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1. ABSTRACT 
 

Usher syndrome is the most common deafness-
blindness caused by genetic mutations. To date, three genes 
have been identified underlying the most prevalent form of 
Usher syndrome, the type II form (USH2). The proteins 
encoded by these genes are demonstrated to form a 
complex in vivo. This complex is localized mainly at the 
periciliary membrane complex in photoreceptors and the 
ankle-link of the stereocilia in hair cells. Many proteins 
have been found to interact with USH2 proteins in vitro, 
suggesting that they are potential additional components of 
this USH2 complex and that the genes encoding these 
proteins may be the candidate USH2 genes. However, 
further investigations are critical to establish their existence 
in the USH2 complex in vivo. Based on the predicted 
functional domains in USH2 proteins, their cellular 
localizations in photoreceptors and hair cells, the observed 
phenotypes in USH2 mutant mice, and the known 
knowledge about diseases similar to USH2, putative 
biological functions of the USH2 complex have been 
proposed. Finally, therapeutic approaches for this group of 
diseases are now being actively explored. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Usher syndrome is the most common condition 
of combined blindness and deafness, occurring in about 1 
in 23,000 people worldwide (1-3). This disease was first 
discovered by Albrecht von Grafe, a German 
ophthalmologist, in 1858 (4) and is named after Charles 
Usher, a British ophthalmologist, who reported the 
inheritance of this disease on the basis of 69 cases in 1914 
(5). According to the clinical presentation in hearing, Usher 
syndrome is categorized into three types (6, 7). Type I 
(USH1) is manifested as congenital profound deafness as 
well as vestibular dysfunction; USH2 exhibits congenital 
moderate hearing loss and normal vestibular function; and 
USH3 is characterized by progressive hearing impairment 
and occasional vestibular dysfunction. The vision problem 
of the all three types is manifested as retinitis pigmentosa 
(2, 8-11), showing early night and peripheral vision loss 
and late central vision loss. To date, there is no cure for this 
disease. Patients with this disease mainly rely on early 
diagnosis and early education to adapt themselves to their 
dual sensory loss. Usher syndrome is a heterogeneous 
autosomal recessive genetic disorder. Twelve causative 
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Figure 1. Schematic diagrams of USH2A, GPR98, WHRN and PDZD7. (A) USH2A has two protein isoforms. Isoform A is an 
N-terminal fragment of isoform B. Numerous USH2A mutations have been identified. They are evenly distributed along the 
entire gene in humans. Therefore, they are not marked here. Exon 5 replaced in Ush2a knockout mice is marked in blue. Domain 
names of various symbols are listed below. (B) GPR98 isoform b is a transmembrane protein with extremely long ectodomain. 
Although other GPR98 isoforms were found as RNA transcripts in humans and mice, their existence as functional proteins needs 
to be verified (question marks). GPR98 mutations found in humans are marked in red, and its mutations in various Gpr98 mutant 
mouse models are marked in blue. Domain names of each symbol are listed below. (C) Whirlin has two known protein isoforms, 
the long and C-terminal isoforms. The N-terminal isoform has not yet been found at the protein level in the retina or the inner ear 
(question mark). Whirlin mutations found in humans are marked in red, and its mutations in whirlin mutant mouse models are 
marked in blue.  (D) PDZD7 has a long isoform. Its N-terminal short isoform has not been found at the protein level (question 
mark). PDZD7 mutations in humans are indicated in red. 
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loci, at least 9 genes, have been identified (12-14). 
However, the functions of these genes in either the inner 
ear or the retina are largely unknown. In this review, we 
focus on the current understanding of USH2, which 
accounts for about 70% of all Usher syndrome cases (2).  

 
3. USH2 GENES 
 

Four USH2 loci were originally defined, USH2A-
D. The genes responsible for USH2A, USH2C, and USH2D 
are USH2A (usherin) (15), GPR98 (G Protein-coupled 
Receptor 98) (16), and WHRN (whirlin) (17), respectively. 
The gene for USH2B was once considered to be NBC3 
(sodium bicarbonate cotransporter) (18). However, further 
study of the consanguineous Tunisian family carrying the 
USH2B locus demonstrates that mixed mutations in the 
GPR98 and PDE6B genes are responsible for the disease 
manifestation and, thus, the USH2B locus was withdrawn 
(19). Recently, PDZD7 was shown to be a modifier gene 
for the retinal symptom in USH2A patients and also, 
together with USH2A or GPR98, to contribute to a digenic 
form of Usher syndrome (20). In addition to these above 
genes, a novel USH2 locus has been localized on the 
chromosome 15q, though the underlying gene has not yet 
been identified (21).  

 
USH2A is the most predominant causative gene 

for Usher syndrome among different human ethnic 
populations (2, 15, 22-32). Its mutations lead to a wide 
spectrum of vision and hearing defects in humans. Some 
USH2A mutations, such as p.C759F and p.G4674R, are 
known to cause only nonsyndromic retinitis pigmentosa 
(30, 33, 34). USH2A has 72 exons and is expressed as 
isoforms A and B (Figure 1A). Isoform B, the major 
isoform in the retina (35), is an extremely large 
transmembrane protein with 5202 amino acids (aa) in 
humans (31). Its long extracellular region has multiple 
repeated functional domains common in cell adhesion 
proteins and extracellular matrix proteins. At its 
cytoplasmic C-terminus, there is a PDZ (postsynaptic 
density 95; discs large; zonula occludens-1)-binding motif 
(PBM). Isoform A is an N-terminal 1546-aa fragment of 
isoform B. USH2A is proposed to be involved in cell 
adhesion. 

