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1. ABSTRACT 
 

The Epstein-Barr virus (EBV) establishes 
persistent latent infection in peripheral blood memory B 
cells, may cause infectious mononucleosis, and is 
associated with cancers including endemic Burkitt’s 
lymphoma (BL). Although latent EBV transforms B cells 
in vitro, additional factors including immunocompromised 
status or, as in endemic BL, a co-infection with the malaria 
parasite Plasmodium falciparum seem to be required for the 
development of EBV-associated cancers. Toll-like 
receptors (TLRs) like TLR9 are capable to recognize EBV 
and launch innate immune responses, which may limit the 
spread of the virus and may contribute to control outgrowth 
of latently EBV-infected B cells. On the other hand, EBV 
may interfere with the expression and functionality of 
TLR9, thereby manipulating host immune responses 
towards favoring long-term survival of the virus. 
Triggering of TLR9 by bacterial, viral or P. falciparum 
DNA may impact on the proliferation of EBV-infected B 
cells and on the balance between latent and lytic EBV. 
Thus, TLR9 signaling in EBV-infected B cells may be 
beneficial for the host but also for the highly adapted 
human gammaherpesvirus EBV. 

 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The Epstein-Barr virus (EBV) is a human 
gammaherpesvirus. It infects more than 90% of the world’s 
human population. Despite the host mounting specific 
humoral and cellular immune responses, EBV succeeds in 
establishing persistence in peripheral blood memory B cells 
for a lifetime (1).  

 
EBV was first discovered in endemic Burkitt’s 

lymphoma (BL) around 50 years ago, the most common 
cancer in children in equatorial Africa (2). Subsequently, 
EBV was associated with other forms of B cell or epithelial 
cell malignancies including non-Hodgkin’s lymphoma, 
certain types of Hodgkin’s lymphoma, lymphoproliferative 
disorders in immune suppressed transplant recipients or 
HIV-infected individuals with immunodeficiency (3), and 
nasopharyngeal carcinoma (4). More recently, EBV has 
been also associated with autoimmune diseases including 
multiple sclerosis (5). 

 
The vast majority of the EBV-infected 

individuals do not develop EBV-associated malignancies or 
autoimmunity. This suggests that EBV and the host  
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Table 1. Patterns of EBV latency gene expression and occurrence   
Latency program EBNA1 EBNA2-6, EBNA-

LP  
LMP1, LMP2A,  
LMP2B 

EBER1, 
EBER2 

BARTs Type of tumor 

Latency I + - - + + Burkitt’s lymphoma 
Latency II + - + + + Hodgkin’s disease, 

nasopharyngeal 
carcinoma 

Latency III + + + + + Lymphoblastoid cell 
line, post-transplant 
lymphoproliferative 
disease   

EBNA, EBV nuclear antigen; LP, latent protein; LMP, latent membrane protein; EBER, EBV nonpolyadenylated RNA; BART, 
Bam A rightward transcripts 
 
immune system have developed strategies that reduce 
EBV’s potential to become pathogenic, a potential that is 
mirrored by the unique capacity to transform B cells in 
vitro exhibited by the virus (6). 
 

Most notably, both extremes of immune 
responses, i.e., deficient immune responses, as in states of 
immune compromise or immune suppression, and 
exaggerated immune responses, as in infectious 
mononucleosis, may contribute to EBV-associated 
pathology. Immune control of EBV is ascertained by the 
innate and the adaptive immune systems, with cytotoxic 
(CD8+) T cells exhibiting a crucial role in adaptive 
immunity (7). As innate immunity links with adaptive 
immunity, evading the innate immune system might be 
particularly important for EBV, given its slow replication 
cycle and its maintenance of life-long latent infection (8). 
 

Here we review current knowledge on the impact 
of innate immunity on EBV and vice versa, whereby we 
focus on B cells that are the main target cell of EBV and 
the innate immunity element Toll-like receptor 9 (TLR9) 
that they abundantly express. 
 
3. EPSTEIN-BARR VIRUS (EBV) AND B CELLS 
 

EBV exhibits tropism for epithelial and B cells, 
the latter being the site for establishing persistent latency 
(1). How EBV trespasses the nasopharynx epithelial layer 
to get access to B cells from the nasopharynx-associated 
lymphoid tissue (NALT) including tonsils is not clear-cut.  

 
The attachment of EBV to B cells is mediated by 

the direct interaction of EBV glycoprotein gp350/220 with 
cellular CD21, initiating receptor-mediated endocytosis. 
After binding to CD21, EBV gp42 can interact with host 
HLA class II, leading to a conformational change in the 
viral glycoproteins and triggering fusion with the host cell 
membrane (9). In polarized oropharyngeal epithelial cells, 
which lack CD21, interactions between the EBV 
glycoprotein BMRF-2 via its Arg-Gly-Asp (RGD) motif 
and the beta1 family of integrins are critical for infection 
(10). 
 

EBV is mainly present as a latent virus (1). 
Efficient establishment of latency allows EBV to persist 
despite host immune responses. Following de novo 
infection of B cells in vitro, latency is the default pathway, 
and primary B cells are often immortalized giving rise to 
so-called lymphoblastoid cell lines (LCLs) (1).  

