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1. ABSTRACT 
 
 The innate immune system builds up the body’s 
first line of defense against invading pathogenic 
microorganisms. For effective defense of pathogenic 
invaders, a structured inflammatory reaction has to be 
initiated that is strongly dependent on cell-to-cell 
communication. Inflammation in turn is a potentially 
autodestructive reaction that is tightly controlled to balance 
antimicrobial activity and host damage. Suppressor of 
cytokine signaling (SOCS) proteins have been identified as 
crucial negative regulators of various hematopoietic 
cytokines employing Janus kinas (JAK) and signal 
transducer and activator of transcription (STAT) signaling. 
Further results now imply that also signaling by pattern 
recognition receptors (PRR) of the innate immune system 
that use a distinct signaling cascade induce and get 
regulated by SOCS proteins. Thus, SOCS proteins not only 
modulate cell communication through JAK/STAT 
dependent cytokines but also regulate signaling by pattern 
recognition receptors including the Toll-like receptors 
(TLRs). A model is presented that integrates the current, 
partly conflicting, data on the role of SOCS proteins in 
innate immunity’s NFkappaB signaling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 Based upon the work of Charles Janeway in the 
mid nineties on pattern recognition, innate immunity since 
then has experienced a remarkable revival (1,2). Nowadays, 
we have a fairly detailed understanding of the recognition 
processes that mediate self/foreign discrimination in innate 
immune cells, including granulocytes, macrophages and 
dendritic cells. Central to this is the identification of a (still 
growing) number of pattern recognition receptors (PRR) 
(3,4). Four groups of proteins have been recognized that are 
important in activating a proinflammatory response within 
innate immune cells: Toll-like receptors (TLRs), C-type 
lectin receptors (CLRs), NOD like receptors (NLRs) and 
RIG-l like receptors (RLRs) which either recognize 
microbial patterns extracellularly or in cytosolic 
compartments (3,5). More recently, AIM2 and related 
receptors (“ALR”) have been suggested as an additional 
group that recognizes microbial nucleic acids (6,7). All 
receptors make use of central adaptor proteins on which 
signaling cascades converge (e.g. MyD88/TRIF for TLRs, 
CARD9 for CLRs, IPS1 for RLRs) finally triggering a few 
major transcription factors (mainly NFkappaB and IRF 
family members) that eventually induce soluble immune 
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mediators like type I IFN, proinflammatory cytokines like 
IL-6, IL-8, IL-12, TNF or processing of bioactive IL-1. 
Furthermore, innate immune cells increase their 
antimicrobial activity including phagocytosis, microbial 
killing and antigen presentation. In turn an inflammatory 
reaction is induced. However, effector principles not only 
target microbial structures but might also harm host cells. 
In addition, a deregulated magnitude of this response at the 
end can result in severe host damage as an unwanted side 
effect (with systemic inflammatory response syndrome as 
the maximum response). Careful control of the activation 
status of those cells is thus mandatory and includes 
activating as well as inhibitory regulatory mechanisms (8). 
 
 Suppressor of cytokine signaling (SOCS) proteins 
have been identified in 1997 as inducible feedback 
inhibitors of various hematopoietic cytokines triggering the 
JAK/STAT signaling pathway (9-12). Within resting innate 
immune cells SOCS genes are transcribed at very low rates, 
yet their transcription is rapidly induced upon cytokine 
receptor triggering (13). SOCS proteins can terminate 
ongoing signaling by the activating receptor (feedback 
mode) but in some cases the activating pathway is not 
affected (e. g. IL-10/SOCS3). Moreover, SOCS proteins 
can regulate the cell’s sensitivity towards further cytokines 
(crosstalk mode). This is because SOCS proteins do not 
have specificity for only one cytokine receptor. Such a 
mode of adjusting innate immunity’s sensitivity threshold 
affects activation of innate immunity e.g. by suppressing 
IFNgamma or IL-6 signal transduction. Work of different 
groups has clearly shown that SOCS proteins can also be 
induced in a manner independent of JAK/STAT signaling 
and pattern recognition receptors increase SOCS 
transcription rates (14-18). Moreover, sophisticated 
experiments have now led to the notion that SOCS proteins 
themselves also contribute to regulation of pattern 
recognition receptor (mainly TLR) signaling (19-23) or 
related IL-1 signaling (24,25). Recent work has especially 
centered on the role of SOCS proteins in the regulation of 
the major transcription factor NFkappaB within innate 
immune cells (26-29). 
 
