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1.  ABSTRACT 
 

Macrophages have important physiological roles 
and display a high degree of heterogeneous phenotypes in 
response to a variety of stimuli. In particular, the spectrum 
of alternatively activated macrophages has been a focus 
because many lines of evidence indicate a cardioprotective 
role for this macrophage phenotype. This phenotype is 
controlled in part by opposing nuclear transcription factors 
including the PPARs that stimulate alternative activation 
and the recently recognized role of the mineralocorticoid 
receptor in stimulating classically activated macrophages. 
This review highlights some of the recent findings 
involving alternatively activated macrophages and these 
nuclear receptors in cardiovascular disease. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  INTRODUCTION 
 

Macrophages have important roles in both innate 
and adaptive immune responses and can be found in nearly 
all tissues. They are critical in normal physiology and 
carryout functions like phagocytosis of cellular debris and 
apoptotic and necrotic cells, wound healing, fibrotic 
responses, and providing host defense against invading 
pathogens. Macrophages exhibit significant functional 
heterogeneity, and numerous macrophage responses can 
exist depending on the type of activation program elicited 
by different environmental stimuli or chemical signals. The 
importance of macrophage plasticity is evident by the wide 
range of phenotypes that can be generated in response to 
different diseases or microbial insults. Differing 
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Figure 1.  Classical and alternatively activated macrophage phenotypes.  A.) Classical activation occurs in response to IFN-γ and 
LPS/TNF-α stimuli and results in the expression of pro- inflammatory mediators TNF-α, IL-1β , IL-6 and a respiratory burst 
generating ROS.  A range of innate immune responses can occur via signaling through TLRs and scavenging receptors.  B) 
Alternative activation involves a spectrum of macrophage phenotypes differing in gene expression profiles and activation of anti-
inflammatory and wound healing mechanisms. Although there is significant overlap, major macrophage phenotypes include 
wound healing, HO-1+, and deactivation. 

 
phenotypes include variations in the expression and 
secretion of chemokines and cytokines, inflammatory 
molecules, and surface markers. 
 

Initially, two major macrophage phenotypes were 
divided by the mechanisms of activation, classical 
activation by Th1 cytokines (called M1), and alternative 
activation by Th2 cytokines (M2)(1). Classically activated 
macrophages (CAM) can be induced by IFN-γ and 
endotoxin stimulation, which results in the expression and 
secretion of proinflammatory cytokines such as IL-1β, IL-
6, TNF-α, MIP1α, as well as iNOS and reactive oxygen 
species. IL-4 and IL-13 are cytokines that induce 
alternatively activated macrophages (AAM) and result in 
the expression of Arg1, Ym1, IL-10, mannose receptor, and 
others(2-4). Classically activated macrophages are present 
in type 1 immune responses and can promote inflammation 
and result in tissue damage, whereas alternative activation 
is generally associated with responses to parasitic infection 
and resolution of inflammation facilitating the wound 
healing response. Heme oxygenase-1 (HO-1) has emerged 
as an additional marker for a macrophage phenotype which 
falls within the spectrum of alternative activation (Figure 
1). In addition, macrophage activation by toll-like receptors 
and scavenging receptors induces an innate, pro-
inflammatory response, where as stimulation by IL-10 or 
TGF-β results in macrophage deactivation. 
 

However, this classification has proved to be 
inadequate to describe the array of alternative macrophage 
phenotypes, although it is still useful. There can be a high 
degree of variation depending on the stimuli, and the in 
vivo cytokine milieu is much more complex than in vitro 
activation of macrophages with simply IL-4 or IL-13. Some 
classification schemes based 

on in vitro stimuli have been proposed, but have not gained 
wide acceptance likely because the in vivo phenotypes do not 
correspond well(5, 6). Others have taken the approach to name 
macrophages based on the expression of a particular marker 
(e.g. Mox, a type of alternatively activated macrophage 
expressing heme oxygenase). However, the functions of the 
different phenotypes are poorly understood and the markers 
used to identify them often do not have clear functional 
significance in the phenotype. 
 