 
Depending on EBV gene expression in cell lines 

and tissues three EBV latency patterns have been described 
(11). Table 1 summarizes these three latency patterns and 
their occurrence. The Latency III program is found in 
LCLs. It involves expression of the full spectrum of latent 
EBV genes, i.e., EBNA 1-6, latent membrane proteins 
(LMP)1, -2A, -2B, two small RNAs (EBER1,-2), and Bam 
A rightward transcripts (BARTs). An EBV gene expression 
pattern similar to that in LCLs is found in EBV-driven 
lymphoproliferations of the immune compromised host 
including post-transplant lymphoproliferative disease of 
organ transplant recipients with sustained iatrogenic T cell 
suppression. A distinct EBV expression program that 
closely matches the Latency III program has been reported 
in a subset of BL (12). By contrast, in the Latency I and 
Latency II programs the only EBV nuclear antigen (EBNA) 
gene expressed is EBNA1 in vivo. Both programs express 
also EBER1,-2 and BARTs. Latency I is characteristic of 
BL. The latency II program, with the additional expression 
of LMP1 and LMP2, is seen in Hodgkin’s disease, 
nasopharyngeal carcinoma, and T-cell lymphoma (3).  
 
  Studies examining B cells isolated from tonsils 
found distinct EBV gene expression in the various B cell 
differentiation stages. These studies led to propose a model 
in which EBV infects naïve B cells in tonsils (13); upon 
infection, EBV expresses distinct patterns of its latency 
genes depending upon the distinct B cell differentiation 
stages, varying from expression of all 10 known EBV 
latency genes in naïve B cells to complete absence of EBV 
gene expression (except non-coding EBER) in resting 
memory B cells. From this it was inferred that EBV, by 
virtue of expression of its latency genes, provides cell 
survival signals in naïve B cells. Data from subsequent 
studies suggested that EBV might expedite the antigen-
driven somatic hyper-mutation and selection process of B 
cells taking place in germinal centers (GC) (14). 
Nevertheless, the demonstration in patients with primary 
EBV infection that EBV avoids GC transit and infects 
directly memory B cells challenged this model (15). In 
vitro experiments revealed that EBV is able to infect 
memory B cells (16, 17) besides the well-accepted 
susceptibility of naïve and GC B cells to EBV. In addition, 
we recently demonstrated that tonsillar memory B cells are 
much more susceptible to EBV infection in vitro than those 
from the peripheral blood, originating from various 
lymphoid tissues (17). This suggested that tonsillar memory 
B cells express properties, which render them more 
susceptible to EBV infection compared to their 
counterparts from other lymphatic origin. More recently, 
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we identified beta1 integrin, which is invariably expressed 
highest by memory B cells from NALT, and the 
corresponding signal transduction pathway as mediators of 
increased susceptibility to EBV infection (18).  
 
 Propagation of EBV within the host is linked to 
proliferation of infected B cells which delivers latent EBV 
to daughter cells or, more rarely, to switching of EBV to 
lytic infection (19). Switching to lytic EBV is triggered by 
the differentiation of infected memory B cells to plasma 
cells; plasma cells appear to be the main factory of virions, 
which may subsequently infect new B cells (20). Upon 
reactivation, the EBV immediate-early genes BZLF1 
(encoding the protein Zta) and BRLF1 (encoding the 
protein Rta) are the very first viral lytic genes expressed 
(21). The EBV gene expression in the lytic cycle follows a 
temporal and sequential order. Expression of the 
immediate-early genes is followed by expression of early 
and late genes. In EBV virology, these terms are used to 
describe stages of gene expression in reactivation. 
Reactivation eventually leads to release of EBV particles 
and death of the host cell (19). 
 
 Transmission of EBV to naïve hosts is thought to 
occur via droplets loaded with virions (22, 23). Thus, lytic 
replication of EBV best takes place in nasopharyngeal-
associated lymphoid tissue (NALT) that will release EBV 
into the saliva, generating infectious droplets. Epithelial 
cells seem to act as amplifier of EBV particles derived from 
B cells to be shed in saliva (23). The NALT acts, thus, as 
neuralgic point of EBV transmission, i.e., as portal of entry 
of EBV as well as portal of exit for further transmission 
(22, 23).  
 
4. TOLL-LIKE RECEPTORS (TLRs) AND 
DETECTION OF EBV  
 
4.1. Expression of TLRs in B cells 

Pattern recognition receptors including the Toll-
like-receptors (TLRs) constitute a major pillar of the first 
line of defense upon encountering a pathogen. Human B 
cells express high levels of TLR1, 6, 7, 9, and 10 (24-26). 
TLR expression patterns of B cells, however, can vary 
depending on their subset, developmental stage, tissue 
environment, and malignant transformation (27-29). The 
specific local environment at human body sites seems to 
shape the TLR repertoire as TLR9 expression and 
responsiveness following engagement by the ligand is 
increased in B cells isolated from tonsils when compared to 
those isolated from peripheral blood (30). Notably, 
differences in TLR expression in mouse immune cells 
compared to human counterparts exist. Human (non-
malignant) B cells lack TLR4 in contrast to mouse B cells. 
Importantly, in humans, only plasmacytoid dendritic cells 
(pDCs) and B cells respond to TLR9 ligands, whereas in 
mice, B cells, monocytes, and probably all dendritic cell 
subsets express TLR9 (31, 32). This differential TLR9 
expression pattern in turn affects signaling pathways and 
results in a unique cytokine and chemokine expression 
profile. Thus, experimental results from mice cannot be 
one-to-one extrapolated to humans (33, 34).  
 