3. STRUCTURE OF THE SOCS FAMILY 
 
 The SOCS family consists of eight family 
members (Cytokine inducible SH2 containing protein CIS, 
SOCS1-7) which in principal share a similar build-up 
(13,30). All SOCS proteins possess a central SH2 region 
that allows for binding of phosphotyrosine residues within 
type I and II cytokine receptor domains or within Janus 
kinases. This protein interaction site therefore enables 
access of SOCS proteins to activated cytokine receptors or 
JAKs. In turn, this interaction can block further signaling 
through competition for STAT recruitment. This mode of 
action has been reported for CIS and SOCS2 that both 
activate STAT5, e.g. via IL-2, IL-3, erythropoietin, or 
growth hormone (GH) (12,31-33). Indeed, SOCS2 
knockout mice have a defect in limiting GH/STAT5 
signaling (34). SOCS1 and SOCS3, which are strongly 
regulated by PRR activation, possess an additional protein 
interaction domain. The kinase inhibitory region (KIR) is 
adjacent to the extended SH2 region and has been proposed 

to act as a pseudosubstrate for JAKs thus inhibiting JAK 
tyrosine kinase activity (35). A protein interaction model 
predicts direct binding of SOCS1 to the activation loop of 
JAK2 through the SH2 domain (36). In contrast SOCS3 
gets access to JAKs via binding to the cytokine receptor as 
exemplified by binding to the IL-6 receptor/gp130 (37,38), 
erythropoietin receptor (32), G-CSF receptor (39), leptin 
receptor (40,41) or growth hormone receptor (42). SOCS 
mimetics that also inhibit JAK activity have been identified 
and could be of use to mimic the effects of SOCS proteins 
(43-45). All SOCS proteins additionally bear a carboxy-
terminal SOCS box domain that acts as an E3 ubiquitin 
ligase (46-48). Thus, the SOCS box recruits elongin B and 
C, cullins and Rbx-1 and mediates poly-ubiquitination and 
proteasomal degradation of bound proteins. Whereas KIR 
and SH2 domains contribute to specific inhibitory 
activities, the SOCS box assigns a further, more general 
inhibitory activity to SOCS proteins. Indeed, a contribution 
of the SOCS box to the overall biology of SOCS proteins 
has been confirmed: Upon blockade of the proteasomal 
degradation machinery in vitro SOCS proteins are less 
inhibitory. Moreover, the disease phenotype of mice 
lacking the SOCS box of SOCS1 is ameliorated as 
compared to full SOCS1 knockouts (49). On the other 
hand, SOCS3 itself gets stabilized by interacting with 
elongin C (50) and phosphorylation of a SOCS box 
tyrosine residue decreases this interaction and in turn 
increases protein turnover. Thus, SOCS1 and SOCS3 are 
regulated by SOCS box interaction themselves (51). 
Indeed, stability of SOCS proteins seems low with half-life 
times of few hours at maximum (45,52). 
 
