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1. ABSTRACT 
 

Pulmonary surfactant, a lipoprotein complex, 
maintains alveolar integrity and plays an important role in 
lung host defense, and control of inflammation.  Altered 
inflammatory processes and surfactant dysfunction are well 
described events that occur in patients with acute or chronic 
lung disease that can develop secondary to a variety of 
insults.  Genetic variants of surfactant proteins, including 
single nucleotide polymorphisms, haplotypes, and other 
genetic variations have been associated with acute and 
chronic lung disease throughout life in several populations 
and study groups.  The hydrophilic surfactant proteins SP-
A and SP-D, also known as collectins, in addition to their 
surfactant-related functions, are important innate immunity 
molecules as these, among others, exhibit the ability to bind 
and enhance clearance of a wide range of pathogens and 
allergens.  This review focuses on published association 
studies of human surfactant proteins A and D genetic 
polymorphisms with respiratory, and non-respiratory 
diseases in adults, children, and newborns. The potential 
role of genetic variations in pulmonary disease or 
pathogenesis is discussed following an evaluation, and 
comparison of the available literature.  

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
Disease susceptibility is influenced by a number 

of overlapping genetic and non genetic factors, most of 
which may have a different level of impact at different 
stages of life.  Genetic components that determine 
susceptibility to acute and chronic lung disease have been 
studied within different biological contexts, and correlated 
with environmental factors, such as pollutants, concurrent 
diseases, or particular conditions such as prematurity or 
need for mechanical ventilation (1-11).  For example, 
genetic variation in genes involved in pulmonary 
adaptation may contribute, under certain conditions, to 
differences in disease susceptibility, or disease severity 
among individuals.  Study of the genetics of pulmonary 
surfactant components, and in particular of the surfactant 
proteins, have revealed correlation with lung disease in 
neonates, children, and adults (12-14). Genetic variations 
and mutations of the surfactant proteins have been 
correlated with disease susceptibility or pathogenesis (12).  
In the present review, we expand on the most recent review 
(12) and summarize associations of single nucleotide 
polymorphisms (SNPs), and genetic variants or haplotypes 
of the two innate immunity molecules, surfactant proteins 
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A (SP-A) and D (SP-D), with neonatal, pediatric, and adult 
disease. 
 
2.1. Pulmonary surfactant and surfactant proteins 

Pulmonary surfactant, a lipoprotein complex, is 
synthesized by the alveolar epithelial type II cells in the 
lung, and its key function is to reduce the surface tension at 
the alveolar air-liquid interface, and consequently prevent 
alveolar collapse at low lung volumes.  As a consequence 
of its surface tension lowering function, and the role of its 
components in innate immunity, pulmonary surfactant is 
not only essential for life, but is also critical for lung health, 
and normal lung function throughout life (14, 15).  
Pulmonary surfactant is composed by approximately 90% 
of lipids, and 10% of proteins.  The lipid fraction is 
primarily composed by phospholipids, most of which is 
phosphatidylcholine (PC) and 
dipalmitoylphosphatidylcholine (DPPC) in particular, a key 
component involved in the reduction of surface tension.  
The second most abundant phospholipid is 
phosphatidylglycerol (PG), and the remainder consists of 
phosphatidylethanolamine (PE), phosphatidylSerine (PS), 
and other phospholipids, as well as non-phosphorylated 
lipids such as cholesterol and triglycerides (14).  The 
protein component consists of serum proteins, and 
surfactant proteins that were originally collectively thought 
to be specific to the lung or surfactant.  However, this is no 
longer the case.  Surfactant proteins, and especially the 
hydrophilic proteins (SP-A and SP-D) have been found in 
several other tissues (16-27).   

 
Surfactant proteins (SP-A, SP-B, SP-C, and SP-

D) are divided into two groups, by their hydrophobicity 
properties.  The hydrophobic, surfactant protein B (SP-B), 
and C (SP-C) are primarily involved in the prevention of 
alveolar collapse at low lung volumes by lowering surface 
tension.  SP-C stabilizes surfactant at low lung volumes, 
and since it has the ability to bind LPS, a role in innate 
immunity has been proposed for SP-C (28, 29).  SP-A and 
SP-D are hydrophilic proteins that belong to the C-type 
lectin family (collectins), and are primarily host defense 
proteins (30, 31).  SP-A has been shown to play an 
important role in the structure of the extracellular form of 
surfactant, tubular myelin, and other surfactant-related 
functions (32-34), and SP-D has been shown to play an 
important role in surfactant homeostasis (31, 35-37).   

 
Members of the collectin family are characterized 

by an N-terminal collagen-like domain and a C-terminal 
carbohydrate recognition domain (CRD) that allows 
binding to various types of macromolecules, including 
carbohydrates, phospholipids, and proteins, as well to a 
number of pathogens and allergens (30).  SP-A and SP-D 
are found in large oligomeric structures that bind viruses, 
bacteria and fungi in a calcium-dependent, and 
carbohydrate-specific manner (2, 38, 39), and it has been 
proposed that the oligomerization pattern may affect 
binding (40).  The mature SP-A, a 248 amino acid (aa) 
protein (35kDa), associates in a trimeric structural subunit 
(105kDa), and six of these trimers assemble in a hexameric 
(630kDa) oligomeric bouquet-like structure that contains a 
total of eighteen SP-A1 and SP-A2 monomers.  Both 

hetero-oligomers (i.e. consisting of both SP-A1, and SP-A2 
monomers (41)), and homo-oligomers (i.e. consisting of 
SP-A1 or SP-A2 monomers) are functional (33, 42-46).  
SP-D oligomers are 540kDa cruciform tetrameric 
structures, comprised by four subunits (130kDa) of three 
43kDa (375 aa) SP-D monomers each (39).   
 
2.2. SP-A and SP-D functions in innate immunity 

SP-A and SP-D are important components of the 
innate immune system (30).  These molecules combat 
infections caused by bacteria, viruses, fungi, and other 
pathogens by mechanisms that may involve, among others, 
binding, aggregation, agglutination, inhibition of their 
growth, and promotion of their phagocytosis by immune 
cells (2, 30, 40, 47-50).  Interaction between SP-A and the 
phagocytic cells, such as alveolar macrophages has also 
been demonstrated, and shown to promote phagocytosis 
(43, 51, 52).  Studies of interactions between SP-A or SP-D 
and pathogens, and between collectins and immune cells 
have been previously reviewed (36, 39, 53-59).   