Many diseases have inflammatory components in 
which macrophage recruitment and infiltration occurs, and 
many studies have demonstrated that macrophage phenotypes 
have an important role and can significantly affect the 
pathophysiology of disease. In most cases, the Arg1, Ym1, IL-
10 expressing alternative macrophages have protective effects 
(Table 1); however there are some diseases like pulmonary 
fibrosis and cancer where these macrophage phenotypes have 
been shown to in fact exacerbate pathogenesis. In contrast, 
prolonged classical activation is typically thought to have a 
detrimental role during most diseases (Table 2). However, it is 
difficult to fully understand their role because very few studies 
fully characterize the macrophage phenotype and rather just 
examine inflammatory markers. In this review, we will discuss 
the regulation of macrophage activation and polarization with 
an emphasis on nuclear receptors, and the effects of 
macrophage polarization in cardiovascular diseases. 
  
3.  NUCLEAR RECEPTOR CONTROL OF 
MACROPHAGE ACTIVATION 
 

Over half of the nuclear receptor superfamily is 
expressed in macrophages, and many nuclear receptors 
have important roles in regulating macrophage activation 
and function(7). It has become apparent that many of the 
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Table 1.  Regulation and phenotypes of alternatively activated macrophages 
Wound Healing   
Inducer/Regulator Expression Profile Disease Phenotypes 
IL-4, IL-13, PPAR-gamma, PPAR-delta, MR 
KO/Antagonist 

Increased: *Arg1, Ym1, Fizz1, MRC1, Mgl, 
CD163, MHC II, IL-10, HO-1 

Protection: cardiac remodeling(14, 50), 
atherosclerosis(56, 57), DIO(112), liver 
fibrosis(110)  

 
Decreased: *IL-1β, TNF-α, IL-6 Exacerbation: pulmonary hypertension(94), 

pulmonary fibrosis(113, 114)  
HO-1+   
Inducer/Regulator Expression Profile Disease Phenotypes 
oxLDL, Hemin, Protoporphyrins Increased: *HO-1, IL-10, CO, Biliverdin 

  
Protection: atherosclerosis(78, 88, 89), pulmonary 
hypertension(94), renal injury(82, 115), EAE(86), 
pancreatitis(116), MI(117), pulmonary 
inflammation / fibrosis(118) 

 
Decreased: *IL-6, TNF-α, MCP1, ROS, oxLDL 
uptake, TLR, SR-A  

Deactivation   
Inducer/Regulator Expression Profile Disease Phenotypes 
TLRs, Immune complexes, IL-10, Glucocorticoids, 
TGF-β  

Increased: *IL-10, TGF-β, HO-1 Protection: hypersensitivity reaction(8), 
pulmonary inflammation/asthma(119), 
autoimmune diseases 

Abbreviations: DIO – diet induced obesity; EAE – experimental autoimmune encephalomyelitis; MI – myocardial infarction; 
*Some inducers/regulators result in expression of only some of the markers in the expression profile and/or may be specific to 
particular tissues or disease phenotypes. 
 
Table 2.  Classical macrophage activation 

Classical Activation   
Inducer/Regulator Expression Profile Disease Phenotypes 
LPS, IFN-γ, TLRs TNF-α, IL-1β, IL-6, IL-12, ROS, iNOS, MMPs Protection: pathogen clearance(1)  
  Exacerbation: MI/cardiac remodeling(14, 50), atherosclerosis, 

stroke(120) 
 

nuclear receptors orchestrate the macrophage inflammatory 
response through regulation of inflammatory pathways and 
by regulating the expression of inflammatory mediators. 
The glucocorticoid receptor (GR) is one of the most 
extensively studied nuclear receptors in regards to 
inflammation and macrophage function, and 
pharmacological modulation of GR can suppress 
inflammatory pathways and alter the macrophage 
phenotype(8). GR activation by glucocorticoids increases 
the production of anti-inflammatory cytokines, IL-10 and 
TGF-β, and down-regulates MHC-II resulting in 
macrophage deactivation, also considered to be a regulatory 
macrophage. 
 