 Recent work has identified an additional feature 
specifically found in SOCS1. SOCS1 but none of the others 
SOCS proteins showed a predominant nuclear localization 
when YFP- or CFP tagged fusion proteins were examined 
(53). In the same line overexpressed myc-tagged SOCS1 
accumulated within the nucleus in a study analyzing the 
interaction with human papilloma virus E7 protein (54). 
Additionally, it was observed that SOCS1 within the 
nuclear fraction of NIH-SR cells contributes to NFkappaB 
ubiquitination (28) and SOCS1 was also found in the 
nucleus of transfected COS, 293T and Jurkat cells (55). 
Thus, evidence accumulated that SOCS1 might localize to 
the cell nucleus implying additional functions in this 
compartment. In fact, SOCS1 was also reported to be 
expressed in the nucleus in human keratinocytes within an 
inflammatory surrounding environment and it was 
speculated about different functional properties of nuclear 
vs. cytoplasmic SOCS1 (e.g. modulating the stability of 
transcription factors) (56). However, the expression pattern 
initially remained disputed as one group stated that 
glucocorticoid receptor binding drives nuclear translocation 
of SOCS1 (57) whereas others attributed the unexpected 
localization to protein overexpression (58) or focused on 
colocalization of SOCS1 with the microtubule organizing 
complex and 20S proteasome (55). In a series of 
experiments our group showed that SOCS1 bears a specific 
nuclear localization signal (NLS) (59,60) that followed the 
consensus rules of classical bipartite NLS (61). Besides a 
membranous expression pattern, fluorescent fusion 
constructs of SOCS1 as well as endogenous SOCS1 itself 
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was found in the nuclear compartment in a variety of cells. 
Mutating the basic residues within the NLS sequence 
abolished nuclear localization and ectopic expression of the 
SOCS1-NLS sequence in otherwise cytoplasmic CIS 
induced nuclear localization. SOCS1 was shown to be 
highly mobile in the nucleus with half-time of recovery in 
FRAP experiments being about 10 s (59). These results 
thus identified and verified a functional NLS in SOCS1 and 
point towards a so far unrecognized function for nuclear 
SOCS1. Single reports also state that SOCS7 translocates 
to the nucleus due to a monopartite NLS (62) and SOCS6 
also could be observed in the nucleus (63). Very recently, 
SOCS3 was also shown to be expressed in the nucleus as 
well as the cytoplasm of macrophages, epithelial cells and 
endothelial cells in various tissues with more intense 
staining during inflammation (64). However, confirmation 
of those results as well as evaluation of their biological 
significance is still lacking. Taken together, those results in 
any case indicate that the functional properties of SOCS are 
still not fully uncovered.  
 
4. SOCS AND MACROPHAGE/DENDRITIC CELL 
BIOLOGY 
 
 SOCS1, SOCS3 and CIS proteins can be induced 
in cells of the innate immune system through different 
routes, either via JAK/STAT dependent cytokines or via 
pattern recognition receptors (outlined below). In turn 
SOCS can inhibit the inducing pathway in a classical 
feedback manner or adjust the sensitivity towards further 
SOCS sensitive signals (crosstalk inhibition). The 
importance of SOCS proteins in innate immune cells has 
been addressed by genetic means. 
 

SOCS1 knockout mice succumb to perinatal 
death within the first weeks which is due to liver necrosis, 
lymphopenia, and unregulated T-cell activation (65-68). 
Moreover, macrophage infiltrations can be observed in 
various organs pointing towards a crucial role of SOCS1 
for homeostasis of macrophages. As the concomitant lack 
of IFNgamma or the IFNgamma receptor (65,66,69) 
ameliorates the disease it was concluded that the phenotype 
is mainly due to lack of IFNgamma signal termination. T-
cell derived IFNgamma is thus not limited anymore with 
respect to its macrophage stimulating activities. Indeed, 
lack of T cells also rescues the immediate early disease 
phenotype. However, IL-4 and IL-12 signaling was also 
disturbed as evidenced by backcrossing of SOCS1 to 
STAT4 or STAT6 knockout mice. Moreover, 
SOCS1/IFNgamma double knockout mice showed a 
delayed disease phenotype with reduced lifespan, 
polycystic kidneys and chronic granulomas in various 
organs (70) arguing for a more complex disease pathology 
with acute and chronic inflammation in SOCS1 knockout 
mice. This might include disturbed signaling by IL-2 
(71,72), IL-6 (73), IL-12 (74), IL-15 (75) or TLRs and 
TNFR (19-22,76). Macrophages and DCs among other 
cells also express SOCS proteins and SOCS proteins within 
those innate immune cells exert inhibitory activities. Thus 
it might very well be that the latter cells are also involved 
in the direct development of the disease. Indeed, 
SOCS1/IFNgamma double knockout mice show increased 

sensitivity towards stimulation by LPS (19,20) with 
elevated secretion of innate cytokines (TNF, IL-12).  
 