4.2. Pattern recognition receptors including TLR9 
recognize EBV 

Pattern recognition receptors including TLRs 
have been shown to recognize EBV (for excellent reviews 
see (8, 38) The EBV structural protein gp350 and the EBV 
dUTPase are detected by TLR2 in monocytes and 
macrophages (39, 40). Epstein-Barr virus encoded small 
RNAs (EBERs) released from EBV-infected cells are 
sensed by TLR3 which is mainly expressed by dendritic 
cells (41) In B lymphocyte cell lines, EBERs were shown 
to be recognized by RIG-I (Retinoic acid-inducible gene-I), 
a cytosolic protein which does not belong to the TLR 
family (42, 43). Moreover, EBV is a likely natural ligand 
for TLR9. The genomic DNA of EBV contains abundantly 
CpG motifs and is probably the most potent immune-
stimulating component of EBV particles (8). TLR9 was 
reported to contribute to the recognition of EBV in primary 
monocytes and pDCs (44)(45), but not yet in B cells. Thus, 
in B cells EBV is proven to being detected only by RIG-I. 
Notably, the murine gammaherpesvirus 68 (MHV68) is 
sensed in dendritic cells by TLR9 as well (46). MHV68 has 
been established as a mouse model for the study of 
gammaherpesvirus pathogenesis (1), because the restricted 
host range of EBV has limited in vivo pathogenesis studies 
to clinical investigation of the infection. The nucleotide 
sequence of MHV68 is similar to that of EBV, and, in 
particular, MHV68 is very useful to study the role of 
immunity in gammaherpesvirus infection (1). In addition to 
engaging bacterial and viral DNA, TLR9 from murine 
dendritic cells or splenocytes also recognizes the malaria 
pathogen Plasmodium falciparum, but whether the ligand is 
hemozoin, a metabolic product of Plasmodium, or the DNA 
of Plasmodium itself is still a matter of debate (47, 48). We 
have recently shown that hemozoin suppresses induction of 
lytic EBV in the BL cell line Akata in a dose-dependent 
manner (49). In view of the epidemiological link between 
P. falciparum malaria and the EBV-associated endemic BL 
(50) the recognition of both pathogens by TLR9 may be of 
biological or pathogenic relevance. 
 

TLR9 senses its ligand within endosomes. The 
ligand consists of a DNA-containing unmethylated 
cytosine-phosphate-guanine (CpG) motif found mainly in 
bacterial and viral DNA, but only rarely in mammalian 
DNA (51-53). Synthetic oligonucleotides (ODNs) 
containing the CpG motif are used to experimentally 
stimulate TLR9-expressing cells. B cells can be best 
stimulated with ODN CpG class B (also known as class K) 
that have multiple CpG motifs and a phosphorothioate 
backbone (33). In contrast, dendritic cells are best 
stimulated with CpG class A (also known as class D) that 
have mixed phosphodiester-phosphorothiaoate backbones 
and contain a single hexameric purine-pyrimidine-CG-
purine-pyrimidine motif flanked by self-complementary 
bases (54).  

 
The molecular mechanism of TLR9-mediated 

sensing of EBV DNA remains to be fully revealed. Reports 
have shown that ODNs without CpG motifs can be a 
biologically active ligand for TLR9 as well. Furthermore, 
the DNA backbone sugar 2’ deoxyribose rather than the 
CpG motif might determine TLR9 activation by synthetic 



TLR9 and EBV 

1222 

 
 

Figure 1. TLR9- and BCR-induced signaling pathways. The main important signaling pathways are shown. Cross-talk between 
signaling components of the single TLR9 or BCR pathway exists: The PLC-Ca2+/PKC axis can induce MAP Kinases (JNK, p38, 
ERK); DAG cross-talks to RAS-RAF-ERK; PI3K/AKT cross-talks to IKK-NF-kappaB; the PI3K can induce Ras activation. 
Possible interactions between TLR9 and BCR signaling might take place at the MAPK and NF-kappaB level (highlighted by red 
dashed lines), but also downstream of the MAPKs in the nucleus like CREB or ATF-2. Of note, the TLR9-induced signaling 
pathway to IRFs and Ras-ERK1/2 seems to be less prominent in B-cells, but important in plasmacytoid dendritic cells and mouse 
macrophages. However, activation of ERK is important in BCR signaling. JNK has a less prominent role in BCR triggering than 
in TLR9 activation. Abbreviations: Ag, antigen; AP1, activator protein 1; CaMK, calcium-modulin-dependent kinase; DAG, 
Diacylglycerol; ERK, extracellular signal-regulated kinase; IRF, interferon-regulated factor; IKK, IkappaB kinase; IRAK, IL1R-
associated kinase; JNK, c-JUN NH2-terminal kinase; MAPK, mitogen-activated protein kinase; MEK, MAP kinase; MEKK, 
MAPK kinase; MyD88, myeloid idfferentiation primary response gene 88; NFAT, nuclear factor of activated T cells; NF-kB, 
nuclear factor-kappaB; NIK, NF-kappaB inducing kinase; PI3K, Phosphatidylinositol 3-kinase; PKC, protein kinase C; PLC, 
phospholipase C; PTK, protein tyrosine kinases; TAK1, TGFbeta-activated kinase 1; TLR9, Toll-like receptor 9; TRAF6, TNF 
receptor-associated factor 6. 