 
 A number of soluble and membrane receptors 
have been shown to interact with collectins.  SP-A is 
known to interact with CD35 (CR1) (60), C1qR (CD93) 
(61), CD14 (62), CD91/calreticulin complex (63), signal 
inhibitory protein α (SIRPα) (64, 65), SP-R210 (66) , 
glycoprotein 340 (gp-340) (67), Toll-like receptors TLR-2 
(68) and TLR-4 (69), and others (51, 66-68, 70-72).  Some 
SP-A receptors have been identified in alveolar type II 
cells, but not in alveolar macrophages cell surface, 
indicating their potential role in surfactant function (73, 
74), whereas others are ubiquitous (CD91/calreticulin, 
(64)).  Most of the receptor molecules that interact with SP-
A have also been shown to bind SP-D (SIRPα, 
CD91/calreticulin, gp-340, TLR-2, TLR-4, and CD14), and 
promote phagocytosis, clearance of apoptotic cells, 
modulate cytokine production, and/or act as opsonins, 
stimulating alveolar macrophage migration (39, 63, 65, 75-
78). 
 

Collectins facilitate destruction of various 
bacteria, viruses, and fungi, by at least two different 
mechanisms that involve either direct interaction with the 
pathogen, and/or activation of the immune cells (2, 36, 79-
81).  Both SP-A and SP-D can stimulate chemotaxis and 
enhance phagocytosis of alveolar macrophages, an 
important cellular component of the first line of defense of 
the lung.  The influence of collectins on the interactions of 
alveolar macrophages with pathogens varies depending on 
the microorganism (57, 82).  There is evidence that human 
SP-A binds and enhances phagocytosis of Klebsiella 
pneumoniae (83-85), Escherichia coli, Staphylococcus 
aureus (45, 86), and Pseudomonas aeruginosa (43, 52) by 
alveolar macrophages.  SP-D has been shown to bind LPS 
from Klebsiella pneumoniae, and other bacteria (2).  
Furthermore, SP-A has also been found to promote 
macrophage production of pro- and anti-inflammatory 
cytokines (87). 

 
SP-A and SP-D not only regulate the function of 

innate immune cells, but also interact and modulate the 
functions of dendritic cells, and other antigen-presenting 
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Figure 1. SP-A and SP-D loci on chromosome 10.  Diagrammatic representation of the 10q22-23 region of the human 
chromosome 10 (not to scale).  The human surfactant protein A locus consists of two functional genes (SP-A1, SP-A2) located in 
opposite transcriptional orientation, and a pseudogene (P). The SP-D locus is located closer to the telomere (T) in the negative 
strand, as are SP-A2 and P (Panel A).  The information with regards to the specific locations of these genetic loci, available at the 
GenBank (www.ncbi.nlm.nih.gov/genbank/) and Ensembl (www.ensembl.org/) databases is shown in Panel B.  Positive strand 
refers to the DNA orientation (5’-3’) from C to T, whereas negative strand refers to the opposite orientation. 

 
cells, as well as T cells, providing a link between the innate 
and adaptative immune systems, in order to alleviate 
infection and inflammation in an attempt to restore tissue 
homeostasis (88). 

 
2.3. Genetics of surfactant proteins 

The two hydrophobic surfactant proteins, SP-B 
and SP-C, are encoded by a single gene, located in 
chromosomes 2 and 8, respectively.  Their genetic 
complexities and polymorphisms associations with disease 
have been studied and reviewed elsewhere (12, 15, 89-94).  
The focus here is on SP-A and SP-D associations with 
disease, and therefore the hydrophobic surfactant proteins 
will not be discussed any further. 

 
Human SP-A and SP-D are encoded by three 

genes (SFTPA1: SP-A1, SFTPA2: SP-A2, and SFTPD: SP-
D), that have been mapped to chromosome 10q21-q23 (95-
97).  The human SP-A locus consists of two functional, 
highly homologous genes (SP-A1, and SP-A2) in opposite 
transcriptional orientation and a pseudogene being located 
between the two genes.  These are found in a cluster along 
with the SP-D gene (Figure 1).  The genetic complexity of 
SP-A1, SP-A2, and SP-D genes has been extensively 
studied, and reviewed (12, 98-103).  SP-A1, SP-A2, and 
SP-D have all been found to be polymorphic (103-105).  A 
particular locus is considered to be polymorphic if the less 
frequent allele has a population frequency of no less than 
1%, and a heterozygosity frequency of at least 2%.  Single 
nucleotide polymorphisms occur when a single nucleotide 
(purine or pyrimidine) in a DNA sequence is substituted 
with a different nucleotide.  A SNP may either result in a 
synonymous or non-synonymous aa substitution, where the 
aa coded for is the same or different, respectively.  The 
probability of recombination occurring within a haplotype 
partially depends on the physical distance between the SNP 
loci.  Closely spaced loci are therefore less likely to be 
separated and are described as being in linkage 
disequilibrium.  Consequently, if the genotype of one SNP 

is known, the genotype of another SNP may be predicted if 
there is a high level of linkage disequilibrium between the 
two SNPs.   

 
SP-A1 and SP-A2 genes are in linkage 

disequilibrium, and exhibit a similar genomic organization.  
The structure of both genes consists of four coding exons 
(I-IV) that show coding nucleotide differences that result in 
aa changes within the collagen-like domain of the protein, 
and these can distinguish between SP-A1 and SP-A2 gene 
products, and between their corresponding variants.  
Multiple SNPs have been identified in SP-A1 and SP-A2 
coding regions, and UTRs (103, 106, 107).  Nucleotide/aa 
changes at the coding region that determine the identity of 
SP-A1 and SP-A2 are shown in Table 1.  In brief, both SP-
A1 and SP-A2 protein molecules consist of 248 aa, and 
differ at the following residues: Met66, Asp73, Ile81, and 
Cys85 for SP-A1, and Thr66, Asn73, Val81, and Arg85 for 
SP-A2 (44, 102, 103, 108) (Table 1).  