 Importance of SOCS1 for DC biology was first 
studied in SOCS1 deficient mice restored with SOCS1-
expressing T- and B cells. In those mice DCs accumulated 
in spleen and thymus producing B-lymphoproliferative 
cytokines that expanded the B-cell pool and finally induced 
autoantibodies (77). It was concluded that SOCS1 is 
necessary in DCs to suppress autoimmunity. Breakdown of 
tolerance was also observed when SOCS1 siRNA treated 
DCs were used which produced more IL-12 (78). Besides a 
role of SOCS1 for the function of DCs it was also shown 
that DC development is regulated by SOCS1. Thus, SOCS1 
was shown to inhibit GM-CSF mediated differentiation of 
monocytes to DCs (79). It was also suggested that SOCS1 
plays a restrictive role in the switch from STAT6 to STAT1 
in the process of DC maturation (80). A role of SOCS1 in 
the development of DCs was further substantiated by the 
observation that miR-155 regulates DC apoptosis and IL-12 
secretion and SOCS1 is a validated miR-155 target (81). 
Moreover, lower SOCS1 expression also correlated with 
the increased secretion of IL-12 by CD11c/CD8a+ DC 
subset and SOCS1 deficient mice contain higher numbers 
of CD8a+ DCs which express more MHC class II and 
costimulatory molecules (77,82). Findings on IL-12 were 
further substantiated by the observation that IL-12 secretion 
was elevated upon siRNA mediated knockdown of SOCS1 
(83). Silencing of SOCS1 within DCs led to increased 
intestinal allograft survival (84). Reduced IL-12 was also 
observed in monocytes/macrophages triggered by HCV 
core protein to increase endogenous SOCS1 levels (85).  
 
 SOCS3 has been analyzed in detail with respect 
to its function in macrophages. It mainly affects sensitivity 
of macrophages towards gp130 related cytokines. Upon IL-
6 stimulation SOCS3 conditional knockout macrophages 
showed increased induction of STAT1 instead of STAT3 
dependent genes. In turn a STAT1 shifted gene expression 
profile was observed that resembled the activities of 
IFNgamma (86,87). It was concluded that SOCS3 is 
important to shape the nature of a specific IL-6 response in 
macrophages. Furthermore, SOCS3 deletion resulted in a 
prolonged STAT3 activation which was not limited 
appropriately anymore and consequently mimicked some 
inhibitory actions otherwise observed for IL-10 (88). The 
latter cytokine typically induces STAT3 but is insensitive 
to SOCS feedback inhibition (89). A similar phenotype was 
observed for macrophages lacking the SOCS3 binding site 
(Y759F) in gp130 (88). However, this finding which was 
discussed to confirm the previous experiments has to be 
interpreted with caution because this mutation also 
abolishes MAP kinase activation by IL-6 (90). Taken 
together, SOCS3 is doubtlessly important to regulate the 
opposing functions of IL-6 and IL-10 that mediate pro- or 
anti-inflammatory activity through the same STAT3 
dependent signaling pathway but differ with respect to the 
signaling kinetics. Consistently, SOCS3 knockout 
macrophages were more resistant in the LPS shock model, 
which is opposite to the results in STAT3 conditional 
knockout mice (91) and supports the interpretation of 
SOCS3 as a suppressor of macrophage and DC activity 
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(23). SOCS3 additionally plays an important role to limit 
G-CSF and GM-CSF (92) thereby regulating myeloid cell 
differentiation. SOCS3 regulates CD11c+ DC mediated 
osteoclastogenesis, a condition that might be of importance 
in periodontal disease (93). Within macrophages it has been 
shown that SOCS3 is necessary to drive differentiation into 
the classical M1 phenotype, including suppression of IL-4 
signaling, whereas SOCS3 knockdown resulted in 
alternative M2 differentiation (94). With respect to DC 
differentiation SOCS2 upregulation has also been reported 
and SOCS knockdown interfered with DC maturation 
including reduced expression of co-stimulatory molecules 
and reduced LPS signal transduction (95). 
 
