway which then promotes 
angiogenesis, a step necessary for the growth of both the 
primary tumor and distant metastases (22, 59, 60) (Figure 
2). Src also mediates VEGF-induced permeability of 
endothelial cells, thereby facilitating tumor cell 
extravasation at distant sites allowing metastasis formation 
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Figure 3. Epithelial to mesenchymal transition (EMT). Epithelial cells (left) are tightly interconnected by numerous cell-cell 
interactions. During EMT, these cells lose cell-cell junctions and the actin cytoskeleton is reorganized. Loss of expression of E-
cadherin is the principal characteristic of EMT. E-cadherin repressors induce EMT by regulating expression of genes that 
suppress the epithelial character and promote the mesenchymal state (right) by gaining expression of mesenchymal markers 
vimentin, N-cadherin, fibronectin, α-smooth muscle actin, and matrix metalloproteinase’s (MMP2, MMP3 and MMP9).  

 
(61). Therefore, Src tyrosine kinase activity is important in 
the EMT that occurs in the early stages of invasion of 
carcinoma cells and is associated with angiogenesis and 
vascular permeability (62) (63) (Figure 3). The extensive 
presence of activated/over expressed Src in PDAC and its 
potential role in tumor development and progression makes 
Src an appealing target for PDAC (35, 45, 64).  
 
5. E-CADHERIN AND EMT IN PDAC 
 

E-cadherin is the major cadherin molecule 
expressed in epithelial cells and is often down-regulated 
in invasive tumors (65) (Figure 3). It is a single-span 
transmembrane glycoprotein that maintains intercellular 
contacts and cellular polarity in epithelial tissues. Loss of 
E-cadherin is associated with tumor invasiveness, 
metastatic dissemination, and poor prognosis in several 
solid tumors (66, 67). Restoring this system may enable 
suppression of the metastatic process. Down-regulation 
of E-cadherin is believed to induce EMT, which is 
characterized by dedifferentiation of neoplastic epithelial 
cells to a more motile, mesenchymal phenotype (68). 
Suppression of E-cadherin expression observed in human 
tumors can be caused by somatic mutations, 
chromosomal deletions, silencing of the CDH1 gene 
promoter, or proteolytical cleavage of E-cadherin (69, 
70). Silencing of CDH1 can occur by DNA 
hypermethylation or by the action of transcription 
factors, such as Slug, Snail, or Twist1 (69-73). Recent 
evidence suggests that in vivo selection of highly 
metastatic PDAC cells show down-regulation of E-
cadherin and induction of EMT and metastasis (74). 
Down-regulation of E-cadherin at the molecular level is 
mediated by transcriptional mechanisms involving a 

histone deacetylase (HDAC) 1/HDAC2/Snail containing 
repressor complex (74).  
 

The level of cadherin expression, rather than the 
level of catenins seems to be the rate-limiting step for E-
cadherin complex formation and cell adhesion, 
emphasizing the importance of accurate regulation of E-
cadherin expression (75, 76). E-cadherin inactivation may 
be involved in the process of dedifferentiation in PDAC as 
the absence of E-cadherin expression distinguishes 
undifferentiated PDAC from the more commonly observed 
differentiated PDAC. In a recent report, patients with 
differentiated PDAC, had membranous E-cadherin 
labeling, while undifferentiated foci in 20 of 21 cancers 
completely lacked E-cadherin expression (77).  
 