 
Several coding variants have been identified and 

characterized for each gene (98, 100, 102, 103, 108).  
These are combinations of several SNPs, and are 
summarized in Table 2.  Variants 6A, 6A2, 6A3, and 6A4 
are combinations of five biallelic SNPs within the exons of 
SP-A1, corresponding to aa positions 19, 50, 62, 133, and 
219, and determined by combinations of SNPs rs1059047, 
rs1136450, rs1136451, rs1059057, and rs4253527, 
respectively.  Two of these SNPs are silent (aa62 and 
aa133), whereas the remainder result in non-conservative 
aa substitutions.  Similarly, SP-A2 variants 1A, 1A0, 1A1, 
1A2, 1A3, and 1A5 involve four exonic SNPs at aa9, aa91, 
aa140, and aa223 (rs1059046, rs17886395, rs1965707, 
rs1965708, respectively), most of which result in a non-
synonymous aa change, except for aa140, where a 
synonymous change occurs (103) (Table 2).  These nine 
variants have been found in the population with different 
frequencies (103,104).  The expression of SP-A1 and SP-
A2 appears to differ among individuals as a function of age 



SP-A and SP-D snps in adult, pediatric, and neonatal disease 

410 

Table 1.  Amino acid differences that distinguish between human SP-A1 and SP-A2 
 Amino acid position1 
 66 73 81 85 
SP-A1 ATG (Met) GAT (Asp) ATC (Ile) TGT (Cys) 
SP-A2 ACA (Thr) AAT (Asn) GTC (Val) CGT (Arg) 

1 Numbering of amino acid position is based on the precursor molecule that includes the signal peptide 
 
Table 2. SNP and/or amino acid variation within the coding region of SP-A1 and SP-A2, that distinguish among the most 
frequently observed SP-A1 and SP-A2 variants or intragenic haplotypes  

      SP-A1 variants 
SNP id Nucleotide amino acid substitutiona 6A 6A2 6A3 6A4   
rs1059047 T/C aa19: GTG (Val) > GCG (Ala) C (Ala) T (Val) T (Val) T (Val)   
rs1136450 C/G aa50: CTC (Leu) > GTC (Val) C (Leu) G (Val) C (Leu) C (Leu)   
rs1136451 A/G aa62: CCA (Pro) > CCG (Pro) G (Pro) A (Pro) A (Pro) G (Pro)   
rs1059057b A/G aa133: ACA (Trp) > ACG (Trp) G (Trp) A (Trp) A (Trp) A (Trp)   
rs4253527 C/T aa219: CGG (Arg) > TGG (Trp) C (Arg) C (Arg) C (Arg) T (Trp)   
      SP-A2 variants 
SNP id Nucleotide amino acid substitutiona 1A 1A0 1A1 1A2 1A3 1A5 
rs1059046 A/C aa9:  ACC (Thr) > AAC  (Asn) C (Thr) A (Asn) C (Thr) C (Thr) A (Asn) C (Thr) 
 rs17886395 G/C aa91: GCT (Ala) > CCT (Pro) C (Pro) G (Ala) G (Ala) G (Ala) G (Ala) C (Pro) 
  rs1965707b C/T aa140:  TCC (Ser) > TCT (Ser) C (Ser) C (Ser) T (Ser) C (Ser) T (Ser) T (Ser) 
rs1965708 C/A aa223: CAG (Gln) > AAG (Lys) C (Gln) C (Gln) A (Lys) C (Gln) A (Lys) C (Gln) 

a Numbering of amino acid (aa) position is based on the precursor molecule that includes the signal peptide, b These SNPs have 
been identified in SP-D but have not been associated with any disease described in the present review. 
 
Table 3. Human SP-D SNPs  

SNP id Nucleotide amino acid substitution1 
rs721917 C/T aa11:  ATG (Met) > ACG  (Thr) 
rs6413520 T/C aa25: AGT (Ser)  > AGC (Ser) 
rs2243639 A/G aa160:  ACA (Thr) > GCA (Ala) 
  rs30883082 A/T aa270:  TCT (Ser) > ACT (Thr) 
 rs10512462 C/T aa286:  GCT (Ala) > GCC (Ala) 
rs1923537 T/C 3'UTR 
rs2245121 A/G intron 
rs911887 A/G Intron 
  rs22556012 G/A Intron 
rs7078012 C/T Intron 

1 Numbering of amino acid (aa) position is based on the mature protein and does not include signal peptide, 2 These SNPs have 
been identified in SP-D but have not been shown to associate with any disease at present. 
 
and lung health status (e.g. healthy vs. cystic fibrosis, culture 
positive vs. culture negative), as assessed by differences in the 
protein ratio of SP-A1 to total SP-A in human BAL samples 
(109).   

 
In addition, splice and sequence differences are also 

found at the 5’ and 3’ untranslated regions (UTRs) of SP-A1 
and SP-A2 genes (107, 108, 110, 111).  At the 5’UTR, several 
exons (A, B, B’, C, C’,D, D’) splice in different configurations 
to give rise to a number of different 5’UTR variants for SP-A1 
and SP-A2 (108).  These have been shown to differentially 
impact SP-A regulation of gene expression (112, 113).  
Similarly, SNPs and other sequence variations located at the 
3’UTR of SP-A1 and SP-A2 variants have also been shown to 
play a role in SP-A regulation (114). 

 
The SP-D gene contains a total of eight exons, seven 

of which are coding.  Exon I, and part of exon II correspond to 
the 5’UTR, and the last part of exon 8 corresponds to the 
3’UTR.  Coding and non-coding SNPs (rs721917, rs6413520, 
rs2243639, rs3088308, rs1051246, rs1923537, rs2245121, 
rs911887, rs2255601, and rs7078012) are also found within 
the SP-D gene (Table 3); most of these have been associated 
with a number of diseases (115-117).  In addition, evidence 
indicates that serum SP-D levels are genetically influenced 
(106, 118-120). 

Overall, the literature indicates that associations 
exist between SP-A or SP-D genetic variants that may include 
single nucleotide polymorphisms and haplotypes and the 
development of both chronic and acute lung diseases, as well 
as some non-pulmonary diseases.  In the following paragraphs 
we discuss the clinical evidence of these associations. 
 
3. ASSOCIATION OF SP-A AND SP-D 
POLYMORPHISMS WITH DISEASE 
 

Variants of SP-A1, SP-A2, and SP-D genes have 
been found to associate with a range of pulmonary and non 
pulmonary diseases.  A summary of the available 
information that significantly associated gene variants, 
SNPs and haplotypes of SP-A1, SP-A2, and SP-D with 
adult and pediatric disease is described below, and 
summarized in Table 4. 