5. SOCS INDUCTION BY TLR STIMULATION 
 
 Within macrophages and dendritic cells mainly 
SOCS1, SOCS3 and CIS are regulated upon microbial 
encounter. Transcription under resting conditions is low but 
increases rapidly upon stimulation of various PRRs. Rapid 
induction is ascribed to the gene structure of SOCS genes 
with only few introns. Besides transcriptional regulation 
SOCS1 is controlled through translational repression due to 
an additional start codon in the 5’ region (96). Similar 
observations have also been reported for an N-terminal 
truncated isoform of SOCS3 (97). As pointed out above 
protein stability of SOCS1 and 3 themselves is also 
regulated. During sepsis, SOCS3 is mainly up-regulated in 
macrophages and neutrophils thus hinting towards an 
important function in innate immunity (98). 
 
 Whereas SOCS molecules have been shown to be 
regulated by various cytokines acting through the 
JAK/STAT pathway in innate immune cells, including 
IFNgamma, IL-6 and IL-10 it was also reported that TLR 
triggering up-regulates transcriptional levels of SOCS3 and 
SOCS1, the latter with slightly slower kinetics. This was 
observed initially for LPS/TLR4 (14) and then confirmed 
for many more of the TLRs (15,99). Beside TLR 
stimulation, activation through TNF also results in SOCS3 
induction (16) and TNF can further enhance LPS-induced 
SOCS3 (100). Another PRR, DC-SIGNR1 which is 
important in mycobacteria recognition, has also been 
shown to induce SOCS1 thereby limiting IL-12 production 
(83). 
 
 SOCS3 induction in the setting of TLR 
stimulation is dependent on the central TLR adaptor protein 
MyD88 whereas SOCS1 showed additional dependence on 
TRIF for TLR4 but not TLR9 stimulation (22). The initial 
suggestion that SOCS induction upon TLR triggering was 
indirect due to the intermediate secretion of IFNbeta (101) 
has been rejected, because TLR stimulation induces SOCS1 
and SOCS3 independent of intermediate protein synthesis, 
small secreted factors and without alteration in IFNAR-/- 
macrophages (22). For TLR mediated induction of SOCS 
proteins MAP kinase activation (p38) is necessary (15) and 
this is supported by the observation that MAPK activation 
itself is sufficient to drive SOCS3 transcription (102). 
Although STAT binding elements in general are important 
for SOCS induction (reflecting negative feedback 
regulation and eponymous for STAT-induced STAT 

inhibitor, SSI, syn. of SOCS) the activation of SOCS1 by 
LPS has been shown to be due to early-growth response 
factor-1 (103). SOCS3 induction by LPS was shown to be 
dependent on AP1 as well as GAS elements within the 
promoter and furthermore, at later time points, secondary 
IL-10 contributed to prolonged induction (104). Moreover, 
it was shown that TNF augments SOCS3 stability through 
tyrosine phosphorylation (100) as well as mRNA 
stabilization (105) thus once again emphasizing the 
importance of posttranscriptional and posttranslational 
regulation. 
 