EMT is a process in which cells lose epithelial 
characteristics and gain mesenchymal properties. These 
cells are characterized by an increased potential to invade 
surrounding tissues and disseminate to distant sites (68, 78, 
79). Loss of E-cadherin is the characteristic associated with 
these phenotypic changes and is hallmark of EMT (72).  
We have screened expression of EMT markers in PDAC 
cell lines. BxPC3 cells have high levels of E-cadherin and 
β-catenin expression, but reduced expression of 
mesenchymal markers (N-cadherin and vimentin) while 
MIApaca2 and PANC1 cells have increased expression of 
mesenchymal markers and low expression of E-cadherin 
and β-catenin. BxPC3 tumor xenograft tissues treated with 
dasatinib, a Src family kinase (SFK) inhibitor show high 
expression of E-cadherin when compared to vehicle treated 
control mice tissues (unpublished data). Consistent with 
this, BxPC3 is highly sensitive to gemcitabine and Src and 
EGFR inhibition while MiaPaca2 and PANC1 are more 
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resistant to these therapies (49). However, the role of E-
cadherin and Src, and their regulation at transcriptional 
level, screening Snail, Slug, and Twist or zinc-finger 
transcription factor (ZEB) 1/2 (71), need further study in 
vivo, after overexpressing and knocking out the respective 
genes in order to define their interplay and role in EMT.  
 

EMT is considered a prerequisite to metastasis 
for most carcinomas, allowing cancer cells to disassociate 
from the primary tumor and enhancing cell motility. Mouse 
models of PDAC recapitulate this relationship (74). Studies 
of human PDAC tumors have revealed abnormal reduction 
or loss of E-cadherin expression in 42%–60% of specimens 
and a significant correlation with dedifferentiation, lymph 
node, and distant organ metastasis (80, 81). Promoter 
hypermethylation is perhaps a more attractive mechanism 
for E-cadherin inactivation because loss of heterozygosity 
at 16q (the E-cadherin locus) is a rare event in PDAC (82).  
Not surprisingly, this hypermethylation is normally 
regulated, in part by Src family members during 
development, differentiation, and homeostasis.  
 
6. SRC REGULATES E-CADHERIN EXPRESSION 
AND EMT IN PDAC 
 

Src has been shown to increase invasiveness of 
human cancer cells. This increase in cellular invasion is a 
result of a variety of events including altered activity of 
adhesion proteins, integrins and cadherins and altered 
secretion of proteinases into the extracellular matrix (83-
85). SFKs also affect cadherin-mediated cell-cell adhesion 
by phosphorylation of catenins and link signal transduction 
cascades to the regulation of cell adhesion (86-88). In 
fibroblasts, binding of integrins to their ligands leads to 
formation of focal adhesion plaques and activation of focal 
adhesion kinase, which, in turn, recruits and activates Src 
kinase (89). Furthermore, activation of SFKs is required to 
disrupt cadherin-dependent cell-cell contacts (90). Several 
studies have shown that Src-mediated phosphorylation of 
VE-cadherin, a cell adhesion molecule that is essential for 
vascular cell-to-cell junctional integrity, directly leads to 
increased vascular permeability, thus facilitating 
intravasation and extravasation of migratory tumor cells 
(91, 92).  
 

In PDAC cell lines, over expression of activated 
Src has been reported to stimulate proliferation, migration 
and down regulation of E-cadherin (93). We have shown 
that increased Src expression and activity correlates with 
PDAC progression and advanced malignancy (35). Tumors 
with high Src expression have low E-cadherin expression 
while normal pancreatic ductal cells have low Src 
expression and high E-cadherin expression (unpublished 
data). TGF-β is a well known promoter of EMT, however, 
the role of Src in this process is still a matter of debate. 
Recently, Ungefroren et al. showed that TGF-β1-induced 
EMT is sensitive to Src inhibition in PDAC cells, however, 
Src regulated TGF-β1 mediated cell motility but not EMT 
(94).  
 

Src binds to E-cadherin, causing disruption of 
cell–cell interaction, enabling cancer cells to detach from 

their original site (95). Specific collagens are able to 
promote metastatic behavior by down-regulation of E-
cadherin gene expression in a Src-kinase-dependent 
manner. E-cadherin down regulation in response to 
collagen can be suppressed by treatment with SFK 
inhibitors including PP1 and herbimycin A (93). In 
addition, inhibition of Src by small interfering RNA 
(siRNA) or the pharmacologic agent dasatinib halts the 
development of PDAC metastases (47). E-cadherin has 
been shown to be down regulated at the cell membrane 
when Src Y527F is over expressed (96). Furthermore, PP2, 
a Src kinase inhibitor, promotes downregulation of E-
cadherin mRNA (97) and also reverses the disruption of E-
cadherin signaling (98).  
 