3.1. Regulation of macrophage activation by PPARs 

Several of the peroxisome-proliferator activated 
receptors (PPARs) have been shown to affect macrophage 
activation and polarization(9, 10). Previous studies have 
demonstrated that PPAR-γ activation has anti-inflammatory 
properties in numerous cell types including 
macrophages(11, 12). The activation of PPAR-γ is a 
negative regulator of monocyte and macrophage activation 
and suppresses the production of pro-inflammatory 
cytokines like TNF-α and IL-1β.  Furthermore, it has been 
shown to induce an alternatively activated macrophage 
phenotype(10, 13). PPAR-γ is a positive regulator of some 
alternatively activated macrophage markers such as Arg1 
and mannose receptor although it differs significantly from 
many of the markers induced by IL-4(14). PPAR-γ 
activation can also induce HO-1 expression and increase 
IL-10 expression indicating that this phenotype exhibits 
characteristics of different mechanisms of alternative 
activation(15). Studies using myeloid PPAR-γ knockout 
mice showed that PPAR-γ regulates alternative activation  
 

 
in vivo and is important in maintaining glucose tolerance 
and improving insulin resistance during diet-induce 
obesity(10, 16). 
 

In addition to regulating alternative activation, 
PPAR-γ has also been shown to regulate the phagocytic 
capacity of macrophages. Both PPAR-γ antagonists and 
myeloid PPAR-γ knockout inhibit macrophage 
phagocytosis of apoptotic cells(17). This is thought to be 
due to a direct suppression of genes involved in the 
phagocytic process including the established PPAR-γ 
regulated scavenging receptor CD36, which is upregulated 
in AAM(18). Alternately, in alveolar macrophages, PPAR-
γ activation with PGJ2 enhances phagocytosis of 
neutrophils in a CD36 dependent manner(19). 

 
PPAR- δ also regulates the macrophage 

phenotype and is important for maintaining glucose 
homeostasis(9, 20) as well as phagocytic function of 
macrophages(21). Myeloid PPAR-δ deletion suppresses 
alternative markers Mgl and Mrc2 and enhances IL-6, 
TNF-α, and MCP1 in macrophages co-cultured with 
adipocytes; This is associated with impaired insulin 
sensitivity. PPAR-α activation in macrophages also has 
anti-inflammatory properties with several similar 
mechanisms including NF-kB and AP-1 pathway 
inhibition(22) although one report has indicated no effect in 
inducing alternative activation(23). 
 

Activation of PPAR-α has anti-inflammatory 
activity in macrophages that is similar to PPAR-γ(24). 
However, PPAR-α agonists have not been directly shown 
to specifically increase AAM phenotype or to alter 
macrophage polarization. 
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3.2.  Mineralocorticoid receptor activates proinflammatory 
macrophage function 
  Contrary to many other nuclear receptors, 
mineralocorticoid receptor activation has a pro-
inflammatory effect in macrophages and enhances classical 
macrophage activation(14). The MR agonist aldosterone 
enhances LPS-induced expression of classical macrophage 
markers TNF-α, RANTES, and IL-12; this response is 
blocked by the MR antagonist eplerenone. In addition, 
inhibition with MR antagonists also suppressed LPS-
induced classical markers (IL-12, RANTES, MCP1) in 
macrophages cultured in normal serum without the addition 
of aldosterone. Furthermore, treatment with MR 
antagonists results in a shift towards the alternative 
macrophage phenotype with increased expression of Arg1, 
Ym1, and mannose receptor; MR antagonists also 
suppressed the pro-fibrotic Pai1 and increased the anti-
fibrotic marker Htra1. This alternatively activated 
phenotype was also present in macrophages isolated from 
mice with myeloid-specific MR deletion. 
 

Not surprisingly, activation or inhibition of 
nuclear receptors has a significant role during the 
pathogenesis of many types of cardiovascular disease, and 
the role that nuclear receptors have in regulating 
inflammation has been exploited to modulate the 
inflammatory response during cardiovascular diseases. 
 
3.3.  Interaction of nuclear receptors and cytokines 

Since cytokines are powerful stimuli for myeloid 
phenotypes and polarization, the interaction of these 
nuclear receptors with polarizing cytokines is also critical 
in determining phenotype. IL-4 can synergize with PPAR-γ 
agonists and MR antagonists to promote AAM 
activation(14). Since IL-13 uses the same receptor as IL-4, 
it is likely that it too can cooperate to enhance the 
phenotype. Other interleukins, such as IL-33, are known to 
affect macrophage polarization, however, their interaction 
with nuclear receptors remains to be determined(25, 26). 
  