6. MODES OF ACTION OF SOCS PROTEINS IN 
TLR SIGNALING 
 
 SOCS proteins can be induced through pattern 
recognition receptors in innate immune cells. Therefore it 
was not surprising to see that SOCS dependent JAK/STAT 
cytokine signaling was modulated in a SOCS dependent 
manner upon TLR stimulation. This is exemplified by the 
observation that within macrophages SOCS1 and SOCS3 
are induced upon TLR triggering and in turn inhibit 
signaling by subsequently added IFNgamma resulting in 
decreased STAT1 phosphorylation and gene induction 
(14,15). Such a mode of crosstalk inhibition in which a 
TLR signal results in down-regulation of an independent 
JAK/STAT dependent signal can be misused by pathogens 
including Leishmania (106,107), mycobacteria (108,109), 
Toxoplasma (110), HIV (111,112) and Respiratory 
Syncitial Virus (113-115). Those pathogens trigger pattern 
recognition receptors including TLRs and induce SOCS 
proteins which in turn inhibit the detrimental activities of 
IFNgamma on pathogen survival in macrophages. SOCS1 
and SOCS3 play an important role in fine-tuning the 
balance of avoidance of infection-induced inflammation 
without impairment of pathogen control as shown for 
Leishmania and chlamydia (106,116). In a similar manner 
it was shown that SOCS induction through TLRs interferes 
with additional cytokine pathways including GM-
CSF/STAT5. SOCS proteins inhibited GM-CSF activity 
thereby interfering with the differentiation of dendritic cells 
(79,117). 
 
 Based upon the observation that SOCS1, SOCS3 
and CIS are induced through TLR stimulation the question 
arose whether SOCS proteins themselves would also be 
able to interfere with TLR signaling. Indeed, two groups 
independently observed (19,20) that SOCS1 knockout mice 
showed elevated cytokine levels and increased toxicity in 
vivo upon LPS stimulation. A contribution of increased 
SOCS transcript levels towards the condition of LPS 
hyporesponsiveness/tolerance (118) was also reported in 
the context of CD14 signaling (119). From these 
observations it was concluded that SOCS1 is an important 
restriction factor for TLR signaling and it was suggested 
that NFkappaB activity is regulated. However, the 
underlying mechanism remained elusive and only a weak 
interaction of SOCS1 with IRAK1 via the SH2 domain (19) 
could be detected. Subsequent work using SOCS 
overexpression in RAW264.7 macrophages did not confirm 
a direct inhibition of TLR signaling by SOCS1. TNF 
secretion as well as NFkappaB reporter gene activity was 
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not altered. However, IP10, a gene known to be induced in 
an indirect manner upon TLR stimulation, was reduced in 
SOCS1 overexpressing cells (22). This observation led to 
the conclusion that SOCS1 indirectly regulates TLR 
signaling through inhibition of autocrine or paracrine 
IFNbeta signaling. Indeed, TLR4 and -9 stimulation 
induced IFNbeta resulting in secondary STAT1 tyrosine 
phosphorylation. SOCS1 overexpression did not affect 
primary IFNbeta induction, yet reduced IFNbeta stimulated 
STAT1 activity. MAP kinase activities and induction of 
NFkappaB dependent genes (TNF, IL-6) were not affected. 
This notion of an indirect action of SOCS1 was confirmed by 
in vivo data showing that hypersensitivity of SOCS1 mice 
towards LPS stimulation vanished in SOCS1/Tyk2 double 
knockout mice (21). The observations support the concept that 
TLR stimulation induces IFNbeta that in turn activates Tyk2 
which increases transcription rates of a subset of TLR induced 
genes (secondary genes) (120,121) thus representing an 
important amplification cascade in TLR signaling (122). Very 
recently it was shown that glucocorticoids limit secondary, 
delayed TLR signaling including STAT1 phosphorylation 
through induction of SOCS1, a mechanism that fits exactly to 
the described mode of action of SOCS1 in TLR signaling 
(123). However, the situation might be even more complex as 
discussed in more detail below. 
 
 Additional experiments have also shown that TLR4 
stimulation activated JAK2 and this axis was regulated through 
SOCS1 in innate immune cells (124). SOCS1 was also shown 
to limit JNK activation through degradation of ASK (125). 
Further observations confirm that SOCS proteins, beside their 
well defined activity in JAK/STAT signaling, affect pattern 
recognition receptors as well. SOCS1 has been shown to 
ubiquitinate TIRAP/Mal, an adaptor protein used in TLR2 and 
TLR4 signal transduction, through its SOCS box. This 
modification of TIRAP/MAL occurred upon Bruton’s tyrosine 
kinase dependent phosphorylation and resulted in proteasomal 
degradation and reduced NFkappaB activity (126). In turn, 
deletion of SOCS1 led to increased TIRAP/Mal 
phosphorylation, NFkappaB activation and proinflammatory 
activity in macrophages. Thus, while doubtlessly SOCS1 
modulates TLR signaling, still partly contradictory results are 
reported with respect to direct manipulation of NFkappaB 
activity.  
 