 
DNA (55). Recent studies using natural DNA also suggest 
that in addition to the CpG content the level of methylation 
of the motif strongly affects the ability of DNA to trigger 
TLR9 (56). Thus, TLR9 recognizes not just CpG motifs, 
but DNA itself with certain structures (37). 
 

The intracellular localization of TLR9 is required for 
discriminating between self and non-self nucleic acid – the 
endosomal localization of TLR9 controls its access to different 
sources of DNA - but not for ligand recognition (57). 
Moreover, there is a requirement for capsid degradation by 
lysosomal proteases so that the nucleic acids of viruses become 
accessible for endosomal TLR9. Purified viral DNA is a poor 
inducer of TLR9 compared with intact virus (58).  
 
5. TLR9 SIGNALING IN B CELLS 
 

During an infection, bacterial disintegration or 
cellular invasion via cell-surface receptor-mediated uptake 
may result in endocytosis of microbial nucleic acids, a process 
essential for TLR9 engagement (29). Moreover, non-endocytic 
entry of viruses involving an alternative pathway of virus 
delivery to the TLR9-containing endosomes can result in 
TLR9 engagement (8). However, no study has shown this 
in B cells yet. 

Most studies concerning TLR9 signaling have 
been performed in dendritic cells or macrophages, but not 
in human B cells. Nevertheless, the known TLR9 signaling 
components from these studies are considered to be vital 
also in B cells. After ligand binding within endosomes, 
TLR9 undergoes conformational changes and recruits 
MyD88. Signaling of TLR9 in B cells proceeds only 
through MyD88 (63), which then activates the IL-1R-
associated kinase 1 (IRAK1), the TNF-receptor-associated 
factor 6 (TRAF6), and the TGFbeta-activated kinase 1 
(TAK1) pathway (65, 66). TAK1 phosphorylation leads to 
the activation of NF-kappaB transcription factor (Figure 1). 
TAK1 also signals through mitogen-activated protein 
kinases (MAPKs), such as p38 and the c-Jun NH2-terminal 
kinase (JNK), leading to the activation of activating 
protein-1 (AP-1) complexes (65). In primary human B 
cells, these pathways have not been thoroughly 
investigated. However, upon TLR9 triggering, the 
activation of the signaling components, e.g. the 
phosphorylation of p38 and JNK, and activation of NF-
kappaB and AP-1 were reported in primary human B cells 
(67). Thus, NF-kappaB and AP-1 complexes are able to 
translocate into the cell nucleus where they promote the 
expression of genes involved in B cell activation, 
proliferation and production of inflammatory cytokines as a 
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part of the immune response against pathogens (66). 
Moreover, activation of CCAAT/enhancer binding protein 
(C/EBP), cAMP-responsive element-binding protein 
(CREB) and the Ras - ERK (extracellular signal–regulated 
kinase) pathway after TLR9 engagement could also be 
observed (29, 66). Another class of transcription factors, 
the family of interferon-regulated factors (IRFs, e.g., IRF3, 
IRF5, IRF7) is activated after TLR engagement, interacts 
with MyD88 and translocates to the nucleus where they 
promote the expression of type I interferons (IFNs). 
Importantly, reports indicate that TLR9-induced ERKs, 
IRFs and CREBs play less prominent roles in B cells than 
in macrophages or dentritic cells (own observation, and 
(67, 68)(66, 69).  
 

Although human B cells are generally considered 
poor cytokine producers, stimulation with TLR9 ligands 
results in the secretion of pro-inflammatory cytokines like 
IL1alpha, IL1beta, IL-6, IL8 and TNFalpha, and to the 
release of immune regulatory cytokines that might limit the 
intensity of the inflammatory response, such as IL10 (70-
75). Further, endosomal TLR9 stimulation in naïve and 
transitional B cells induces differentiation in these B cell 
subsets (76). A proliferative response to TLR9 ligands is 
predominantly observed in IgM+ memory B cells (27). 
Moreover, TLR triggering of terminally differentiated 
plasma cells augments Ig production (28). Thus, the 
differentiation state of the B cell also defines the possible 
result of TLR9 activation, most probably through activating 
distinct signaling pathways and components. Finally, TLR9 
plays a role in the induction of T helper 1 (Th1) acquired 
immune responses (37). . 
 
6. TLR9, EBV AND EPIGENETIC CHANGES 
 

Transcription factors like NF-kappaB, AP1, IRFs 
and others are crucially important to transduce the signal 
from the TLR9 to the promoters and thus leading to 
changes in gene expression. The regulation of activation of 
NF-kappaB and other transcription factors has been 
intensively studied and will not be summarized here. 