 
3.1. Respiratory pediatric and adult disease associations 
with SP-A1, SP-A2, and SP-D variants, SNPs and 
intragenic haplotypes  

Since the lung is one of the major sites of 
surfactant protein synthesis, and because most surfactant 
proteins are involved collectively in surfactant-related 
functions, host defense, and regulation of inflammatory 
processes in the lung, it is expected that collectins play a 
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role in clinical situations where surfactant homeostasis, 
and/or host defense mechanisms are affected.  Therefore, it 
is not surprising that SP-A, and SP-D (as well as the 
hydrophobic surfactant proteins, which are not discussed in 
this review) are involved in the development of, or 
protection from, various pulmonary diseases (Table 4).  In 
this section, we discuss SP-A and SP-D polymorphisms 
associations with adult and pediatric respiratory disease, 
and discuss potential interactions of collectins with viral, 
bacterial, fungal, and other disease-causing pathogens and 
molecules, as well as with the immune cells involved in 
pathogen clearance, and control of infection.  It is likely 
that mechanisms involving function and regulation of 
collectins in human disease may overlap or differ entirely, 
depending on the physiologic context or derangement 
associated with each particular disease. 

 
Different effects of SP-A and SP-D interactions 

with the same and/or different pathogens do occur.  SP-A 
has been shown to enhance binding of alveolar 
macrophages to Mycobacterium tuberculosis (121), 
whereas SP-D binds to the bacterial surface causing a 
reduction in its uptake by alveolar macrophages (122).  
Interestingly, several SP-A and SP-D polymorphisms have 
been found to associate with risk for tuberculosis (117, 
123-125).  These include variants SP-A1 6A4 (117), and 
SP-A2 1A3 (117, 123) and 1A5 (123).  Also, SP-A1 SNPs 
rs1136451 and rs4253527 (123), SP-A2 rs17886395 and 
rs1965708 (123), and SP-D rs721917 (117) and G459A 
(124) variation have been associated with TB. 

 
Allergic diseases such as asthma and allergic 

rhinitis (AR) are very common multifactorial diseases, and 
polymorphisms in SP-A and SP-D genes have been 
associated with these diseases in several populations in 
three different clinical studies (126-130).  Innate immunity 
collectins play a critical role in preventing damage and 
injury to nasal mucosa, which is constantly exposed to 
inhaled pollutants, microbes, and allergens.  SP-A2 
rs1965708 SNP was associated with increased risk for AR 
in a Chinese population (124).  In addition, the SP-A2 1A2 
variant was found to be protective for AR (128), and the 
SP-A1 6A variant, and the 6A/1A haplotype were shown to 
associate with risk for asthma (129).  For SP-D, a 
Threonine at aa11 (rs721917) was associated with 
increased risk for AR in the Chinese population (125).  In 
contrast, a Methionine at aa11 (rs721917) was found to 
associate with risk for asthma in a black population (127).  
A study performed in a German population did not find any 
association of this SNP and susceptibility to asthma (123).  
The SP-D Met11Thr variant has been found to associate 
with assembly, function, and concentration of SP-D, with 
the Thr variant having a negative impact on these (131). 

 
A small study conducted in an Indian population 

with allergic bronchopulmonary aspergillosis (ABPA), 
detected an association of the SP-A1 rs1136454, the SP-A2 
rs1136452 SNPs (located at the collagen-like region), and 
an intronic SNP (rs1650223), with disease susceptibility, 
and severity of clinical markers of ABPA (total IgE levels 
and eosinophilia) (132).  ABPA is caused by the pathogenic 
fungus Aspergillus fumigatus, and SP-A binds to various 

glycosylated allergens-antigens and glycoproteins from the 
fungus.  In addition, SP-A inhibits the Aspergillus 
fumigatus-induced histamine release from sensitized 
basophils (133), and enhances macrophage- and neutrophil-
mediated clearance of the pathogen (133).  Another small 
association study in an Indian population found the SP-A1 
rs1059047, and SP-A2 rs17880902, rs17096771, and 
rs1965708 SNPs as risk determinants of high altitude 
pulmonary edema (HAPE), a disease characterized by 
increased capillary permeability due to exaggerated 
inflammation, and free radical-mediated lung injury (134).  
Together, these data indicate that SP-A polymorphisms 
may play a role in allergy control.   

 
Chronic obstructive pulmonary disease (COPD) 

is characterized by chronic bronchitis, and/or emphysema.  
Elevated serum levels of SP-D are a biomarker for COPD 
(115), and a recent study associated the SP-D SNPs 
rs2245121, rs911887, rs6413520, rs721917, rs7078012, as 
well as the combination of rs1051246, rs2245121, 
rs911887, rs225601, rs6413520, and rs721917, with risk to 
develop COPD, and with SP-D serum levels, in 
independent populations, and multiple study designs 
(115).  The authors proposed that the SP-D genetic 
variants may differentially modulate mechanisms 
involved in inflammatory signaling functions (135) and 
SP-D-mediated clearance of apoptotic cells (63), and 
that these may underline COPD pathogenesis (136, 
137).  Moreover, SP-A has been found to bind and 
enhance alveolar macrophage IFN-�-mediated 
phagocytosis of Mycoplasma pulmonis, a pathogen 
involved in pneumonia and exacerbation of asthma, and 
COPD (138).   

 
A significant association between SP-A1 6A3, 

SP-A2 1A1, or the combined haplotype 6A3/1A1 with 
poor pulmonary outcomes in cystic fibrosis (CF) 
patients has been reported (139).  Cystic fibrosis is an 
autosomal-recessive disease characterized by multi-
organ disorders and decreased life expectancy, and 
recurrent or chronic airway infections with bacteria, 
including Haemophilus influenzae, Staphylococcus 
aureus, and Pseudomonas aeruginosa (140).  Of 
relevance, differences in the phagocytic index of alveolar 
macrophages between SP-A1 and SP-A2 variants have 
been observed with regards to Pseudomonas aeruginosa 
and Staphylococcus aureus (43-45, 52).  Moreover, 
pulmonary function deterioration is listed as one of the 
primary complications of CF, and surfactant proteins have 
been identified as candidates to mediate pathogenesis of 
pulmonary disease in CF (141).  Decreased levels of SP-A 
and SP-D were detected in BAL from CF patients (141, 
142) and attributed to persistent inflammation, which in 
turn increases degradation of collectins, and may also 
affect collectin synthesis (140).  Of relevance, the SP-
A2 1A1 variant has the lowest activity for enhancement 
of TNF-α in THP-1 cells.  Furthermore, both activities 
(phagocytosis and cytokine production) are negatively 
affected by oxidative stress (42, 45), a situation that may 
exist in the CF microenvironment, and may explain the 
compromised pulmonary innate immunity commonly seen 
in CF cases. 
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Table 4. SP-A and SP-D SNP associations with adult and pediatric disease 
Disease 
studied Gene(s) Population SNP or haplotype nucleotide 