 
The GPR98 gene is also known as VLGR1 (Very 

Large G protein-coupled Receptor 1) and MASS1 
(Monogenic Audiogenic Seizure Susceptibility 1). It exists 
only in the vertebrate (36) and is one of the largest genes, 
with 90 exons (37). Its mRNA is present mostly in the brain 
and spinal cord during development (16, 37) and can also 
be found in many other tissues (16, 37-39). GPR98 
expresses multiple transcripts, including isoforms a, b and c 
in humans and isoforms b, d, e and Mass1 in rodents 
(Figure 1B) (37-40). Mutations in the longest isoform, 
isoform b, have been identified in patients with USH2C 
(16, 41, 42). Additionally, different mutations along the 
murine Gpr98 gene share common phenotypes in vision 
and hearing (39, 40, 43-47). These findings suggest that 
isoform b is the major isoform in both the retina and the 
inner ear and is essential for vision and hearing. We have 

observed protein expression of this isoform in the retina 
(48). This isoform is 6306 aa long in humans. It has 
signature domains of family B of G protein-coupled 
receptors (GPCRs), i.e., a GPCR proteolytic site (GPS) and 
a 7-transmembrane domain (7TM). Therefore, GPR98 may 
function in signal transduction. GPR98 also has a PBM at 
its C-terminus.  Along its long extracellular region, it has a 
laminin globular-like domain and multiple tandem-
arranged Calx-beta domains. The laminin globular-like 
domain is a cell adhesion domain, and the Calx-beta 
domain is able to bind to Ca2+ with low affinity in vitro 
(38).  

 
Different mutations of whirlin cause different 

diseases. Compound heterozygosity of p.Q103X and 
c.837+1G>A was discovered in patients with USH2D (17), 
and homozygous mutations of p.R778X and c.2423delG 
were found in patients with nonsyndromic deafness, 
DFNB31 (Figure 1C) (49, 50).  Whirlin has multiple 
mRNA transcripts in the inner ear and the retina (49, 51-
53), which can be conceptually translated into three groups 
of proteins, the long, N-terminal, and C-terminal isoforms 
(Figure 1C). The long isoform contains three PDZ domains 
and a proline-rich region. The N-terminal isoform has the 
first PDZ domain of the long isoform, and the C-terminal 
isoform has the proline-rich region and the third PDZ 
domain. At the protein level, whirlin mainly expresses the 
long isoform in the retina and the long and C-terminal 
isoforms in the inner ear (53). Because both the PDZ 
domain and proline-rich region are protein interaction 
modules, whirlin is believed to be engaged in the assembly 
of multi-protein complexes at specific subcellular locations.  

 
Interestingly, the newly identified USH2 modifier 

and contributor gene, PDZD7, is a homolog of whirlin. In 
humans, it has 16 exons and several isoforms (Figure 1D) 
(20, 54). The long isoform has three PDZ domains and one 
proline-rich region. The two short isoforms are the N-
terminal fragments of the long isoform with the first two 
PDZ domains. However, the short isoforms have not been 
confirmed at the protein level. Similar to whirlin, mutations 
in PDZD7 are involved in either Usher syndrome or 
nonsyndromic deafness. A homozygous reciprocal 
translocation, 46,XY,t(10;11)(q24;q23), was found to 
disrupt the PDZD7 gene at intron 10, which causes 
nonsyndromic congenital hearing impairment in a 
consanguineous family (54). A heterozygous p.R56PfsX 
mutation of PDZD7 was found to exacerbate retinal 
degeneration in an USH2A patient, compared to her sibling 
carrying the same USH2A mutation. Additionally, 
heterozygous mutations of PDZD7, c.1750-2A>G and 
p.C732LfsX, are present in Usher patients with a 
heterozygous USH2A mutation, p.R1505SfsX, and with a 
heterozygous GPR98 mutation, p.C732LfsX, respectively 
(20). 
 
4. ANIMAL MODELS 
 

Little access to patient retinas necessitates the 
establishment of various animal models in order to 
understand the biological functions of USH2 genes and the  
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Table 1. USH2 mutant mouse models 
Model name Mutation Phenotype References 
Ush2a 
Ush2a knockout replacement of exon 5 with a neomycinr cassette hearing impairment tested at 4 months of age; 

no circling; 
retinal degeneration evident at 20 months of age 

(35) 

Gpr98 
Gpr98 knockout replacement of exons 2-4 with a neomycinr cassette audiogenic seizure susceptibility at P21; 

hearing impairment at P7; 
no circling; 
no report on retinal function 

(40, 46) 

Gpr98-EYFP 
knockin 

replacement of exons 2-4 with a EYFP-neomycinr cassette defects in hair cell stereocilia at P4; 
no circling; 
no report on audiogenic seizure susceptibility or retina 
function 

(47) 

Frings & BUB/BnJ a G deletion at 6864 bp (NM_054053) causing a p.V2250X 
truncation 

audiogenic seizure susceptibility at P21; 
hearing impairment at P21; 
no circling; 
no report on retinal function 

(39, 43) 

Gpr98/del7TM replacement of exon 82 with a HA-neomycinr cassette audiogenic seizure susceptibility at P21; 
hearing impairment at P21; 
no circling; 
mildly abnormal retinal function at 15 months of age 

(44, 45) 

Whrn 
Whrn knockout partial replacement of exon 1 with a neomycinr cassette hearing impairment tested at 2 months of age; 

no circling; 
retinal degeneration starting at 28 months of age 

(53) 

whirler a 592-bp deletion causing a p.H433fsX58 truncation hearing impairment at P20; 
circling; 
no retinal degeneration 

(49, 53, 56, 
156) 

 
disease mechanisms underlying USH2. Due to the well 
development of the transgenic techniques, the availability 
of extensive public genome resources, the similarity of 
retinal anatomy to humans’, and the relative low 
maintenance cost, mouse models have been widely 
adopted. Currently, mouse models with either naturally 
occurring or transgenic mutations in USH2A, GPR98 and 
WHRN are available (Table 1). In addition, studies on these 
USH2 genes in zebrafish using the morpholino knockdown 
technique are being actively pursued (20). According to the 
highly conserved USH2 protein sequences between these 
organisms, the findings in these animal models are 
expected to be supportive and complementary to each 
other.  

  
To date, an Ush2a knockout mouse model has 

been generated by replacing exon 5 of Ush2a with a 
neomycin resistant cassette (Figure 1A) (35). Elimination 
of the USH2A protein expression in this mouse has been 
demonstrated by both western analysis and 
immunostaining. This mouse shows nonprogressive 
moderate hearing impairment at 4 month of age, the earliest 
time point tested, progressive late onset vision loss, which 
is evident at 20 months of age, and no circling behavior, 
indicative of no balance problem. These hearing, vestibular, 
and vision phenotypes are similar to the clinical symptoms 
in USH2A patients.  