E-cadherin is connected to β-actin via β-catenin 
and FAK, which are also bound to integrins (98, 99). 
Integrins are a family of cell-surface receptors that interact 
with the extracellular matrix to maintain cell shape, cell 
motility and the cell cycle through signal transduction. Src 
binds to integrins to activate these molecules and thus 
facilitates the adhesion of cancer cells to the extracellular 
matrix at another site (95). Over expression of the Src 
inhibitor Csk blocks the myosin light chain kinase–myosin 
pathway that regulates integrin and cadherin signaling and 
cell–cell interactions (50). Several FAK inhibitors have 
been patented as inhibitors of Src-induced cytoskeletal 
changes for use in cancer treatment, however none have 
been evaluated in a clinical trial. E-cadherin is also down 
regulated when Src is over expressed and Src inhibition 
with PP2 and SKI-606, another SFK inhibitor, reverse this 
loss (96, 100). Restoration of E-cadherin in PDAC cell 
lines results in increased apoptosis and decreased cell 
growth (101). Down regulation of E-cadherin has been 
demonstrated in almost every cancer as a negative 
prognostic indicator and is linked to metastatic disease. 
Decreased E-cadherin and increased vimentin expression, 
specific EMT markers, correlate with poor survival (15, 16) 
and invasion (17). Up regulation of vimentin, a 
mesenchymal cell marker, is a hallmark of EMT that is Src 
regulated (102). Therefore, Src activation is emerging as a 
promoter of the phenotypic characteristic of EMT in cancer 
cells. 
 
7. TRANSCRIPTION FACTORS TO REPRESS E-
CADHERIN EXPRESSION IN PDAC 
 

Regulation of E-cadherin expression in PDAC 
remains poorly understood. Recently, it was demonstrated 
that repression of E-cadherin transcription is dependent on 
HDAC activity in a variety of murine and human models of 
PDAC (74). The transcription factors Snail, Slug, and 
Twist or ZEB 1/2 play a central role for repression of the 
CDH1 gene and induction of EMT (71) (Figure 3). These 
transcription factors down-regulate the expression of E-
cadherin via interaction with two 5′-CACCTG (E-box) 
sequences of the E-cadherin promoter (103, 104). In fact, 
these transcriptional repressors, which are involved in EMT 
during development, are also induced in response to EMT 
stimuli to repress E-cadherin expression during tumor 
progression (71). Snail has a detrimental impact on human 
PDAC cells by triggering EMT and enhancing their 
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invasive and metastatic capabilities in vivo (105). Recently, 
Von Burstin et al. demonstrated, in a genetically defined 
endogenous mouse model of PDAC, that up-regulation of 
Snail occurs in highly metastatic PDAC cell lines upon 
induction of EMT (74). High to moderate Snail expression 
has been observed in 78% of PDAC specimens, Slug 
expression in 50%, while Twist1 expression was seen in 
only 3% of PDAC (106). Moreover, patients with a low 
Snail expression score revealed a high E-cadherin 
expression score. Therefore, Snail appears to be a highly 
relevant mediator of E-cadherin repression in PDAC (106). 
Expression of Snail in PDAC also promotes metastasis and 
chemoresistance (107).  
 

ZEB1 is one of the target genes of Snail (108). 
Repression of E-cadherin expression may also occur 
through ZEB1 by binding to E-boxes in its promoter 
region. ZEB1 also regulates expression of microRNAs 
specific for genes relevant in metastasis and migration of 
cancer stem cells (109). Previous studies have emphasized 
the expression of SIP1/ZEB2 in PDAC cells (110).  
 