(amino acid) susceptibility cases controls Reference 

ABPA SP-A1 Indian rs1136454 (G/A) G (Arg) risk 22 23 (132) 

ABPA SP-A1/SP-A2 Indian rs1136454-
rs1136452 (C/G) G(Arg)-G(Ala) risk 22 23 (132) 

ABPA SP-A2 Indian rs1650223 (intron)  risk 10 11 (132) 
AR SP-A2 Chinese rs1965708 A (Lys) risk 216 84 (128) 
AR SP-A2 Chinese 1A2  protective 216 84 (128) 
AR SP-D Chinese rs721917 C (Thr) risk 216 84 (127) 
Asthma SP-A1 mixed 6A  risk 221 355a (129) 
Asthma SP-A1/SP-A2 mixed 6A/1A  risk 221 355a (129) 
Asthma SP-D German   no association 322 270 (126) 
Asthma SP-D Black rs721917 T (Met) risk 162 97 (130) 
Cardiovascular 
Disease (CS) SP-D Norwegian rs721917 C/C (Thr/Thr) risk 130 100 (174) 

CF SP-A1 Caucasian 6A3  risk 135b n/a (139) 
CF SP-A2 Caucasian 1A1  risk 135b n/a (139) 
CF SP-A1/SP-A2 Caucasian 6A3/1A1  risk 135b n/a (139) 
COPD SP-D Caucasian rs2245121 A risk 389 472 (115) 
COPD SP-D Caucasian rs911887 G risk 389 472 (115) 
COPD SP-D Caucasian rs6413520 C (Ser) risk 389 472 (115) 
COPD SP-D Caucasian rs721917 C (Thr) risk 389 472 (115) 
COPD SP-D Caucasian rs7078012 C risk 389 472 (115) 
COPD SP-A1 Mexican rs1136451 A (Pro) risk 101 81 (258) 
HAPE SP-A1 Indian rs1059047 C (Ala) risk 27 19 (134) 
HAPE SP-A2 Indian rs17880902 (T/C) T (Asp) risk 27 19 (134) 
HAPE SP-A2 Indian rs17096771 (T/C) T (Pro) risk 27 19 (134) 
HAPE SP-A2 Indian rs1965708 C (Gln) risk 27 19 (134) 
IPF SP-A1 Mexican 6A4  risk 84 194 (143) 
IPF SP-A1 Mexican rs1136450 C (Leu) risk 84 194 (143) 
IPF SP-A1 Mexican rs1136451 G (Val) risk 84 194 (143) 
IPF SP-A1 Mexican rs4253527 T (Trp) risk 84 194 (143) 
Lung Cancer 
(SCC) SP-A1 German 6A4  risk 35 110c (145) 

Lung Cancer 
(SCC) SP-A1 German 6A4  risk 35 99d (145) 

Lung Cancer 
(NSCLC) SP-A1 German 6A11  risk 68 110c (145) 

Lung Cancer 
(NSCLC) SP-A2 German 1A9  risk 68 110c (145) 

Lung Cancer 
(AC) SP-A1 German 6A11  risk 23 110c (145) 

Lung Cancer 
(AC) SP-A2 German 1A9  risk 23 99d (145) 

Meningococcal 
Disease SP-A2 English rs1965708 A (lys) risk 303 222 (159) 

Meningococcal 
Disease SP-A2 English 1A1/1A1  risk 303 222 (159) 

Meningococcal 
Disease SP-A2 English 1A5  protective 303 222 (159) 

Otitis Media SP-A1/SP-A2 Finnish 6A2/1A0  risk 47 (acute) 228 (164) 

Otitis Media SP-A1/SP-A2 Finnish 6A4/1A5  risk 
47 (acute), 
147 
(recurrent) 

228 (164) 

Otitis Media SP-A1 Finnish 6A2/6A2  risk 147 
(recurrent) 228 (164) 

Otitis Media SP-A1 mixed 6A4  protective 258 355a (163) 
Otitis Media SP-A1/SP-A2 mixed 6A4/1A5  protective 258 355a (163) 
Otitis Media SP-A1 mixed rs1059047 C (Ala) risk 258 355a (163) 
rUTI SP-A1 Chinese rs1059047 C (Ala) risk 32 30 (170). 
rUTI SP-A2 Chinese rs1965708 C (Gln) risk 32 30 (170). 
RSV SP-A2 mixed rs1059046 A (Asn) risk 277 n/a (153) 
RSV SP-A2 mixed 1A0/1A0  protective 277 n/a (153) 
RSV SP-A2 mixed 1A2  protective 277 n/a (153) 
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RSV SP-A2 mixed 1A2  protective 148 n/a (152) 
RSV SP-D mixed rs2243639 A (Thr) risk (possible) 148 n/a (152) 

RSV SP-D mixed rs721917-
rs2243639 T(Met)-G(Ala) protective 148 n/a (152) 

RSV SP-A1/SP-
A2/SP-D mixed 6A2-1A0-rs2243639 G (Ala) protective 148 n/a (152) 

RSV SP-A2 Finnish 1A3  risk 86 95 (151) 
RSV SP-A2 Finnish 1A  protective 86 95 (151) 
RSV SP-A1 Finnish 6A  protective 86 95 (151) 
RSV SP-A1/SP-A2 Finnish 6A/1A  protective 86 95 (151) 
RSV SP-A1 Finnish rs1059047 C (Ala) protective 86 95 (151) 
RSV SP-A2 Finnish rs17886395 C (Pro) protective 86 95 (151) 
RSV SP-A2 Finnish rs1965708 A (Lys) risk 86 95 (151) 
RSV SP-A2 Finnish 1A1/1A1  risk 86 95 (151) 
RSV SP-A2 Finnish 1A0/1A3  risk 86 95 (151) 
RSV SP-A1/SP-A2 Finnish 6A2/1A3  risk 86 95 (151) 
RSV SP-D Finnish rs721917 T (Met) risk 84 93 (150) 
TB SP-D Indian G459A (exon 7)e  risk 30 30 (124) 
TB SP-D Mexican rs721917 C (Thr) risk 178 101 (117) 
TB SP-A1 Mexican 6A4  risk 178 101 (117) 
TB SP-A2 Mexican 1A3  risk 178 101 (117) 