4.  ALTERNATIVELY ACTIVATED MACROPHAGE 
PHENOTYPES IN CARDIOVASCULAR DISEASE 
 
4.1.  Cardiac inflammation, fibrosis and hypertrophy 

Immune cells are present during the 
inflammatory response to cardiac hypertrophy and fibrosis; 
however the impact of infiltrating macrophages and their 
functional phenotypes is often underappreciated due to the 
lack of understanding of how different modes of 
macrophage polarization influence pathophysiology. 
 

Aldosterone has pro-inflammatory effects in 
numerous cell types and MR antagonists exert 
cardioprotection even in the absence of mineralocorticoid 
excess. MR is expressed in immune cells including 
macrophages, and activation of MR can influence the 
expression and secretion of inflammatory cytokines, as well 
as alter oxidative status through the generation of reactive 
oxygen species. MR activation by aldosterone increases the 
production of H2O2 in blood mononuclear cells(27), and 
increases the production of peroxides and superoxide anion 
in isolated peritoneal macrophages(28). Conversely, the 

MR antagonist spironolactone suppressed the expression of 
LPS-induced pro-inflammatory cytokines TNF-α, IL-6, and 
IFN-γ in isolated blood mononuclear cells(29). 
 

Several studies have demonstrated a clinical 
benefit of MR antagonists without altering blood 
pressure(30, 31) and numerous reports have shown that MR 
blockage ameliorates cardiac inflammation, fibrosis and 
hypertrophy in animal models(32, 33). MR antagonists can 
also suppress matrix metaloprotease expression and 
activity(34). Usher et al. recently identified myeloid cells 
as critical targets for MR antagonists during cardiac fibrosis 
and hypertrophy.  We demonstrated a novel role of MR in 
regulating macrophage polarization and showed that MR 
activation with aldosterone induces classical activation 
where as either MR antagonism or deletion results in 
alternative activation. Furthermore, myeloid MR knockout 
mice were protected from L-NAME/Angiotensin-II 
induced cardiac fibrosis and hypertrophy. This protection 
was associated with enhanced expression of alternatively 
activated macrophage markers and suppression of classical 
markers. A study by Rickard et al. also provided evidence 
that MR activation in myeloid cells is important in altering 
the fibrotic response to DOCA(35). Myeloid MR knockout 
resulted in mild suppression of cardiac fibrosis induced by 
DOCA/salt, but did not significantly alter collagen 
deposition or other markers of fibrosis during DOCA/salt 
treatment. 
 

Similarly, the thiazolidinedione (TZD) class of 
PPAR-γ agonists has significant cardiovascular effects 
independent of their insulin sensitizing actions. Clinical 
trials have shown that TZDs can reduce blood pressure, 
alter lipid profiles, induce significant effects in the 
vasculature, and suppress inflammation(11, 36-41). 
 

TZDs have beneficial effects during 
cardiovascular remodeling and suppress pro-inflammatory 
classical macrophage markers TNF-α, IL-6, TGF-β, and 
MCP1 during myocardial infarction-induced heart 
failure(42). This suppression is associated with a reduction 
in functional deficit as determined by an improvement in 
left ventricular systolic function. TZDs have been shown to 
have anti-inflammatory and antifibrotic effects during Ang-
II induced cardiac hypertrophy and fibrosis(43, 44). PPAR-
γ activation in macrophages results in alternative action as 
mentioned above, and myeloid PPAR-γ has been shown to 
be an important target for the TZD pioglitazone. Myeloid 
PPAR-γ knockout eliminates the anti-fibrotic actions and 
osteopontin suppressing effects of pioglitazone(43). 
Although it is clear that PPAR-γ modulates the macrophage 
phenotype during cardiac fibrosis and remodeling, it is 
unknown whether PPAR-γ activation alters the expression 
of alternative activation markers such as Arg1 and Ym1. 
 

However, like many of the nuclear receptors, 
PPAR-γ is present in many cell types and has a wide array 
of pleiotropic effects.  Cardiomyocyte-specific PPAR-γ 
knockout and overexpression studies have shown that 
cardiomyocyte PPAR-γ also has a role in the 
pathophysiology of cardiac fibrosis and remodeling(45, 
46).  Furthermore, some findings have shown that TZDs 
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can in fact cause congestive heart failure, likely through 
renal PPAR-gamma activation(47-49).  The contribution of 
PPAR-γ in different cell types and the pleiotropic effects 
during cardiovascular disease are still not well understood. 
 