 
In addition to activation of transcription factors, 

gene expression can be initiated or modified by the 
architecture of the chromatin, e.g., DNA and histone 
modifications. Nuclear DNA is packed into nucleosomes, 
which consist of a histone octamer core around which DNA 
(approximately 143bp) is wrapped. The core histones are 
reversibly modified by acetylation, methylation, 
ubiquitination, biotinylation and phosphorylation. 
Modifications occur on the N- and C-terminal tails of the 
core histones, and more recently analyses of histone 
modifications by mass spectrometry have revealed several 
modifications (acetylation and methylation) in the histone 
fold (77). Among the N-terminal histone tail modifications, 
acetylation is perhaps the most characterized and has been 
found associated with actively transcribed regions of 
chromatin (77).  
 

TLR signaling results in the activation of 
transcription factors such as AP-1 and NF-kappaB. Histone 
regulation might be a possibility of how gene expression 

due to TLR-mediated transcription factor activation can be 
specifically modified to adapt to the invading organism or 
to avoid excessive inflammation. First reports described 
the TLR-induced chromatin remodeling on the IL12p40 
promoter in dendritic cells and macrophages indicating 
that chromatin remodeling is an additional level of TLR 
signaling specificity (78, 79). Recently, Foster et al. 
found out that individual host gene promoters can be 
targeted and modulated in its histone architecture after 
TLR engagement (80). Repeated triggering of TLRs was 
shown to repress activation of selected TLR-responsive 
promoters (TLR tolerance), while other TLR-responsive 
promoters were not affected (80). Thus, TLRs have 
multiple ways of inducing or repressing gene 
expression. However, studies about TLR and histone 
modifications are very few and were performed using 
dendritic cells or macrophages, but not B cells. 

 
Importantly, epigenetic changes play a key 

role in EBV’s latent and lytic gene expression as well. 
Encapsidated EBV contains dublex linear DNA 
genomes which generally lacks histones. However, upon 
de novo infection of cells, the EBV genome is rapidly 
chromatized in the nucleus resulting in a closed circular 
DNA form containing histones (81). Histone 
modification in the EBV genome is indeed important for 
regulating EBV gene expression as was shown for the 
EBV immediate-early gene BZLF1 (82). Other 
epigenetic changes in the EBV genome include DNA 
methylation. Incoming EBV DNA is unmethylated; but 
as the circularized EBV genome gets more and more 
chromatized, CpG methylation in the EBV genome 
proceeds. The core promoter driving BZLF1 expression 
is, however, never methylated as it lacks CpG 
dinucleotides (1). Histone modifications (especially 
acetylation and phosphorylation) and DNA methylation 
in the EBV genome play central roles in establishing 
latency and therefore as well in EBV reactivation (82). 
We have recently shown that TLR9 affects histone 
structure on host and viral promoters, e.g. EBV’s 
immediate-early gene BZLF1 in BL cell lines and thus 
influences EBV gene expression (49). Thus, various 
pathogens including EBV or P. falciparum might trigger 
TLR9 leading to pro-inflammatory cytokine production 
and to suppression of EBV lytic gene expression. 
TLR9’s capability to suppress lytic EBV (and thus 
hiding in latency) might be beneficial for the virus in a 
cell which is launching innate immune responses as its 
avoiding production of viral proteins and virions which 
might lead to recognition and elimination of EBV. How 
TLRs modulate chromatin structure of certain promoters 
and which signaling pathways are required for this 
modulation needs further investigation. However, 
Trichostatin A - an Histone-deactylases (HDAC) 
inhibitor - was shown to reverse the effect of TLR9 
engagement on human and viral gene expression (49). 
Thus, the HDAC inhibitor interfered with the TLR9 
action to promote EBV latency, and thus restored EBV 
lytic gene expression levels. As latency is a requirement 
for transformation, these findings strengthen the widely 
accepted fact that HDAC inhibitors have great potential 
in cancer therapy. The use of 
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Figure 2. Interactions between EBV and TLR9-mediated signaling. EBV’s latent membrane protein 1 (LMP1) inhibits TLR9 
mRNA and protein expression via NF-kappaB activation. The EBV lytic protein BGLF5 degrades TLR9 mRNA and thus TLR9 
expression. TLR9 triggering results in NF-kappaB activation that might lead to some inhibition of BZLF1 expression. Moreover, 
TLR9 triggering inhibits induction of lytic EBV following BCR cross-linking.  

 
HDAC inhibitors might therefore counteract the 
detrimental triggering of TLR9 in EBV-associated BL.   
 
7. B CELL RECEPTOR (BCR) AND TLR9 
INTERACTION IN THE CONTEXT OF EBV 
INFECTION 
 
7.1. EBV and BCR-induced signaling pathways  

Apart from germline-encoded pattern recognition 
receptors like TLRs, B cells express clonally rearranged 
immunoglobulin (Ig) acting as antigen (Ag)-specific 
receptors on their surface, the so-called B cell receptors 
(BCRs). They play an important role in the reactivation of 
EBV (Figure 2). By using cross-linking anti-
immunoglobulin G (anti-IgG) antibodies, many of the 
EBV-positive established BL cell lines react with EBV 
lytic gene expression and reactivation (19). EBV 
reactivation in BL cell lines that results from BCR cross-
linking with anti-IgG is thought to reflect physiological 
mechanisms that function when latently infected memory B 
cells proceed through the germinal center reaction and/or 
undergo plasma cell differentiation. Thus, the BCR is one 
of the key elements in analyzing the switch between latent 
and lytic EBV infection.  