TB SP-A2 Ethiopian 1A3  risk 226 (181 
families) n/a (123) 

TB SP-A2 Ethiopian 1A5  risk 226 (181 
families) n/a (123) 

TB SP-A1 Ethiopian rs1136451 A (Pro) risk 226 (181 
families) n/a (123) 

TB SP-A1 Ethiopian rs4253527 T (Trp) risk 226 (181 
families) n/a (123) 

TB SP-A2 Ethiopian rs17886395 C (Pro) risk 226 (181 
families) n/a (123) 

TB SP-A2 Ethiopian rs1965708 C (Gln) risk 226 (181 
families) n/a (123) 

UC SP-D Japanese rs911887 G risk 296 394 (22) 

UC SP-D Japanese rs2243639-
rs911887 A (Thr)-G risk 296 394 (22) 

ABPA: allergic bronchopulmonary aspergillosis; AR: allergic rhinitis; CS: coronary stenosis; CF: cystic fibrosis; COPD: chronic 
obstructive pulmonary disease; HAPE: high altitude pulmonary edema; IPF: idiopathic pulmonary fibrosis; SCC: squamous cell 
carcinoma; NSCLC: non-small cell lung cancer; AC: adenocarcinoma; rUTI: recurrent urinary tract infection; RSV: respiratory 
syncytial virus infection; TB: tuberculosis; UC: ulcerative colitis.  a infants at risk, b cases were stratified according to pulmonary 
outcomes (e.g. predicted FEV1, etc), and the risk variants were associated with cases of poor pulmonary outcome, c healthy 
controls, d clinical controls, e SNP id not available. 
 

The SP-A1, 6A4 variant, and three SNPs: 
rs1136450, rs1136451, and rs4253527 were associated with 
risk to develop idiopatic pulmonary fibrosis (IPF) in a 
nonsmoker Mexican population (143).  Derangement in 
pulmonary surfactant or its individual components and 
alveolar collapse are common findings in IPF, a 
progressive lung disorder characterized by sequential acute 
lung microinjuries, and fibroblastic foci formation, 
scarring, and end-stage, usually lethal, lung disease (144).  
The 6A4 variant exhibited differences in self-aggregation 
when compared with other SP-A variants that differ at 
aa219, in the CRD region (143).  The authors proposed a 
Tryptophan at aa219 instead of Arginine (rs4253527) to be 
responsible for biochemical differences between 6A4 and 
other SP-A variants, and that these differences may affect 
SP-A1 ability to maintain the function, stability, and 
structure of surfactant.  

 
Common SP-A1 (6A4), and rare SP-A1 and SP-

A2 (6A11, 1A9) variants have been associated with risk for 
various types of lung cancer (145), when compared to 

normal and clinical controls.  This study concluded that SP-
A gene variants may be involved in mechanisms that 
influence susceptibility to lung cancer of a particular 
histological type.  These mechanisms may include 
modulation of inflammatory processes and host defense, 
defense against toxic gases, cigarette smoke, and other 
environmental factors, NF-kB activity (146, 147), 
modulation of cytokine production (42, 148, 149), and 
other determinants of cancer pathogenesis. 

 
Polymorphisms in SP-A and SP-D genes have 

been linked to susceptibility to infection with respiratory 
syncytial virus (RSV) (150-153).  RSV infection is the 
most common cause of hospitalization in infants, and the 
major cause of bronchiolitis during early childhood (154, 
155).  The risk of RSV infection was associated with the 
SP-A2 1A3 variant, the 1A1/1A1, and 1A1/1A3 genotypes, 
and with the 6A2/1A3 haplotype in a Finnish population 
(151).  Asparagine at aa9 (rs1059046), Lysine at aa223 
(rs1965708) of SP-A2 (151), as well as the SP-D SNP 
rs721917 (150) were also associated with risk.  In contrast, 
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Alanine at SP-A1 aa9 (rs1059047), and Proline at SP-A2 
aa91(rs17886395), were found to be protective (151).  
Other protective associations included the SP-A1 6A 
variant (151), SP-A2 variants 1A2 (152, 153), and 1A 
(151), 1A0/1A0 genotype (153), and haplotypes, SP-A1/SP-
A2 6A2/1A3 (151), SP-D Met11 (rs721917)/Ala160 
(rs2243639) (152), and SP-A1/SP-A2/SP-D 
6A2/1A0/Ala160 (rs2243639) (152).  SP-A has the ability to 
bind RSV virion glycoproteins and enhance its uptake by 
immune cells (156, 157).  SP-D has also been found to bind 
the RSV fusion glycoprotein and decrease RSV infectivity 
(158). 

 
3.2. Non-respiratory pediatric and adult disease 
associations with SP-A1, SP-A2, and SP-D variants, 
SNPs and intragenic haplotypes  

The literature provides evidence of associations 
between SNPs and haplotypes of SP-A and SP-D genes 
with a number of non-respiratory diseases, either caused by 
diverse microorganisms, or in which the 
inflammatory/immune response is altered.  In this section, 
we describe associations of polymorphisms in the collectins 
genes with diseases that occur outside the respiratory tract.   

 
A study performed in an English population 

found that an SP-A2-specific, non synonymous SNP, 
rs1965708, was associated with susceptibility to infection, 
and increased risk of death by meningococcal disease 
(159).  This sickness is caused by a bloodstream infection 
of Neisseria meningitides after a period of nasopharyngeal 
colonization (160).  The risk allele exhibits a Lysine residue 
at aa223, located at the SP-A2 domain.  Although, SP-A and 
SP-D are expressed at the site of initial meningococcal 
colonization, there is no evidence of SP-A binding to 
meningococci.  The authors proposed other factors 
contributing to disease susceptibility, such as the ability of SP-
A2 to bind SIRPα (64), altered inflammatory response, or 
inefficient handling of prior upper respiratory infections, which 
is known to affect susceptibility to meningococcal infection 
(161).  The SP-A2 1A1 variant that also contains Lysine at 
aa223 was associated with disease susceptibility, and the 1A5 
variant that contains a Glutamine at the 223 residue was found 
to be protective.  The 1A1 protein has a lower ability to 
stimulate TNF-α release when compared to 1A, 1A0, and 1A2 
(148).  The authors proposed a role of the lower TNF-α 
responses in the increased risk of death (162).  Other common 
and rare SP-A2 variants (1A3, 1A8) encode Lysine at aa223, 
but these occurred at low frequency in this and other studies.  