 
Four Gpr98 mutant mouse lines have been 

reported (Figure 1B). The BUB/BnJ and Frings mice carry 
a naturally-occurring Gpr98 mutation, c.6864delG 
(NM_054053), leading to a premature truncation of the 
protein, p.V2250X (39, 43). The second and third Gpr98 
mutant mouse lines are Gpr98 knockout and Gpr98-EYFP 
knockin mice, generated by the same research group (40, 
47). Gpr98 exons 2-4 are replaced by a neomycinr cassette 
in the knockout line and by an EYFP gene in a neomycinr  

 
cassette in the EYFP knockin line. The fourth model was 
genetically manipulated to delete the transmembrane and 
cytoplasmic domains of GPR98 (del7TM) (45). Phenotypic 
analyses of these Gpr98 mutant mice demonstrate that 
Gpr98 mutations cause audiogenic seizure susceptibility at 
a very young age (around postnatal day (P) 21 to 27) (39, 
40, 45). Although this phenotype in mice cannot be linked 
to the clinical symptoms in USH2C patients (16), it may be 
associated to patients with febrile and afebrile seizures 
(FFB4), which are caused by the GPR98 nonsense 
mutation, p.S2832X (55). No circling behavior was 
observed in these Gpr98 mutant mice. Further 
examinations show congenital hearing impairment in all 
four Gpr98 mutant mice (43, 44, 46, 47). A mild vision 
defect, reduction in both a- and b-wave amplitudes of 
electroretinogram, was reported in the Gpr98/del7TM 
mouse at 15 months of age (44). 

 
For whirlin, two mutant mouse lines are presently 

available, the whirler and whirlin knockout mice (Figure 
1C). The whirler mouse occurred naturally with a large 
deletion between whirlin exons 6 and 9 (49). This mutant 
mouse has deafness and circling behavior (56) but no 
vision problem (53), resembling the nonsyndromic 
deafness DFNB31 patients. In the whirlin knockout mouse, 
a partial deletion of exon 1 was introduced. This knockout 
mouse has retinal degeneration starting from 28 months of 
age and early onset hearing loss at 2 months of age, the 
earliest time point tested. The mouse does not show 
vestibular defects (53). The phenotypes in the whirlin 
knockout mouse mimic the USH2 in humans. Interestingly, 
the mutation in the whirler mouse is located after the first 
two PDZ domains of whirlin, which is similar to the 
mutations causing DFNB31 in patients. Additionally, 
mutations in the whirlin knockout mouse and USH2D 
patients are both localized at the whirlin N-terminal region, 
which disrupt the first two PDZ domains. These findings 
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Figure 2. Cellular localization of USH2 proteins. (A) In photoreceptors, USH2 proteins were previously localized at the 
connecting cilium, basal bodies, inner segment, adherens junction, and synaptic terminus (question mark). They were recently 
demonstrated to be enriched at the periciliary membrane complex (red) between the outer and inner segment (Figure 3) (35, 53). 
A rod photoreceptor is presented here. The localization of USH2 proteins in cone photoreceptors is presumably similar to that in 
rod photoreceptors. (B) In hair cells, USH2A, GPR98, and whirlin (red) are localized at the ankle-link of the stereocilia during 
development. They are also present at the synaptic region of hair cells, except that whirlin is absent at the synaptic region in the 
inner hair cells. During development and in adulthood, whirlin is present at the tip of the stereocilia as well. 

 
suggest that whirlin long isoform is important for vision, 
while both whirlin long isoform and C-terminal isoform are 
indispensable for hearing. Thus, the two whirlin mutant 
mouse lines are appropriate animal models for human 
diseases, DFNB31 and USH2D, respectively. 

 
Unlike the USH1 mouse models that show 

roughly normal vision functions, mouse models with at 
least one mutation in each of the USH2 genes exhibit vision 
problems (12, 13, 57). However, these vision problems are 
generally very mild and late-onset, compared with those in 
USH2 patients. The reasons for this discrepancy are largely 
unclear. Many factors could be involved, such as 
differences between humans and mice in isoform 
combinations, mutation locations in USH2 genes, genetic 
backgrounds, redundant protein compensations, lifespans, 
photoreceptor structures and physiology, influence of non-
genetic factors, sensitivities of diagnostic measures, etc. 
(58, 59). Additionally, although retinitis pigmentosa in 
USH2 is characterized to have an onset during puberty (6, 
7), more and more atypical USH2 patients have been found 
with mutations in these three USH2 genes. It is common 
that these patients have severe vision loss much later than 
puberty (9-11, 60-62). 

 
5. CELLULAR LOCALIZATION OF USH2 
PROTEINS 
 

USH2 proteins have been intensively investigated 
regarding their cellular location in the inner ear and the 
retina because of their involvement in Usher syndrome. 
Their cellular localization in other organs has not yet been 

systematically studied, except USH2A isoform A. This 
USH2A isoform was shown to be present in the basement 
membrane of a battery of tissues, including ovary, oviduct, 
testes, and intestine (63, 64).  