AAMs are also found in the healing myocardium 
following myocardial infarction. Microarray analysis and 
immunocytochemical analysis indicates that classical 
activation predominates during early inflammation, 
however AAMs expressing Arg1 and Ym1 are found 
during later stages(50). Futhermore, 11βHSD1-/- mice 
display increased cardiac Ym1 expression, which is 
associated with improved cardiac function(51).  Both TZDs 
and MR antagonists reduce cardiovascular remodeling 
following experimental myocardial infarction(42, 52-54), 
however it is not known whether these drugs alter the 
polarization of macrophages in these models and whether 
this is a mechanism of cardioprotection. 
 
4.2.  Atherosclerosis 

Leukocyte infiltration into atherosclerotic lesions 
has a critical role in development and progression of 
atherosclerosis. Macrophages are regarded as major 
effectors in the pathogenesis of atherosclerosis and are 
derived from infiltrating inflammatory monocytes, thought 
to be of the Ly-6Chi subset. Upon monocyte differentiation 
into macrophages, they uptake oxidized lipids forming 
foam cells and releasing a variety of pro-inflammatory 
molecules. There is a diverse range of macrophage 
phenotypes present during atherogenesis and both 
classically activated and alternatively activated 
macrophages are present in atheroslcerotic lesions. Arg1 
expressing alternatively activated macrophages are present 
in early lesions in the ApoE knockout mice(55), and it has 
been proposed that early alternative activation serves as a 
reparative function. In fact, ApoE deficient bone marrow 
derived macrophages exhibit enhanced IL-4-induced M2 
polarization. 
 

Other studies have shown that alternative 
activation and macrophage emigration is increased during 
regression of atherosclerosis. Feig et al. demonstrated that 
transplantation of atherosclerotic aortas from ApoE-/-  mice 
into HDL-normalized wild type mice resulted in plaque 
regression(56). This was associated with suppression of 
inflammatory markers TNF-α, MCP-1, ICAM-1, and 
VCAM-1. Conversely, the gene expression of several 
markers of alternative activation including Arg1, Fizz1, and 
mannose receptor were increased in CD68+ cells. In 
another study, reversal of hyperlipidemia by microsomal 
triglyceride transfer protein inactivation also results in 
atherosclerosis regression in LDLR-/-, Apob100-/- mice(57). 
Similarly, atherosclerosis regression was associated with 
decreased CD68+  macrophages in atherosclerotic lesions 
and a reduction in pro-inflammatory markers of classical 
activation. The gene expression of alternatively activated 
markers Arg1, mannose receptor, and Fizz1 were again 
increased during plaque regression. 
 

PPARγ expression is present in atherosclerotic 
lesions, and PPARγ agonists such as the TZDs have anti-
inflammatory and anti-atherogenic effects in models of 

atherosclerosis(58, 59). Myeloid-specific deletion of 
PPARγ in atherosclerosis results in exacerbation of 
atherogenesis(60). The polarization of macrophages in 
these lesions has not been studied in detail, although it is 
likely that this could be an important mechanism for 
protective effects TZDs during atherosclerosis. 
Interestingly, the addition of pioglitazone further enhances 
the alternative macrophage polarization seen during plaque 
regression by hyperlipidemia reversal(57). 

 
Similarly, MR antagonists also have anti-

atherosclerotic effects during models of atherosclerosis(28, 
61-63). Although the cell type-specific effects are 
unknown, macrophages may be a likely target for these 
drugs given the critical role of macrophages during 
atherogenesis and the M2 polarizing effects of MR 
antagonists. 
 