Prevalence of E-cadherin expression loss is 
greater than the combined prevalence of genetic (110) and 
DNA methylation–induced inactivation of E-cadherin (111) 
or expression of SIP1, suggesting that there are additional 
mechanisms for E-cadherin silencing in PDAC. Up-
regulation of the known E-cadherin repressor Twist1 has 
been studied in tumor metastasis, and a role for this factor 
cannot be excluded (72). However, whether increased 
Twist1 expression is a cause or a consequence of reduced 
E-cadherin awaits further investigation (73). Although the 
expression pattern of EMT-related molecules, such as 
Snail, Slug, Twist, ZEB (15, 106) have been widely 
studied, their specific role in EMT remains to be fully 
elucidated in PDAC.   
 
8. TARGETING SRC IN PDAC 
 

Several new molecularly targeted agents for Src 
are in clinical development have the potential to prevent 
disease progression and a large number of clinical trials to 
test their efficacy are ongoing (24). However, whether Src 
functions primarily to promote tumor progression or 
metastasis or contributes to proliferation of the tumor at the 
primary site remains unclear in PDAC. In addition, whether 
specific SFK members play overlapping or distinct roles in 
tumor growth has not been studied. We have shown that 
Src inhibition prevents PDAC tumorigenicity in vitro and 
in vivo (35) and also identified a novel role for Src in the 
regulation of E-cadherin internalization and cell-cell 
adhesion (112).  
 

As tumors progress, dedifferentiate and 
metastasize, an increase in Src activation is frequently 
observed and the more metastatic phenotype is often linked 
to EMT (113). Src activation may also lead to 
chemoresistance by promoting EMT (113). Abrogating Src 
signaling has been shown to restore sensitivity to 
gemcitabine both in vivo and in vitro (114-116). Duxbury et 
al. (114) developed a gemcitabine-resistant human PDAC 
cell line that restored sensitivity to gemcitabine with PP2 

inhibition. Furthermore, increasing gemcitabine resistance 
in a panel of PDAC cell lines was associated with higher 
Src expression. Furthermore, Src siRNA PDAC cell lines 
increased sensitivity to gemcitabine (115). However, 
modulating Src activity did not change PDAC sensitivity to 
5-fluorouracil (115).   
 

The Gallick group created gemcitabine-resistant 
PDAC cell lines which undergo an EMT-like process in 
which the cells have lost E-cadherin expression, express 
vimentin, and are more invasive and migratory (113). It is 
unclear whether these gemcitabine resistant PDAC cells 
exposed chronically to Src inhibitors show EMT changes. 
Phase 1 clinical trials are currently ongoing with the Src 
inhibitor dasatinib in combination with chemotherapy in 
PDAC tumors (24, 49). However, it remains difficult to 
assess the efficacy of these agents in relation to EMT in the 
clinical setting, and an increased understanding of how 
such agents work at different stages of the metastatic 
cascade will be important in guiding their clinical use.  
 
9. CONCLUSIONS 
 

The extensive presence of activated/over 
expressed Src in PDAC and its potential role in tumor 
development and progression makes Src an appealing 
target for PDAC drug discovery. Cells resistant to 
gemcitabine undergo an EMT-like process in which the 
cells have lost E-cadherin expression, express increased 
amount of EMT markers, and are more invasive. Although 
it remains difficult to assess the efficacy of anti-invasive 
and anti-metastatic agents in the clinical setting, it appears 
that the inhibition of Src may have significant potential in 
treating PDAC and other cancers. Contributions of Src to 
the biology of PDAC is likely due to both elevated kinase 
activity and increased availability of the functional domains 
for intermolecular interactions (21). Although potential  
biomarkers of resistance to Src inhibition have been 
identified (35), their role on E-cadherin regulation and 
EMT needs further evaluation. Evaluation of EMT markers 
in these tissues is ongoing. If drug combinations with Src 
inhibitors can enhance E-cadherin expression, as recently 
shown (113), identifying EMT related biomarkers to assess 
target inhibition, anti-invasive efficacy and predicted 
treatment response will be crucial for future clinical trials. 
Understanding how E-cadherin expression can be enhanced 
in PDAC may lead to development of novel 
chemotherapeutic strategies for tumors with high Src 
expression and the emerging link between these phenotypes 
may have profound therapeutic implications. 
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