  
In the retina, USH2 proteins are localized 

specifically in photoreceptors (12, 35, 52, 53, 65, 66). The 
photoreceptor is a highly polarized sensory neuron 
converting light signals to electrical impulses. It consists of 
the outer segment, connecting cilium, inner segment, cell 
body, and synaptic terminus (Figure 2A). It contacts with 
Muller cells at the adherens junction. Initially, USH2 
proteins were localized to the inner segment, adherens 
junction, connecting cilium, basal bodies, and synaptic 
terminus in photoreceptors (Figure 2A) (12, 52, 65, 66). 
However, among these subcellular structures, we have 
demonstrated that USH2 signals disappear largely only at 
the connecting cilium layer in the Ush2a knockout, whirlin 
knockout and Gpr98/del7TM mice, suggesting that these 
three USH2 proteins are highly enriched around the 
connecting cilium (35, 48, 53). Additional studies using 
immunoelectron microscopy show that all three USH2 
proteins are at the mouse periciliary membrane complex 
(PMC) (35, 53), the plasma membrane of the apical inner 
segment directly facing the connecting cilium (Figure 2A) 
(67). The frog periciliary ridge complex (PRC), discovered 
more than twenty years ago (68), is an analogous structure 
to PMC. It is a morphologically-specialized structure with a 
symmetrical array of 9 ridges and 9 grooves. Whirlin is 
enriched at the PRC in frog photoreceptors (53, 65). 
Therefore, the subcellular locations of whirlin in mouse and 
frog photoreceptors are highly conserved. 
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Figure 3. Subcellular localization of whirlin in photoreceptors as determined by western blot analysis of retinal serial sections. A 
mouse retina was flat-mounted, frozen, and tangentially sectioned at 10 µm, as previously described (69). The protein content of 
the serial sections 1-12 was analyzed by western blotting using antibodies against whirlin (Rabbit PDZIE) (53) and protein 
markers for various rod cellular compartments. The markers include the rod outer segment marker-rom1 (a gift from Dr. Andrew 
Goldberg, Oakland University), mitochondrial marker-complex IV subunit 1 (COX I, MS404, MitoSciences), rod photoreceptor 
markers-transducin alpha and beta subunits (sc-389, Santa Cruz Biotechnology and PA1-725, Applied BioReagents, 
respectively), synaptic marker-syntaptophysin (sc-12737, Santa Cruz Biotechnology), general cellular marker-beta-tubulin 
(T0198, Sigma), and marker for the basal bodies and centrioles-gamma-tubulin (T6557, Sigma). Specific whirlin band appeared 
in sections 3 and 4, corresponding to the border between the outer and inner segment, and was undetectable in other cellular 
compartments of photoreceptors. OS, outer segment; CC, connecting cilium; IS, inner segment; OLM, outer limiting membrane 
(adherens junction); ONL, outer nuclear layer; OPL, outer plexiform layer (photoreceptor synapse). 

 
To further verify these findings, we recently 

employed the serial tangential sectioning technique coupled 
with western analysis (69). In the retina, different 
photoreceptor subcellular compartments are neatly 
organized into tangential layers.  Western analysis of 
retinal sequential tangential sections clearly demonstrated 
that whirlin is highly concentrated at the connecting cilium 
region between the outer and inner segment, but not 
detectable in the inner segment, adherens junction (outer 
limiting membrane), or synaptic terminus (outer plexiform 
layer) in photoreceptors (Figure 3). The localization of 
USH2 proteins mainly at the PMC but not at the synaptic 
terminus of photoreceptors is further supported by the 
phenotypic analyses in USH2 mutant mice and the 
symptom manifestation in USH2 patients. For instance, 
electron microscopy shows ultrastructural abnormalities 
around the PMC region but not at the synaptic terminus of 
photoreceptors in whirlin knockout mice (53). 
Electroretinogram detects no defective waveforms, 
typically resulting from abnormal photoreceptor synaptic 
transmission, in Ush2a, Gpr98 and whirlin mutant mice 
(35, 44, 53) or in USH2 patients.  

 
The calycal processes in photoreceptors are 

thought as an analogous structure to the stereocilia in hair 

cells (70). It is interesting to know whether USH2 proteins 
are localized in these structures in photoreceptors. The 
calycal processes are well developed in humans, frogs and 
other species. In mice, only cone photoreceptors have 
obvious calycal processes (71-73). Previous studies using 
both mice and frogs did not report USH2 proteins in the 
calycal processes (12, 52, 65, 66). Our studies recently 
show that whirlin is not evident at the frog calycal 
processes, but GPR98 is localized at this structure in mouse 
cone photoreceptors (53).  

 
The inner ear is composed of the cochlea and 

vestibular system for hearing and balance, respectively. In 
the vestibular system, hair cells exist in the maculae of the 
saccule and utricle and the cristae ampullares of the 
semicircular canals. In the cochlea, one row of inner hair 
cells and three rows of outer hair cells exist in the organ of 
Corti. The inner hair cells are responsible for 
mechanoelectric transduction, whereas the electromotile 
outer hair cells also perform an electromechanical 
transduction, thereby amplifying the sound-evoked 
vibrations of the entire sensory epithelium (74). All types 
of hair cells have stereocilia on their apical surfaces, which 
are modified microvilli filled with actin filament bundles. 
The stereocilia are well-organized into rows of different 
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Figure 4. The USH2 protein complex and its putative components. USH2A (light blue) and GPR98 (yellow) interact with whirlin 
(red) through the PDZ-domain-mediated binding (arrows). Proteins (green) interacting with at least one of the three USH2 
proteins are thought as putative components of the USH2 complex. The domains involved in the interactions are indicated by 
lines. LamGL, thrombospondin-type laminin G domain; LamNT, N-terminal globular laminin domain; LamEGF, laminin EGF-
like domain; LamG, laminin globular-like domain; PR, proline-rich region. 

 
lengths and form a staircase-like hair bundle. The 
mechanoelectric transduction channels are located at the tip 
of the stereocilia. Recent studies show that various links 
exist at the tip and along the entire length of the stereocilia 
during development and in adulthood (70, 75, 76).  

 
All USH2 proteins are localized at the ankle-link 

of the stereocilia in hair cells (44, 46, 52, 53). This ankle-
link is a transient structure at the base of the stereocilia, 
present from P2 to P9 and completely lost by P12 (Figure 
2B) (76). Whirlin is also present at the tip of the stereocilia 
in hair cells throughout development and adulthood (51, 77, 
78). In addition, the existence of USH2 proteins has been 
found in other regions of the inner ear, though it has not 
been verified using USH2 mutant mice as negative 
controls. The USH2 proteins are shown at the synaptic 
region of hair cells with an exception of whirlin absent at 
the synaptic region of the inner hair cells. The three USH2 
proteins are also localized in the cell body of the spinal 
ganglia. Whirlin has been detected in various nervous 
fibers (52).  