4.3.  Stroke 

Macrophages are part of a robust inflammatory 
response that ensues following an ischemic insult to the 
brain. Circulating monocytes infiltrate the ischemic brain 
and contribute to the detrimental effects of inflammation 
following stroke. Numerous studies have demonstrated that 
inhibition of leukocyte recruitment and suppression of 
inflammation positively impact neurological outcome(64-
68). However, the role of macrophage activation during 
neuroinflammation is unknown. We have recently reported 
a role for myeloid MR in regulating inflammation during 
ischemic stroke(69). Myeloid-specific deletion of MR 
resulted in a reduction in infarct volume following 
ischemia-reperfusion. The MR antagonists spironolactone 
and eplerenone exhibit neuroprotection during models of 
stroke, thus myeloid cells are major targets for these 
drugs(70, 71). Furthermore, myeloid MR knockout was 
associated with a reduction in activated macrophages and 
microglia and markers of classical activation were 
suppressed. Moreover, preservation of alternative 
macrophage markers was observed. It is likely that 
alternatively activated macrophage phenotypes exert 
neuroprotection during stroke. 
  

Interleukin-4 knockout mice have altered 
inflammatory responses to a variety of stimuli and have 
diminished Th2 responses and reduced alternative 
activation. Xiong et al. reported that IL-4 knockout mice 
have increased cerebral infarcts and impaired neurological 
function(72). Importantly, IL-4 knockout mice have 
increased macrophage and microglia recruitment and an 
increase in the Th1/Th2 ratio. This supports a hypothesis 
for a protective role of alternatively activated macrophages 
during stroke. In addition, microglia also adopt classical 
and alternative polarizations and it is unknown whether the 
microglia phenotypes can be altered to produce 
neurological benefit. 
 
5.  HEME OXYGENASE-1 IN ALTERNATIVELY 
ACTIVATED MACROPHAGES 
 

Heme oxygenase-1 is an inducible enzyme that 
catalyzes the breakdown of heme and has antioxidative, 
immunomodulatory, and antiapoptotic effects(73). 
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Induction of HO-1 in macrophages suppresses the secretion 
of LPS induced, inflammatory molecules IL-6, MCP1, and 
TNF-α(74). Furthermore, HO-1 is induced by IL-10, and 
HO-1 is necessary for IL-10 mediated suppression of LPS-
induced TNF-α production(75). HO-1 increases IL-10 
expression indicating a positive feedback mechanism and a 
phenotypic overlap with macrophage deactivation 
mechanisms(76, 77). A subset of macrophages which 
expresses heme oxygenase-1, sulforedoxin-1, and 
thioredoxin reductase has been identified in atheromatous 
lesions and named Mox(78). While different from the IL-4 
induced AAM phenotype, it is likely within the spectrum of 
AAM rather than a distinct subset. Other reports suggest 
that HO-1 is important in alternative activation and that 
HO-1 upregulation overlaps with AAM markers such as 
CD206(79, 80). HO-1 expressing macrophages have been 
reported to have a protective phenotype and the expression 
of HO-1 in macrophages has been shown to be beneficial 
during acute kidney injury, HPH, atherosclerosis and other 
diseases(81-85). Additionally, conditional knockout of HO-
1 in myeloid cells results in an altered immune response 
and exacerbates diseases like EAE and pulmonary 
hypertension(86). 
 
5.1.  Atherosclerosis 

Numerous studies have indicated that HO-1 has a 
protective role during atherosclerosis. Induction of HO-1 
with hemin or overexpression using gene delivery 
techniques results in a reduction in lesion size during 
models of atherosclerosis(87, 88). Furthermore, both cobalt 
protoporphyrin IX and adenoviral-mediated HO-1 gene 
delivery decrease lipid content and prevent plaque 
destabilization(89). Alternately, HO-1 knockout or 
inhibition with metalloporphyrins exacerbates 
atherosclerotic lesion development and results in increased 
lipid accumulation, secretion of pro-inflammatory 
cytokines and plaque destablization(87, 89-91). HO-1 
expression in atheromatous lesions is largely co-localized 
with macrophage markers(89, 92) and there is evidence in 
support of a protective role for the HO-1+  AAM 
phenotype. 
 

Oxidized lipids are abundant in atheromatous 
lesions and are a likely inducer of the HO-1 positive 
macrophage phenotype during the pathogenesis of 
atherosclerosis. Kadl et al. showed that the HO-1 positive 
macrophage gene expression profile (Mox) is mediated by 
Nrf2 transriptional activity and can be induced by 
stimulation with oxidized phospholipid. These findings are 
consistent with data showing that HO-1 deficient 
macrophages treated with oxLDL have increased lipid 
accumulation and foam cell formation, as well as increased 
pro-inflammatory cytokine secretion and ROS production. 
HO-1 is typically cytoprotective and although the exact 
contribution of these macrophages during atherosclerosis 
remains unclear they are thought to have a protective 
function through mechanisms mentioned above. 
 