 Much less is known for SOCS2, SOCS3 and CIS 
which are also induced in innate immune cells with respect to 
their role in TLR signaling. SOCS3 and CIS do not seem to 
directly interfere with PRR signaling (22); however, through 
modulation of a cell’s cytokine sensitivity they also contribute 
to signal transduction regulation in macrophages and DCs 
(mostly by crosstalk regulation). For SOCS2 an induction by 
lipoxin was reported and this contributed to down-regulation of 
proinflammatory activity through TNF receptor-associated-
factor (TRAF) 2 and TRAF6 poly-ubiquitination (127,128). 
TRAF2 and 6 were then degraded by the proteasome and this 
correlated with the anti-inflammatory effects of lipoxins. 
 
7. SOCS1 AND NFKAPPAB SIGNALING 
 
 NFkappaB is the major transcription factor in 
TLR signaling (129). NFkappaB is a dimer which is 

composed out of five different family members: p65/RelA, 
RelB, c-Rel, p52 and p50. In resting cells the prototypical 
NFkappaB heterodimer p65/p50 is kept in the cytoplasm by 
interaction with IkappaBalpha. The latter is phosphorylated 
and degraded upon TLR stimulation through IkappaB 
kinase; NFkappaB is then liberated and transported into the 
nucleus where it initiates gene transcription (130). Among 
a number of genes IkappaBalpha is re-induced, synthesized 
and shuttles NFkappaB out of the nucleus again and thus 
terminates signaling. Besides this canonical pathway of 
inactivation, it became clear in recent years that additional 
regulatory pathways that contribute to termination of 
NFkappaB signaling exist (131,132). For example, p65 
stability and nuclear availability is regulated through 
polyubiquitination and proteasomal degradation within the 
cell nucleus. PDLIM2 was identified as an ubiquitin ligase 
involved in this process (133) which also translocates p65 
into nuclear PML bodies, sites of nuclear protein 
regulation. In 2003 it was suggested that also SOCS1, 
through its activity as E3 ubiquitin ligase, contributed to 
p65 stability and proteasomal degradation (26). Moreover, 
an interaction between p65 and SOCS1 dependent on the 
protein COMMD1 was reported later (28) and COMMD1 
inhibited NFkappaB activity. In this line, it was also shown 
that TNF induced serine phosphorylation at S276 of p65 in 
a manner dependent on Pim-1 resulting in enhanced 
transcriptional activity and protection of p65 degradation 
through SOCS1 (134).  
 