 
6. THE USH2 PROTEIN COMPLEX AND ITS 
PUTATIVE COMPONENTS 
 

A PDZ domain, about 90 amino-acid long, has 5-
6 beta-strands and 2 alpha-helices with a hydrophobic cleft. 
This cleft binds to a ligand, called the PDZ-binding motif 
(PBM). PBM exists usually at the C-terminus, sometimes 
in an internal region, or even at a PDZ domain of proteins 
(79). Whirlin has multiple PDZ domains, and both USH2A 
and GPR98 have a PBM at their C-termini. We and others, 
using a series of biochemical assays, have demonstrated 
that whirlin binds to USH2A and GPR98 in vitro through 
the PDZ domain-mediated interactions (26, 52, 53). The 
three USH2 proteins are colocalized to the ankle link of the 
stereocilia in hair cells and the PMC in photoreceptors (46, 
53). In whirlin knockout, Ush2a knockout and 
Gpr98/del7TM mutant mice, we have discovered that loss 

of any one of these three USH2 proteins causes 
mislocalization and reduced expression of the other two 
proteins in photoreceptors and hair cells (53). These data 
strongly suggest that the three USH2 proteins, probably 
together with other interacting proteins, form a multi-
protein complex in vivo (Figure 4) and that each one of the 
USH2 proteins is required for the assembly of this 
complex. However, the interdependence of the three USH2 
proteins for their normal cellular localization and 
expression level is not exactly the same in hair cells and in 
photoreceptors, suggesting that the USH2 protein complex 
may not be assembled precisely in the same way or contain 
the exactly same pool of components between these two 
sensory neurons. Additionally, we found that the transgenic 
whirlin delivered by adeno-associated virus (AAV) can 
restore the normal localization and expression level of both 
USH2A and GPR98 in the whirlin knockout photoreceptor 
(48). This finding further confirms the existence of the 
USH2 protein complex in vivo and indicates that whirlin is 
involved in the organization of this USH2 complex. 
Supportively, USH2A and GPR98 were recently found to 
associate with each other in tracheal epithelial cells (80). 
However, the mechanistic details on the assembly of the 
USH2 protein complex are scarce. 

 
Besides the three known USH2 proteins, USH2-

interacting proteins could be potential components of this 
USH2 complex (Figure 4 and Table 2). In vitro 
biochemical assays have identified a scaffold protein, 
SANS, (65) and an actin-based motor protein, myosin VIIa 
(MYO7A) (77), as whirlin-interacting proteins. These two 
proteins are localized at the periciliary region of 
photoreceptors and close to or at the ankle link in hair cells 
(12, 13). They are implicated in human USH1G and 
USH1B, respectively (81, 82). Additionally, USH2A and 
GPR98 are shown to bind to MYO7A, harmonin and 
PDZD7 in vitro (20, 46, 83). Harmonin is encoded by the 
USH1C gene and is a homolog of both whirlin and PDZD7 
(84, 85). Harmonin is known to bind to cadherin 23  
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Table 2. USH2-interacting proteins 
Protein name Involved domain Involved domain in USH2 proteins References 
USH2A-interacting proteins 
vezatin not determined cytoplasmic region (46) 
MYO7A MyTH4-FERM cytoplasmic region (46) 
PDZD7 PDZ1 & PDZ2 PBM (20) 
harmonin PDZ1 PBM (83) 
whirlin PDZ1 & PDZ2 PBM (26, 52, 53) 
NLP isoform B IF domain cytoplasmic region w/o PBM (97) 
collagen IV 7S domain loop b of the laminin EGF-like domain (99) 
fibronectin not determined loop d of the laminin EGF-like domain (98) 
GPR98-interacting proteins 
MYO7A MyTH4-FERM cytoplasmic region (46) 
PDZD7 PDZ1 & PDZ2 PBM (20) 
harmonin PDZ1 PBM (83) 
whirlin PDZ1  PBM (26, 52, 53) 
whirlin-interacting proteins 
Cav1.3 PBM PDZ1 & PDZ2 (101) 
SANS PBM PDZ1 & PDZ2 (65) 
NGL-1 cytoplasmic region PDZ1 & PDZ2 (77) 
p55 GUK domain PDZ3 (100, 102) 
EPS8 PTB and PR PDZ1, PDZ2 & PR (103) 
CASK GUK domain PR & PDZ3 (100) 
CIRL/latrophilin1 C-terminal region PR & PDZ3 (100) 
MYO15A PBM PDZ3 (51) 
 MyTH4-FERM PDZ1 & PDZ2 (77) 
 SH3 PR & PDZ3 (77) 
MYO7A not determined not determined (77) 
whirlin PDZ1  & PDZ2 PDZ1 & PDZ2 (53) 
 PR & PDZ3 PR & PDZ3 (77) 

MyTH4-FERM: myosin tail homology 4-protein 4.1, ezrin, radixin, moesin domain, NLP: ninein-like protein, IF: intermediate 
filament domain, Cav1.3: L type voltage-dependent calcium channel alpha 1D subunit, NGL-1: netrin-G1 ligand, GUK: 
guanylate kinase-like domain, CASK: calcium/calmodulin-dependent serine protein kinase, SH3: src homology 3, PR: proline-
rich domain, PTB: phosphotyrosine binding domain 
 
(CDH23) and protocadherin 15 (PCDH15), which have one 
or two PBMs (86, 87) and are involved in USH1D (88, 89) 
and USH1F (90, 91), respectively. Although the interaction 
between CDH23/PCDH15 and whirlin has not been 
reported, these two proteins could be whirlin-interacting 
candidates. Furthermore, clarin-1, encoded by the USH3A 
gene (92), has a predicted PBM (93). Thus, clarin-1 could 
also be a potential whirlin-interacting protein. Therefore, 
the USH2 proteins are able to associate with multiple 
USH1 and, possibly, USH3 proteins. Together with the 
finding that USH1 proteins interact with one another in 
vitro (94, 95), it has been hypothesized that proteins 
involved in different types of Usher syndrome are 
organized in one interactome in vivo (12, 65, 66, 96). 