 
Two independent groups analyzed associations of 

SP-A polymorphisms with susceptibility to otitis media, 
one of the most common infections of early childhood 
(163, 164), caused by bacterial pathogens (Streptococcus 
pneumoniae, Haemophilus influenzae, Moraxella 
catarrhalis (165), and Staphylococcus aureus), or 
secondary to respiratory syncitial virus (RSV) infection 
(166).  SP-A and SP-D are expressed in the Eustachian 
tube, and alterations in the expression or regulation of these 
molecules may also be the major risk factor for otitis media 
(167).  The Finnish group identified the SP-A1/SP-A2 
haplotypes 6A2/1A0 as risk for acute, and 6A4/1A5 as risk 
for acute and recurrent infection, and the SP-A1 6A2/6A2 

genotype for recurrent otitis.  Since SP-A binds to, and 
increases phagocytosis of Streptococcus pneumoniae and 
Haemophilus influenzae, the most common pathogens in 
acute otitis media (168), the authors proposed a distinct role 
of SP-A variants/haplotypes in disease pathogenesis (164).  
This study took place in Finland, and the distribution of SP-
A haplotypes in this population has been shown to differ 
from frequencies found within the United States (169).  
This, along with potential differences in patient 
stratification, is probably one of the reasons why their 
results differ from those obtained by the American group, 
whose study population were infants at risk for asthma 
(163), with no distinction between acute and recurrent otitis 
media.  In this study, the 6A4 variant, and the 6A4/1A5 
haplotype were protective for otitis media in white infants.  
SNP rs1059047, which is located within the N-terminal 
domain, was also associated with otitis media risk in infants 
with an alanine at aa19, whereas infants with a valine at 
codon 19 were more likely to have otitis media during their 
first year of life.  To date, the role of this SP-A1 domain in 
infection is unknown.  

 
Recently, the SP-A1 rs1059047 (alanine at aa19), 

and the SP-A2 rs1965708 (Glutamine at aa223) SNPs were 
found to associate with susceptibility to recurrent urinary 
tract infection (rUTI) (170), a disease caused by 
Escherichia coli and other microorganisms (171).  Host 
genetic factors have been proposed to play an important 
role in the pathogenesis of rUTI, and polymorphisms 
within TLR-2 and TLR-4 genes were also identified to 
associate with rUTI (172).  In addition, lower serum SP-A 
and SP-D levels correlated with these haplotypes and rUTI, 
and it is possible that different SP-A haplotypes result in 
variable SP-A levels (99), and contribute to disease 
susceptibility.  

 
In a recent study, two SP-D SNPs (rs2243639, 

and rs911887) were associated with ulcerative colitis (UC), 
a chronic inflammation of the colon, in a Japanese 
population.  Like Crohn's disease, UC is caused by 
abnormal activation of the immune system in the intestines.  
Authors hypothesize that SP-D, by affecting dendritic cell 
and T-helper cell functions (70), modulates the 
inflammatory response.  The SP-D association with UC is 
likely related to SP-D involvement the regulation of innate 
and adaptive immunity against bacteria in the colon (173).  
A study performed in a Norwegian population, subjects 
homozygous for the allele encoding Threonine at aa11 of 
SP-D (SNP rs721917) were found to exhibit higher risk for 
coronary artery stenosis, a type of cardiovascular disease, 
in which inflammation has been shown to play an 
important role (174).  The C/C genotype (Thr/Thr) has been 
shown to correlate with lower serum SP-D levels, smaller 
oligomeric structures, lower affinity to pathogens, and 
susceptibility to lung disease (131).  However, although it 
is known that SP-D plays an important role in lipid 
homeostasis, and removal of dying host cells, the authors 
conclude that SP-D variants are weakly associated with the 
atherogenic process.  Interestingly, a polymorphism in the 
TLR-4 gene was also associated with coronary disease in 
this study; SP-D has been shown to bind TLR-4 via the 
CRD (175). 
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3.3. Newborn lung disease associations with SP-A1, SP-
A2, and SP-D variants (SNPs and haplotypes) 

Genetic associations with newborn disease, as 
well as their relationship with other factors (e.g. 
prematurity, use of pre- and post- partum treatment, such as 
antenatal corticoids, or mechanical ventilation, etc.) are of 
special interest, because of the potential that these 
associations hold to predict susceptibilities, and to help on 
decisions about the use of appropriate treatment.  In this 
section, we focus on studies of SP-A and SP-D gene 
polymorphisms, and their association with two neonatal 
diseases, respiratory distress syndrome (RDS) and 
bronchopulmonary dysplasia (BPD) that reflect, 
respectively, acute and chronic lung injury.  A comparison 
of the main findings obtained in 13 different studies (11 for 
RDS, 2 for BPD), is shown in Table 5. 

 
Deficiency of surfactant can result in RDS in 

prematurely born infants.  Insufficient amounts of 
surfactant proteins, particularly SP-A, as well as absence of 
tubular myelin, an extracellular structural form of 
surfactant, have been shown to occur in RDS (176-180).  
Numerous studies have explored the relationship among 
SP-A1 and SP-A2 gene variants, and expression of SP-A in 
in vitro and in vivo models (32, 110, 114, 181, 182), 
however no clinical correlations among SP-A1, and/or SP-
A2 haplotypes or variants, and SP-A levels in the lung have 
yet been fully described to date (109, 183).  A specific SP-
A1/SP-A2 haplotype, 6A2/1A0, associated with RDS risk in 
most studies (184-186).  In a particular study, this 
haplotype was only found to be a risk factor if twins were 
concordant for RDS (187).  Another study identified an 
interaction of this haplotype with an SP-B polymorphism 
(Ile131Thr) (188), and the same interaction was found for 
6A3/1A2 and SP-B in protection (188).   