 
When antigen engages the BCR, it will form 

signaling active microclusters, followed by a 
conformational change to an ‘open form’ (83). The first 
signaling events consist of recruitment of the kinases Lyn 
and Syk (which phosphorylates the cytoplasmatic signaling 
domain of the BCR) to the BCR microcluster, and Ca2+ 
release. The four major signaling pathways activated 
include phopholipase C (PLC), the Rho family of GTPases 
like VAV1-3, Ras, and phophatidylinositol-3-kinase (PI3K) 
(84, 85). They lead to the activation of MAP-kinase 
signaling cascades and of transcription factors like NF-
kappaB, and thus to transcription of a variety of genes 
depending on the maturation state of the cell (Figure 1). 
The activated MAP kinases - consisting of extracellular 

signal-regulated kinase (86), c-Jun NH2-terminus kinase 
(JNK/SAPK) and p38 MAPK - phosphorylate different sets 
of transcriptions factors including Elk1 and cMyc by ERK, 
c-Jun and ATF2 (activating transcription factor 2) by JNK, 
and ATF2 and MAX by p38 MAPK.  

 
If the B cell is latently infected with EBV, above 

mentioned activated signaling pathways may eventually 
lead to the expression of the EBV immediate-early genes 
BZLF1 and BRLF1, which are transcription factors 
responsible for the induction of EBV early lytic genes and 
thus for the initiation of the lytic cascade and ultimately for 
EBV particle production (19). 
 
7.2. Interaction of BCR and TLR9 affects EBV gene 
expression 

BCR signaling is regulated and fine-tuned by 
several co-receptors. These include the B cell inhibitory 
receptor FcγRIIb (recognizes immune complexes) and the 
stimulatory co-receptor complex CD19/CD21 (recognizes 
complement coupled antigens). The family of the TLRs 
seems to be a new player in the field. During an infection, 
B cells will most probably receive signals from TLRs and 
BCRs. Investigations how these receptors and their 
signaling interact are crucial for the understanding of the 
immune system reacting to a pathogen and, importantly, the 
development of autoimmune diseases like lupus (90).  

 
Initial reports described the ability of TLR9 

signaling to interfere with BCR signaling, leading to 
synergistic or antagonistic effect depending on the 
maturation step of the B cell (91). In mature B cells, TLR9 
and BCR synergize in B cell proliferation and production 
of cytokines and Ig production. In immature B cells, TLR9 
and BCR synergize with cytokines production (including 
IL10, IL6, TNFalpha), but TLR9 blocks BCR-mediated 
growth arrest and apoptosis by interfering with the 
regulation of c-myc and bcl-xl (68, 92). Moreover, mature 
memory B cells proliferate and differentiate to Ig-secreting 
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cells in response to ODN CpG alone, while mature naïve B 
cells need BCR and TLR9 signaling to achieve the same 
result. Of note, one has to consider that, the differential 
expression of TLR9 correlates with its responsiveness to its 
agonist, ODN CpG (29). Human naïve B cells express most 
TLRs at low to undetectable levels (28), but BCR 
triggering rapidly induces the expression of TLR9 (25). 
Memory B cells express several TLRs at constitutively high 
levels (28). Thus, TLR9 and BCR can interfere with each 
other’s signaling, but can also interfere with each other’s 
expression. 

 
Importantly, TLR9 was shown to suppress BCR-

induced EBV lytic gene expression in BL cell lines. 
However, the common TLR9 signaling pathways including 
NF-κB seem not to be solely responsible for the TLR9-
induced suppression of the EBV lytic immediate-early gene 
BZLF1 (Figure 2). Although TLR9 and MyD88 were 
responsible for the suppression of lytic EBV, other TLR9 
signaling components like p38 or JNK could not held 
responsible for the suppressive effect on lytic EBV. The 
BCR pathway, which was activated to induce EBV lytic 
gene expression in BL cells, also involves common 
signaling components like p38 and JNK (Figure 1). 
However, the TLR9 pathway seemed not to interfere or 
block the BCR pathway.  The underlying mechanism seems 
to be a TLR9-induced modulation of the histone structure 
of the BZLF1 promoter (49). Moreover, BCR-induced 
cytokine expression is synergistically enhanced (hIL10) or 
suppressed (IL1beta) upon additional TLR9 engagement in 
these cell lines ((49) and own unpublished observations). 
These distinct results of BCR and TLR9 engagement in 
EBV and cytokine expressions show the complexity of the 
underlying signaling pathways and their interactions. 

 
Little is known on the molecular events 

integrating TLR signaling into the classical BCR-mediated 
signaling cascades. Collectively, interactions of signaling 
pathways of BCR and TLR9 at the level of MAPK and NF-
kappaB have been observed (Figure 1). Interestingly, in 
mice B cells, TLR9 and BCR signaling appear to synergize 
in autophagosome-like structures where both receptors 
relocate, and thus hyperactivate signaling through to p38 
and JNK (93). Nevertheless, one has to consider that 
different sets of MAPK and NF-kappaB subunits might be 
involved. This could explain the diverse outcome 
depending on the maturation state of the B cell. Activation 
of ERK is important in BCR signaling but less important in 
TLR9 signaling in B cells (67); and JNK has a less 
prominent role in BCR triggering than in TLR9 activation 
(68). But again, these observations might not hold true in 
every developmental B cell stage.  
 