 
The USH interactome is proposed to exist at the 

synapse in hair cells and photoreceptors, simply according 
to immunostaining data (12, 66). However, a variety of 
cellular and biochemical studies do not support that all 
USH2 proteins are present in the synapse of photoreceptors 
(see above and Figure 3) (48, 53). Recently, a novel USH 
interactome without harmonin has been proposed present at 
the periciliary region of photoreceptors (65, 96). This novel 
USH interactome has USH2 proteins together with 
MYO7A and SANS. MYO7A can interact with all three 
USH2 proteins in vitro. In hair cells, loss of MYO7A 
causes absence of these three USH2 proteins in the 
stereocilia in mice (Myo7a4626SB). These findings suggest 
that MYO7A participates in transporting USH2 proteins to 
the ankle-link in hair cells (46). In photoreceptors, the 
localization of MYO7A partially overlaps with the PMC 
(13). But we found that whirlin expression and localization 

have no change in Myo7ash1 (SH1/LeJ) (data not shown) or 
Myo7ash1-7J/J mice (Figure 5), which have a missense 
mutation at the motor domain or a 778-bp deletion 
immediately after the motor domain of MYO7A, 
respectively. Therefore, unlike in hair cells, MYO7A may 
not be the motor protein for the localization of USH2 
proteins, or redundant motor proteins may exist in 
photoreceptors. Based on these data, we believe that the 
hypothesis of one USH interactome including various USH 
proteins needs to be tested carefully and thoroughly in both 
photoreceptors and hair cells. 

 
A putative transmembrane protein, vezatin, is 

shown to bind to USH2A and localized to the ankle-link of 
hair cell stereocilia. In the Gpr98 knockout mouse and the 
whirler mouse, vetazin is mislocalized from the ankle-link 
(46). Therefore, vezatin is probably a component of the 
USH2 complex at the ankle-link in hair cells. However, the 
presence of vezatin in the USH2 complex in photoreceptors 
has not been reported. USH2A also binds to the 
centrosomal ninein-like protein (NLP) isoform B (97). The 
latter protein links USH2A with lebercilin, a protein 
implicated in Leber’s congenital amaurosis, an early onset 
retinal degenerative disease (97). Additionally, USH2A 
was found to associate with collagen IV and fibronectin 
(98, 99). For whirlin, it interacts in vitro with calmodulin-
dependent serine kinase (CASK) (100), a voltage-
dependant calcium channel α subunit (Cav1.3) (101), and a 
transmembrane protein (NGL-1) (77).  Therefore, all these 
proteins are candidate components in the USH2 complex at 
the PMC in photoreceptors and the ankle-link in hair cells 
(Figure 4). However, further investigation and confirmation 
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Figure 5. Whirlin expression in the Myo7ash1-7J/J retina. (A) Whirlin signals in the wild-type and Myo7ash1-7J/J mice are similar to 
each other across the various retinal layers. The signals at the OLM are nonspecific signals according to our previous studies (48, 
53). OS, outer segment; IS, inner segment; OLM, outer limiting membrane; ONL, outer nuclear layer; OPL, outer plexiform 
layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.  Scale bars, 20 µm. (B) Observation of 
whirlin signals at a high magnification shows no difference between the wild-type and Myo7ash1-7J/J photoreceptors. Whirlin 
(green) is localized beneath acetylated α-tubulin (red, top panels) and above rootletin (red, bottom panels) in photoreceptors. 
Scale bars, 5 µm. (C) Western analysis demonstrates that there is no difference in the whirlin expression level between the wild-
type and Myo7ash1-7J/J retinas. Actin signals were used as a loading control. The Myo7ash1-7J/J mouse was purchased from the 
Jackson Laboratory and was discovered by genomic DNA sequencing in our lab to have a 778-bp deletion (between 4348 – 5127 
bp in NM_008663) immediately after the motor domain. 

 
of these proteins in the USH2 complex in vivo are essential 
and urgent. Besides studying the above putative 
components of the USH2 complex, we believe that an 
unbiased protein interaction screening is an alternative way 
to generate a more complete picture of the molecular 
composition of the USH2 complex. 

 
Whirlin also binds to a scaffold protein, p55 

(102), an actin-regulatory protein, EPS8 (103), and an actin 
motor protein, myosin XVa (MYO15A) (51, 77, 78). These 
three proteins are colocalized with whirlin at the tip of hair 
cell stereocilia (51, 77, 78, 102, and our unpublished data). 
In the shaker2 mutant mouse (Myo15ash2), which has a 
mutation in the Myo15a gene, all whirlin, EPS8 and p55 are 
mislocalized. In the whirler mouse, the expression of p55 
and EPS8 at the tip of stereocilia is ablated or reduced, but 

MYO15A expression is not changed. These findings 
suggest that the interactions of whirlin with p55, EPS8 and 
MYO15A exist in hair cells and that MYO15A is essential 
for the delivery of whirlin to the tip of hair cell stereocilia. 
However, p55, EPS8 and MYO15A are probably not the 
components of the USH2 complex in hair cells, because the 
USH2 complex is localized at the ankle-link, the base of 
hair cell stereocilia. In photoreceptors, the localization of 
p55, EPS8 and MYO15A are not clear. 

 
7. POTENTIAL FUNCTIONS OF THE USH2 
COMPLEX AND DISEASE MECHANISMS 
UNDERLYING USH2 
 

Disruption of the USH2 complex is now believed 
to be the primary cause underlying USH2 pathogenesis in 
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Figure 6. A schematic diagram of subcellular structures around the PMC in photoreceptors. The PMC (green) directly faces the 
plasma membrane of the connecting cilium (red). There are fiber-like connections between these two structures. The plasma 
membrane of the apical inner segment (blue) neighboring the PMC is in close proximity of the membrane of the nascent disks 
(purple) at the base of the outer segment. Intraflagellar transport occurs along the connecting cilium (arrows). Formation of new 
membrane disks is at the basal outer segment.  