5.2.  Alveolar macrophages and pulmonary hypertension 
  Alveolar macrophages found in the lung 
parenchyma undergo alternative activation in many types 
of lung diseases including asthma, airway inflammation, 

and pulmonary fibrosis. These alternatively activated 
macrophages express high levels of Arg1, Ym1, Fizz1 
during disease development. Unlike many other diseases, 
Th2 inflammatory responses and alternative activation in 
the lung are thought to have an important, but detrimental 
role during lung inflammation. In pulmonary fibrosis, 
macrophage Arg1 is thought to enhance the fibrotic 
response by generating collagen precursors. However, 
studies using Arg1 deficient bone marrow chimeras have 
demonstrated that bone marrow cells, likely macrophages, 
are the primary source of Arg1 but are not necessary for 
collagen deposition during allergic airway 
inflammation(93). 
 

Recent evidence indicates that alternative 
macrophages are also present during hypoxia-induced 
pulmonary hypertension and that they contribute to the 
pathogenesis of disease. Vergadi and colleagues reported 
that hypoxia increases the expression of Arg1, Ym1, and 
Fizz1 in alveolar macrophages and induces alternative 
macrophage polarization(94). Furthermore, alternatively 
activated macrophages are found during early stages of 
hypoxia-induced pulmonary hypertension and are 
associated with increased right ventricular systolic 
pressure. 
 

Several studies have shown that HO-1 and CO, a 
byproduct of HO-1 activity, are protective against hypoxia-
induced pulmonary hypertension. HO-1 deficient mice 
have exacerbated right ventricular dilation whereas HO-1 
enhancement and CO reverses pulmonary hypertension(83, 
95-97). To determine the role of macrophage HO-1 during 
pulmonary hypertension, Vergadi et al. generated myeloid-
specific HO-1 overexpressing transgenic mice(94). 
Overexpression of HO-1 suppressed Arg1 and Ym1 
alternative markers and resulted in a sustained increase in 
IL-10 expression during hypoxia-induced pulmonary 
hypertension. It is hypothesized that the IL-10 surge during 
early stages is critical for the protective phenotype. The 
role of IL-10 in the lung is variable depending on the type 
of disease and it appears that IL-10 mediated protection is 
important during pulmonary hypertension; however IL-10 
has been shown to have both anti-inflammatory, but also 
profibrotic effects during lung fibrosis(98). 
 
6.  STRATEGIES TO STUDY MACROPHAGE 
POLARIZATION IN DISEASE 
 

Several transgenic and gene knockout 
technologies have been employed to study IL-4/IL-13 
signaling mechanisms in inflammation including IL-4 
KO, IL-13KO, IL-4Rα KO, and Stat6 KO(99-103). 
Since Th2 responses are commonly elicited by 
parasitic infection and allergic reactions, IL-4/IL-13 
knockout models have been largely used to study 
these types of diseases. However, these models may 
be useful to delineate cardioprotective effects of 
alternative macrophage phenotypes in cardiovascular 
diseases. IL-4 has been implicated in stroke, and IL-4 
knockouts have been used to study the importance of 
IL-4 signaling and the Th2 response (discussed 
above). 
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Strategies have also been used to study the 
importance of HO-1in inflammation, and HO-1 knockouts 
have been used to study the inflammatory effects in 
numerous disease models. Hemin and protoporphyrins have 
been used to induce HO-1 activity and have protective 
effects in various models of cardiovascular disease. 
Furthermore, myeloid HO-1 overexpressing transgenic 
mice and adenoviral-mediated gene transfer have also been 
used to study HO-1 in various disease models. 
 
7.  SUMMARY AND PERSPECTIVES 
 

There are three areas that remain largely 
unknown,  1) then mechanisms controlling macrophage 
polarization phenotype including the interaction of 
cytokines with nuclear receptors and the activation 
mechanisms of nuclear receptors, 2)  the function of these 
different phenotypes and the changing composition of 
polarized phenotypes during disease formation and 
progression and finally 3) the critical genes that convey the 
functional phenotype, not just the marker-defined 
phenotype. 
 