 Taken together with the recent observation that 
SOCS1 can be found in the nuclear compartment (59) we 
speculated that SOCS1 might interact with nuclear p65 and 
regulate the stability of the latter. Although initial studies 
(79) did not show an inhibition of NFkappaB activation by 
TLR induced SOCS proteins, it subsequently became clear 
that kinetics of NFkappaB activation are a decisive variable 
controlling expression in a gene specific manner (135). 
Therefore we analyzed whether nuclear SOCS1 interacts 
with p65. Our recent results show that SOCS1 interacts 
with p65 within the nucleus and that this interaction results 
in ubiquitination and proteasomal degradation of p65 (27). 
In turn, the reduced availability of p65 resulted in a 
decreased induction of NFkappaB dependent genes. Of 
notion however, only a subset of NFkappaB dependent 
genes was affected. Confirming these results non-nuclear 
mutants of SOCS1 showed reduced inhibitory effects on a 
few NFkappaB dependent genes. The exact mode of 
binding of SOCS1 to p65 remains to be elucidated but co-
activating factors of the NFkappaB enhanceosome like 
UXT might be involved (136). Own data suggest that the 
SH2 domain is involved in p65 interaction and whether this 
is dependent on tyrosine phosphorylation or independent, 
as reported for binding to E7 (54) or vav (137), is presently 
unclear. Further support for this model comes from a report 
claiming that ORF73 from murine herpesvirus-4, encoding 
for a SOCS box like protein, terminates NFkappaB 
signaling through ubiquitination and proteasomal 
degradation thereby representing a mode of immune 
evasion (138). Importantly, SOCS1 overexpression only 
reduced the induction of a subset of NFkappaB genes 
which might finally explain the accumulated controversial 
results: Thus, the inhibitory effects of SOCS1 on 
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Figure 1. Inhibitory effects of SOCS1 in TLR signaling. SOCS1 expression is directly induced by cytokine or TLR stimulation. 
SOCS1 inhibits JAK/STAT signaling in a feedback mode or as crosstalk inhibition. Moreover, SOCS1 induces the poly-
ubiquitination and proteasomal degradation of the adaptor protein TIRAP/Mal. SOCS1 binds to IRAK1 and thereby abrogates 
TLR signal transduction. SOCS1 also regulates MAP kinase activation by binding to ASK1 which is an upstream activator. 
Finally, SOCS1 binds to p65 and facilitates its poly-ubiquitination and subsequent degradation, thus limiting NFkappaB 
signaling. Degradation of p65 results in decreased nuclear availability thus affecting a subset of p65 dependent genes whose 
induction is dependent on prolonged NFkappaB activity. 
 
NFkappaB signaling do not affect induction of NFkappaB 
activity but limit the duration of its transcriptional activity. 
In turn, genes that only need a short NFkappaB stimulation 
are not affected by SOCS1 whereas others, that require 
more prolonged NFkappaB activation (139), e.g. including 
extensive chromatin remodeling (secondary genes, (135)), 
are sensitive towards SOCS1 overexpression. NFkappaB 
duration can be influenced by nuclear SOCS, but again 
there are also genes that were equally inhibited by non-
nuclear mutants which is compatible with additional reports 
on further upstream effects. Taken together, SOCS1 seems 
to affect TLR signaling at different levels of signal 
transduction which results in gene-specific inhibitory 
effects (Figure 1).  
 
8. CONCLUSIONS 
 
 Within innate immunity SOCS proteins are 
important inhibitory molecules that limit a cell’s sensitivity 
to signals acting on the cell through the JAK/STAT signal 

transduction pathway. In turn SOCS proteins balance and 
adjust the threshold for cytokine activation and contribute 
to the termination of such signals in innate immune cells. 
Therefore SOCS proteins regulate cell activation, 
differentiation and homeostasis as well as microbial 
defense. Furthermore, SOCS proteins also modulate 
signaling of innate immunity’s pathogen sensing receptors, 
the pattern recognition receptors. A variety of mechanisms 
by which SOCS proteins regulate Toll-like receptors has 
now been deciphered. Among those fine-tuning of NFkappaB 
is a common theme affecting in turn a subset of NFkappa 
dependent genes in a cell- and stimulus-dependent manner. 
Recent results on localization of SOCS proteins suggest that 
the full activities of SOCS proteins are still not entirely 
uncovered. Nuclear localization of SOCS1 implies additional 
regulatory properties which is one of the recent exciting 
discoveries. In the future it will be of importance to get full 
insights into those “new” functions of SOCS proteins. 
Additionally, there is still a lack of understanding of the 
biology of the less well studied SOCS4-7 proteins.  
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Besides molecular mechanisms SOCS proteins 
are increasingly recognized as important regulators in 
inflammatory diseases. Analyzing the various SOCS 
knockout mice in inflammatory disease models will further 
substantiate our understanding of the clinical importance of 
SOCS proteins. Finally, given the central role of SOCS 
proteins in JAK/STAT as well as further signaling cascades 
this protein family bears a potential as drug target and 
should be evaluated further in this direction. 
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