 
8. THE INTERACTION BETWEEN TLR9 AND EBV 
IMPACTS ON LATENCY AND TRANSFORMATION 
   
8.1. EBV manipulates TLR9 functionality for its 
survival and latency 

TLRs are capable to recognize EBV and initiate 
an appropriate innate immune response against it. A rapid 
detection of EBV may be essential to limit the spread of the 

virus and may contribute to control outgrowth of latently 
EBV-infected B cells. TLR9-mediated secretion of antiviral 
cytokines must therefore be regarded of great importance. 
Nevertheless, EBV exhibits an extremely successfully 
spreading among man, as it persistently infects more than 
95% of the world’s population. Thus, EBV has developed 
strategies to avoid immune detection and manipulate the 
immune system by altering several cellular functions (94). 
At least three experimental studies suggest that EBV uses 
mechanisms to suppress the host innate immune responses 
(95-97). Two studies link the EBV effect to its latent form 
of infection. Fathallah et al. (95) disclosed that LMP1 
strongly inhibits TLR9 mRNA and protein expression in 
primary human B cells (Figure 2) and thus inhibits 
functionality of TLR9 in IL6, TNFalpha and IgG 
production. Younesi et al. (97) observed that latent EBV 
infection significantly inhibited TLR9 triggering-induced 
proliferative human B cell responses. The authors claim 
that this was not due to down-regulation of TLR9 
expression. The mechanism, however, was not elucidated. 
Remarkably, van Gent et al. (96) found that the lytic phase 
EBV protein BGLF5 contributes to down-regulation of 
TLR9 (Figure 2) during the productive phase of infection 
through RNA degradation in human B cells. 

 
Above quoted studies suggest that EBV 

proteins impact on TLR9 expression or functionality 
in certain states of latent and lytic infection, or both.  
The resulting benefits are reduction of TLR9-induced 
host immune responses against EBV infection or 
reactivation and enabling survival of the virus, 
respectively.  Moreover, to make this matter more 
complex, TLR9 stimulation itself also seems to 
modulate TLR9 expression. Triggering of TLR9 
might lead to an either decreased or increased 
expression of TLR9 depending on the cell type 
(monocytes, pDCs, or B cells) and the stimulus (ODN 
CpG, untreated or UV-inactivated EBV) (26, 45, 98). 
Further studies are needed to gain more detailed 
insights on the EBV gene expression impacting on 
TLR9 expression and signaling. 

 
Importantly, it was also reported for the case 

of TLR7, that EBV hijacks the TLR7 pathway in 
order to enhance B cell proliferation, establish latent 
infection and modify pathways to regulate the 
activity of antiviral proteins like IRF5 (98). Similar 
to TLR7, EBV might be able to use TLR9 for its 
advantage in order to establish latency in the memory 
B cell pool via promoting latency, driving B cell 
proliferation, or both. In order for a naïve B cell to 
get maximally activated and thus transit to a memory 
B cell, three signals – BCR (mimicked by EBV’s 
LMP2A), CD40 (mimicked by EBV’s LMP1) and 
TLR stimulation (by EBV or other pathogens) are 
required (99, 100). Thus, EBV can stimulate its target 
cell to enter the memory B cell pool to establish long-
term latency by using TLR9 (or TLR7). On the other 
hand, both polyclonal TLR and antigen triggering of 
the antigen-selected and EBV-infected memory B cell 
may contribute to propagation of latent EBV within 
the infected host and - by mediating differentiation to 
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plasma cells - also of lytic EBV that may be 
transmitted to susceptible hosts 
 
8.2. TLR9 impacts on EBV’s gene expression and 
transformation capability  

TLR9 is important to launch innate immune 
responses against pathogens, for example via expression of 
pro-inflammatory cytokines. Using the MHV68 model, 
TLR9 deficiency was found to impair the host response to 
MHV68 infection, as reduced cytokine expression by 
dendritic cells and higher MHV68 viral load during both 
lytic and latent infection was observed in mice lacking 
TLR9 (46). MHV68 seems to use TLR signaling to 
condition the target cell for the establishment of viral 
latency (46). Controversially, ex vivo TLR9 stimulation of 
latently infected splenocytes using CpG DNA resulted in 
early B-cell activation, B-cell proliferation and a significant 
increase in the frequency of latently infected cells 
reactivating MHV68 (101). With respect to 
gammaherpesviruses, it has been demonstrated that TLR9 
exhibits essential roles during the elimination of acute 
MHV68 infection and the control of latent viral load 
following infection through the intraperitoneal route, but 
not after intranasal infection. Therefore, TLR9 seems to be 
in particular important for the host immune response to 
pathogens that reach locations where pDCs are abundantly 
present (such as the lymphoid organs and blood). Indeed, 
Fiola et al. (45) recently reported that TLR9 contributes to 
the recognition of EBV by primary monocytes and pDCs.  

 
Notably, patients with an IL1 receptor-associated 

kinase 4 (IRAK4) mutation, which abolishes the production 
of IFNs following stimulation of TLR7, TLR8 and TLR9, 
do not experience increased susceptibility to herpesviruses 
infections (102). This suggests that redundancy - at least 
partly - to TLR9 function may exist. 
 