 
humans and the Usher syndrome-like phenotypes in mice. 
Therefore, this complex is critical for the cell biology and 
survival of both photoreceptors and hair cells. However, its 
exact biological function has not yet been revealed. 
Because of the normal electroretinogram in USH2 mutant 
mice and the normal whole cell recording in Gpr98 mutant 
vestibular hair cells and cochlear inner hair cells (35, 44, 
46, 53), this USH2 complex may not directly contribute to 
phototransduction in photoreceptors or 
mechanotransduction in hair cells. The predicted functional 
domains in USH2 proteins, i.e., the cell adhesion domains 
in USH2A and GPR98, the GPCR domains in GPR98, and 
the protein interaction modules in whirlin, suggest that the 
USH2 complex may link the extracellular matrix and the 
intracellular cytoskeletons and may transduce signals of 
mechanical stresses between the exterior and the interior of 
photoreceptors at the PMC and of hair cells at the ankle-
link, like the dystrophin glycoprotein complex and the 
integrin supramolecular complex (104-110). In support of 
this hypothesis, USH2A was found to associate with 
collagen IV and fibronectin (98, 99), the two common 
proteins in the extracellular matrix; GPR98 was 
demonstrated as a component of the extracellular fibers at 
the ankle-link in hair cells and between the PMC and the 
connecting cilium in photoreceptors (44, 46, 65); whirlin 
was shown to bind to p55 and myosins, the actin-binding 
proteins; and adenylyl cyclase 6 was suggested to be 
involved in GPR98 signaling in hair cells (46). 

 
 The occasional finding of abnormal sperms in 

USH patients and the localization of USH proteins around 
the connecting cilium and basal body lead to the 
classification of Usher syndrome as one of retinal 
ciliopathies (57, 111, 112). In photoreceptors, the outer 
segment is a large specialized cilium filled with many 
membrane disks, where phototransduction occurs (Figure 
2). This cellular compartment undergoes continuous and 
rapid renewal (113-116), which requires a large amount of 
proteins and membrane lipids synthesized in the inner 
segment to be quickly transported to the outer segment 
through intraflagellar transport along the connecting cilium 

(Figures 2 and 6). Recent studies indicate that defects in the 
connecting cilium and intraflagellar transport are the culprit 
for retinal degeneration in retinal ciliopathies, such as the 
ones caused by RPGR and RPGRIP mutations and in 
Bardet Biedl syndrome (111, 112, 117, 118). 

 
The PRC in frog photoreceptors has been 

proposed, based on immunocytochemistry and freeze-
fracture electron microscopy, as the membrane fusion site 
for post-Golgi vesicles carrying rhodopsin and 
docosahexaenoyl (DHA)-phospholipids before these cargos 
are transported from the inner to outer segment (68, 119-
121). Additionally, Rab8, rac1, Sec8, moesin, syntaxin 3 
and SNAP-25 have been localized around the PRC in frog 
photoreceptors (122, 123). These proteins are proposed, 
though not verified using mouse genetics, to participate in 
and/or regulate the docking and membrane fusion of post-
Golgi vesicles to the plasma membrane at the PRC. 
Therefore, the USH2 complex at the PMC, the analogous 
structure of PRC in mouse, might play an either direct or 
indirect role in the docking/membrane fusion between the 
post-Golgi vesicles and plasma membrane at the base of the 
connecting cilium (65, 96). This proposed function can also 
be applied in hair cells. The ankle-link exists when 
stereocilia grow and differentiate from small microvilli. At 
this time, many vesicles are at the base of stereocilia (124), 
which could be the post-Golgi vesicles carrying proteins 
and membrane lipids from the cell body to the growing 
stereocilia. Supportively, the Gpr98 knockout mouse shows 
delocalization of some CDH23 long isoforms at the tip of 
the stereocilia and possibly loses some apical links between 
the stereocilia (46). However, solid evidence supporting 
this putative function of the USH2 complex is still missing. 
For instance, obvious mislocalization of rhodopsin has not 
been observed in whirlin knockout and Ush2a knockout 
mice (35, 53), and vesicles fused with the plasma 
membrane have not been demonstrated at the ankle link.  

 
On the other hand, the USH2 complex may play a 

role in structural maintenance as the USH1 proteins do, 
based on the similar symptoms in USH1 and USH2 
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patients. Studies on USH1 proteins, CDH23 and PCDH15, 
have demonstrated that they interact to form transient 
interciliary links and the tip link in the hair bundle and play 
a role in cohesion and stiffness of the hair bundle. 
Mutations in their genes cause hair bundle fragmentation 
and misorientation and, subsequently, affect 
mechanotransduction. Other USH1 proteins may also 
contribute to the cohesion and stiffness of hair bundle. For 
instance, SANS and MYO7A are required to transport 
harmonin. Harmonin is essential for normal localization of 
SANS and PCDH15 and probably anchors CDH23 and 
PCDH15 to actin filaments in the stereocilia (59, 95, 125). 
Among the USH2 proteins, USH2A and GPR98 probably 
interact with each other or with some unidentified cell 
adhesion proteins to form the ankle link. In the wild-type 
mouse, the stereocilia of outer hair cells are organized into 
a V-shaped, three-row, staircase-like hair bundle. However, 
in Ush2 mutant mice, the hair bundle exhibits various 
disorganized arrangement, mainly having a U-shape (35, 
46, 53). This phenotype suggests that the USH2 complex 
probably keeps intact the membrane invaginations at the 
base of stereocilia during stereocilia growth and 
subsequently ensures the cohesion and orderly-arrangement 
of stereocilia in adulthood.  

 
In photoreceptors, subcellular structures around 

the PMC are very intricate (Figure 6). The apical inner 
segment stays in close proximity with the connecting 
cilium and the basal outer segment. Extracellular fiber-like 
connections with GPR98 as a component exist between the 
PMC and connecting cilium (65). Because of the 
continuous intraflagellar transport of membrane proteins 
and lipids along the connecting cilium (126-130) and the 
active new membrane disk formation at the base of the 
outer segment (131, 132), the plasma membrane of the 
connecting cilium and the basal outer segment could be 
very flexible. It is reasonable to speculate that the USH2 
complex may function in maintaining the integrity of the 
dynamic plasma membranes of the connecting cilium, the 
apical inner segment, and the basal outer segment (Figure 
6). This speculation is supported by the presence of 
subcellular structural abnormalities around the PMC in 
USH2 mutant mice, such as membrane fusions between the 
apical inner segment and its surrounding subcellular 
structures in whirlin knockout mice and enlarged gaps 
between the PMC and the connecting cilium in 
Gpr98/del7TM mice (53, 65). Finally, the USH2 complex 
might function as a diffusion barrier at the plasma 
membrane between the cell body and the connecting 
cilium/stereocilia. However, evidence is needed to support 
this possibility. 