Mechanisms controlling macrophage phenotype 
have focused on the inhibition of the pro-inflammatory 
phenotype that is mainly controlled by NF-κB. The PPARs 
have been studied most extensively and proposed 
mechanisms include stabilization of repressor complexes 
by PPAR-γ(104) and sequestration of Bcl6 by PPAR-
δ(105). However, there is a need to study the mechanisms 
of induction of the AAM genes that are increased in 
expression. Although there appears to be a reciprocal 
relationship between the CAM and AAM, the wide variety 
of AAM phenotypes shows that there is specific regulation 
with each manipulation. The possible mechanisms include 
relief of inhibition of expression by removal of factors such 
as the PPARs or even suppression of NF-κB as well as 
direct stimulation by nuclear factors of AAM genes. 
Similarly, it is unknown if MR directly binds to the 
promoters of the pro-inflammatory genes or acts through a 
more indirect mechanism. 
 

The mechanism controlling the activity of these 
nuclear receptors has also been problematic. The use of 
pharmacologic agents that are agonists or antagonists of the 
PPARs has greatly aided the identification of their role. 
However, although it is generally agreed that the 
endogenous ligands are lipid derivatives and several have 
been identified(12, 106), the endogenous physiologic 
ligands have remained unknown in most circumstances. As 
a result, except in these experimental systems, the real 
activity of the nuclear receptors can not be determined. 
  

Even in the case of MR, where the ligands are 
well known hormones, the physiologic ligands are unclear. 
Both glucocorticoids and mineralocorticoids bind with near 
identical affinity, with glucocorticoids circulating at 100-
times higher concentrations. In many systems, both classes 
are activating(107, 108) and the mechanism of 
glucocorticoid inactivation by the enzyme 11βHSD2 
evolved to allow MR to respond to aldosterone. In other 
cases their activity is not identical(109) or 11βHSD2 is not 

present (as in macrophages) so the presumption is that MR 
is mostly occupied by glucocorticoids. This raises the 
question of how the MR activity is modulated in the 
macrophage. 
 

The function of these cells within the disease 
process is only in its infancy. In most studies, the kinetics 
and the changing environment and population of cells are 
ignored by looking only at a single time point. The critical 
process may be remote from the time point analyzed. 
Macrophages with different phenotypes play different roles 
during the evolution of disease and response to injury.  
Initially, production of inflammatory mediators that 
increase accumulation of immune cells are necessary with 
subsequent phagocytosis of necrotic cells and debris. The 
initial response then subsides and is replaced by healing 
and in some cases abnormal fibrosis. This transition is still 
incompletely understood but involves different macrophage 
phenotypes at different times. The initial response is more 
CAM mediated whereas the healing and fibrosis is more 
AAM mediated. Because of the sequential involvement, 
effects early in this cascade can dramatically alter the later 
steps and eventually the outcome. Without understanding 
the progression in the pathophysiology, the conclusions 
about the process will be unreliable. While this will require 
considerable investment, it is critical to advancing the field. 
 

Understanding the role of monocyte/macrophage 
lineage in the dynamic disease initiation and progression, is 
also critically dependent on understanding the genes that 
are functioning to alter phenotype. We currently have 
markers with little understanding of the important 
phenotype. Even arginase, which was an early recognized 
marker of AAM, can be beneficial in liver fibrosis(110), or 
detrimental(111)  depending on the system. Therefore, 
specific functions need to be identified for the genes in 
AAM that contribute to the beneficial (or detrimental) 
effects in CV disease. 
 

Initially, investigators will have to rely on 
markers to identify the polarization cell types. Then by 
kinetic correlation with the functional changes in the 
lesions occurring with the presence of the subtypes, testable 
hypotheses about the function can be generated. These 
studies can be performed using different methods of 
producing or altering AAM, including studies such as IL-
4KO, PPAR agonists or KO, and MR antagonists and KO. 
By comparing the expression profile of AAM subtypes 
with the functional changes in disease, specific genes that 
are critical to the beneficial effects can be identified. 
Ultimately, the ability to pharmacologically manipulate 
macrophages may be understood as an important part of 
both current therapies (as we define the mechanisms of 
drugs) and the development of new therapeutic strategies. 
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