In the human system, triggering of TLR9 was 
employed to more efficiently transform B cells following in 
vitro EBV infection (103). Furthermore, Iskra et al. (100) 
found that TLR9 triggering resulted in increased EBV-
driven B cell proliferation and transformation. Thus, TLR9 
triggering may impact on either enhanced expression of 
EBV latent transforming genes or on the suppression of 
EBV lytic genes. We demonstrated that immune activation 
via TLR9 triggering results in suppression of lytic EBV 
during de novo in vitro infection of cord blood B cells 
(104) and upon BCR-induced reactivation of EBV in 
chronically infected BL cell lines (49). These findings 
strongly suggest that TLR9 triggering leads to 
reinforcement of latent EBV following suppression of lytic 
EBV and thus may provide an important stimulus towards 
malignant B cell lymphoproliferation. Importantly, this 
might explain the development and rapid progression of 
endemic BL in children co-infected with EBV and the 
malaria parasite P. falciparum. The malaria parasite’s 
hemozoin was shown to trigger TLR9 (47, 48) and suppress 
EBV lytic gene expression (49), which might lead to B cell 
transformation due to enforced EBV latent gene expression. 
Thus, children of the Sub-Sahara African region may 
develop endemic BL and rapidly progress because of 
repeated co-infection with P. falciparum which triggers 

innate immune receptors like TLR9, and in turn affect 
EBV’s lytic and latent gene expression promoting B cell 
transformation. Controversially, other reports show that the 
P. falciparum antigen CDR1alpha is able to induce EBV 
reactivation from latency in BL cell lines (49), which 
results in a high viral load and might explain the fact that 
children in malaria-endemic areas have an elevated EBV 
load. Moreover, the polyclonal B cell activating capacity of 
P. falciparum might increase proliferation of EBV-positive 
cells, which may promote the emergence of BL (49). 
Studies about the interaction of EBV and P. falciparum are 
nevertheless rare, but indispensible for understanding the 
cause of BL development. 
 
9. CONCLUSIONS AND PERSPECTIVES 
 

EBV infects B cells from the nasopharynx-
associated lymphoid tissue (NALT) and subsequently 
establishes long-term latency in the memory B cell pool. 
We have elucidated that TLR9 plays a complex role in 
EBV infection. On the one hand, TLR9 functions to induce 
pro-inflammatory cytokine expression against pathogens 
and is therefore be hindered by EBV in order to avoid its 
own extinction. On the other hand, EBV may use TLR9 to 
establish EBV latency via gaining access to the memory B 
cell pool. Although both scenarios may be true, a lot more 
experiments have to be performed to clarify the role of 
TLR9 in EBV infection.   

 
EBV is the etiologic agent of infectious 

mononucleosis and is associated with a variety of cancers 
including endemic BL. Although EBV exhibits a unique 
potential to transform B cells in vitro, additional factors seem 
to be required for the development of EBV-associated 
malignancies. These factors include a compromised immune 
system (iatrogenic immune suppression as in organs 
transplants or immune deficiency as in advanced HIV 
infection) or as in endemic BL a co-infection with the malaria 
parasite P. falciparum.  

 
The role of TLR9 in tumor development is complex. 

On the one hand, TLR ligands have a great potential in cancer 
therapy due to their ability of raising or enhancing immune 
responses against malignant cells. Among all TLRs, TLR9 
ligands are the most intensively studied as they can be rather 
simply manufactured, administrated through various drug 
routes, and have very low side effects but exhibit very strong 
adjuvant effects that polarize helper T cell responses to Th1 
(37, 66). In contrast to that, TLR stimulation due to excessive 
pathogen encounter might lead to high inflammation process 
over a long period (105). Chronic infection and inflammation 
are considered two of the most important epigenetic and 
environmental factors contributing to tumor genesis and tumor 
progression (106, 107). Chiron and colleagues (29) proposed 
the model that repeated polyclonal activation of leukemic B 
cells by microbial molecules during natural infection or 
inflammation is the initial step in the oncogenic process that 
lowers the threshold for outgrowth of malignant cell clones. 
 

Evaluating if TLR9 has a positive or negative 
effect in tumor onset and progression has to be done on the 
cell type, maturation of the cell, whether an infection is 
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present, and other factors separately. In the case of EBV-
associated malignancies like BL, TLR9 triggering seems to 
have a detrimental impact in cells as it promotes EBV-
induced B cell proliferation and transformation. In endemic 
BL, this TLR9 trigger may be the repeated infection of 
children with P. falciparum. The interaction of the two 
pathogens EBV and P. falciparum have long been 
considered as the two main factors causing BL. Recent 
publications about P. faciparum’s capability to affect EBV 
gene expression are the first steps to shed light on this 
matter. Importantly, HDAC inhibitors were shown to 
counteract TLR9’s impact on EBV gene expression (49), 
which might yield in new ideas about therapies.  

 
Analyzing the TLR9-activated signaling 

pathways – sub-pathways, strength and duration of 
activation – may give important information whether 
TLRs might have beneficial or detrimental effects on 
EBV infection and tumor development in each specific 
case. In this matter TLR triggering gives a ‘signaling 
fingerprint’, which has to be carefully examined as it 
might contain the key for the understanding of the 
diverse outcome of TLR engagement. 
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