 
8. THERAPEUTIC STUDIES FOR USH2 
 

Because of the wide clinical application of the 
well-developed cochlear implant for hearing loss (133, 
134), more attention is currently focused on seeking 
effective treatments for retinitis pigmentosa in Usher 
syndrome. The easy access to the retina allows local 
delivery, small amount of administration, minimum 
immune response, and non-invasive monitoring of the 
treatment, thereby lending favorable advantages for a 

variety of therapeutic options. Gene therapy, drug 
application, cell transplantation, and nutritional 
supplements have been extensively attempted in cultured 
cells, animal models, or even in patients. However, only 
two reports have been published on testing potential 
treatments specifically for USH2 (48, 135). 

 
In the first report, human neural progenitor cells 

from the post mortem fetal cortical brain tissue were tested 
(135). This type of progenitor cells has previously been 
shown to survive and integrate into neural tissues. They 
postpone cellular and/or functional loss in animal models of 
multiple neurodegenerative diseases, including the Royal 
College of Surgeons rat for retinitis pigmentosa (136). In 
the Ush2a knockout mouse, the transplanted progenitor 
cells exist between photoreceptors and retinal pigment 
epithelium (RPE) cells at 10 weeks after subretinal 
injection. This transplantation delays the cellular changes in 
photoreceptors and alleviates retinal functional 
deterioration before photoreceptor loss. This effect lasts for 
10 weeks, the longest time point examined (135). However, 
the underlying mechanism for this treatment is not quite 
clear at this stage. 

 
Compared to the cell-based therapy, replacement 

of the mutant gene in the retina is a straightforward 
therapeutic approach. In the last decade, numerous 
achievements have been made in this field. Three clinical 
trials are now ongoing in patients with Leber’s congenital 
amaurosis, who carry mutations in the RPE65 gene (137-
141). The preliminary results from these clinical trials are 
very promising in efficacy. Therefore, gene therapy could 
hold promise in treating retinal degenerative diseases. 
Recently, the efficiency and efficacy of a lentivirus-
mediated gene replacement of MYO7A have been studied 
in the Myo7a4626SB mutant mouse, an animal model for 
USH1B (142). Although the delivery of MYO7A into 
photoreceptors and RPE cells is not quite efficient, the 
treated mutant retina does show correction of the 
histological phenotypes in these two cells. In addition, our 
laboratory has been studying gene therapy for USH2D. We 
utilized a combination of AAV and a photoreceptor-
specific promoter to efficiently target whirlin into both rod 
and cone photoreceptors. The expression of the whirlin 
transgene in the whirlin knockout mouse is comparable to 
the endogenous whirlin in the wild-type mouse. Most 
importantly, the transgenic whirlin was found to restore the 
USH2A and GPR98 expression in the whirlin knockout 
retina (48). These encouraging progresses in the USH1B 
and USH2D mouse models lay a solid foundation for a 
further and detailed exploration of gene therapy for other 
subtypes of USH2. However, the main obstacle for 
designing viral constructs carrying the USH2 genes is the 
extremely large size of USH2A and GPR98, which far 
exceeds the packaging capacity of AAV and lentivirus. 

 
Aminoglycosides and their derivatives have been 

actively investigated as drugs to treat genetic diseases 
caused by nonsense mutations, such as cystic fibrosis, 
Duchenne muscular dystrophy and Usher syndrome. Some 
of them have already been tested in clinical trials (143, 
144). These drugs can induce a read-through of nonsense 
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mutations by inserting an amino acid at the stop codon, 
though the inserted amino acid is not necessary to be the 
correct one as in the wild-type sequence. The extent of 
suppression of nonsense mutations by these drugs is 
variable. Aminoglycosides and their derivatives have been 
tested in test tubes, cell cultures and retinal explants to 
suppress the nonsense mutations found in USH1F 
(PCDH15) and USH1C (harmonin) patients (145-148). 
However, the high cellular toxicity of these drugs and the 
low efficiency of their read-through activities set a 
hindrance for their further application to patients. Efforts 
are being made to discover new generations of 
aminoglycoside derivatives or their substitutes with low 
cellular toxicity and high efficacy. A recent research has 
shown a great improvement of these two aspects using 
PTC124, a drug unrelated to aminoglycosides (149). 

 
The nutritional supplementation, daily intakes 

of vitamin A at a dose of 15,000 international units (IU) 
and vitamin E less than 400 IU, has been shown to slow 
down the progression of common forms of retinitis 
pigmentosa, as monitored using electroretinogram (150-
153). A further study following patients on this 
nutritional supplement therapy demonstrates safety of 
this high dose of vitamin A up to 12 years (154). 
Therefore, it is thought that this high-dose daily 
supplementation of vitamin A could be an effective 
therapy for retinitis pigmentosa in Usher syndrome. 
However, controversies exist regarding the validity of 
the conclusion drawn from the original data and the 
toxicity of the high dose of vitamin A (155, 156). In 
addition, the underlying mechanism of this vitamin A 
supplement therapy is uncertain, though retinal, a 
derivative of vitamin A, is an essential chromophore for 
phototransduction in photoreceptors. 

 
9. SUMMARY AND PERSPECTIVE 
 

The proteins encoded by the three identified 
USH2 genes have been demonstrated to form a protein 
complex in vivo. This complex is localized mainly at the 
PMC in photoreceptors and the ankle-link of the hair 
cell stereocilia. Formation of this protein complex is 
crucial for the normal localization and stability of 
individual USH2 proteins. Whirlin, as a scaffold protein, 
is involved in the assembly of this complex. Although 
many proteins are presently thought as potential 
components in this USH2 complex, further careful 
studies using various animal models are essentially 
necessary to confirm their existence in this complex in 
vivo. To date, the biological function of the USH2 
complex is largely unknown, though it is believed that 
disruption of this complex is the primary molecular 
mechanism underlying retinal degeneration and hearing 
impairment in USH2. USH2 is an incurable disease. 
Effective treatments using different approaches are still 
being sought and explored. 
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