 
The SP-A1 6A2 variant has been associated with 

risk in the majority of the studies (184, 186, 189-191).  
These associations may be also dependent on SP-B 
polymorphisms (188, 192, 193), and influenced by multiple 
birth and birth order (187, 190), antenatal glucocorticoid 
therapy (11, 194, 195), size of the uterus and length of 
gestation (2).  The SP-A1 6A2/6A2 genotype association 
with RDS susceptibility was also found to be influenced by 
multiple birth, being associated with risk when twins were 
concordant for RDS, or protective when twins were 
discordant for RDS (187, 190).   

 
Variants 6A3 of SP-A1 (184, 185, 188, 192), and 

1A0 of SP-A2 (184, 186, 192, 196) and other less frequent 
SP-A1 (6A4) and SP-A2 (1A5) variants (186) were 
associated with protection for RDS in several studies.  In a 
separate study, the haplotype 6A4/1A5 was found to be 
protective (186).   

 
For SP-D, a non-coding SNP (rs1923537) was 

protective for RDS in a German study (116), and a different 
study identified several haplotypes of SP-A1, SP-A2, and 
SP-D that also associate with protection.  These include 
haplotypes SP-A2/SP-D: 1A1-Thr160 (rs2243639), 1A1-
Met11 (rs721917)-Thr160 (rs2243639), and SP-A1/SP-
A2/SP-D: 6A4-1A2-Tr160 (rs2243639), 6A3-1A1-Met11 

(rs721917)-Thr160 (rs2243639), and 6A4-1A2- Met11 
(rs721917)-Thr160 (rs2243639) (197).  

 
BPD is the most common chronic lung disease in 

infants.  A number of antenatal and postnatal risk factors 
influence susceptibility to BPD.  SP-A2/SP-D haplotypes 
were found to protect against BPD: 1A2-Ala160 
(rs2243639), and 1A2-Thr11 (rs721917)-Ala160 
(rs2243639) (198), and an association between the rare SP-
A1 6A6 variant and risk for BPD has also been reported 
(199).  
 
3.4. SP-A, and SP-D polymorphisms found in more than 
one study group. 

Several SP-A1, and SP-A2 genetic variants, as 
well as, specific SP-A1, SP-A2, and SP-D SNPs were 
found to associate with lung disease susceptibility in more 
than one study group.  A previous review has described 
these associations (12).  We provide an updated summary 
of this information, and also included associations with 
non-respiratory diseases in Tables 6 (SNPs) and 7 (gene 
variants).  

 
4. ASSOCIATION OF SP-A AND SP-D SERUM AND 
BRONCHOALVEOLAR LAVAGE FLUID (BAL) 
PROTEIN LEVELS WITH DISEASE 
 

Collectins are considered to be markers of and/or 
contributors to the pathogenesis of various diseases 
characterized by inflammation, infection, and/or 
derangement of pulmonary function or integrity.  Although 
associations of SP-A and SP-D gene polymorphisms and 
disease have been observed, to date, no human disease has 
been identified to be the result of one or more SP-A or SP-
D gene polymorphisms.  However, clinical conditions have 
been identified where a) the amounts of SP-A, SP-D, as 
well as the SP-A1/SP-A ratio in BAL or serum are altered, 
and b) host defense and inflammation mechanisms 
mediated by collectins are deranged.  Association studies 
have correlated clinical outcomes and collectins 
concentrations (140-142, 200-251).  These associations 
may underline the contribution SP-A and SP-D make to 
innate host defense by altering cytokine production, 
enhancing immune cells chemotaxis and function, and 
regulating cell proliferation and apoptosis, as well as the 
previously decribed interaction with pathogens (252, 253).  
In Table 8 we have reviewed and summarized the clinical 
studies that correlated significant changes in serum and 
BAL SP-A and SP-D protein levels with pulmonary and 
non-pulmonary disorders.  We present the information as 
increases/decreases compared to control subjects for each 
study.  The absolute SP-A and SP-D levels are not reported 
due to potential variation among studies that may arise 
from the use of different antibodies and standards.  

 
 The literature provides evidence that SP-A and 

SP-D levels are influenced by age, health, and smoking 
status, circadian rhythm, as well as by genetic factors (106, 
109, 118, 120, 232, 254-257).  However, very few studies 
have correlated genetic polymorphisms with collectins 
serum levels.  In one study, an SP-D haplotype revealed a 
negative association with serum SP-D levels (118).   
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Table 5. SP-A and SP-D SNP associations with neonatal disease 

Disease 
studied Gene(s) Population SNP or haplotype nucleotide 

(amino acid) susceptibility cases controls Reference 

BPD SP-A1 German 6A6  risk 23 23 (199) 

BPD SP-A2/SP-D Greek 1A2-rs2243639 G (Ala) protective 71 (60 
families)  (198) 

BPD SP-A/SP-D Greek 1A2-rs721917-
rs2243639 C(Thr)-G(Ala) protective 71 (60 

families)  (198) 

RDS SP-A1 Chinese 6A2  risk 18 28 (191) 
RDS SP-D German rs1923537 (3'UTR) G/G protective 202 68 (116) 

RDS SP-A2/SP-D mixed 1A1-rs2243639 A (Thr) protective 132 
families  (197) 

RDS SP-A2/SP-D mixed 1A1-rs721917-
rs2243639 T(Met)-A(Thr) protective 132 

families  (197) 

RDS SP-A1/SP-
A2/SP-D mixed 6A4-1A2-rs2243639 A (Thr) protective 132 

families  (197) 

RDS SP-A1/SP-
A2/SP-D mixed 6A3-1A1-rs721917-

rs2243639 T(Met)-A(Thr) protective 132 
families  (197) 

RDS SP-A1/SP-
A2/SP-D mixed 6A4-1A2-rs721917-

rs2243639 T(Met)-A(Thr) protective 132 
families  (197) 

RDS SP-A1 Finnish 6A2  protectived 198a  (187) 
RDS SP-A1 Finnish 6A2/6A2  protectived 198a  (187) 
RDS SP-A1/SP-A2 Finnish 6A2/1A0  protectived 198a  (187) 
RDS SP-A1 Finnish 6A2  riskb  441/480c  (190) 
RDS SP-A1 Finnish 6A2/6A2  riskb 441/480c  (190) 

RDS SP-A1/SP-A2 Finnish 6A2/1A0  risk 86 (76 
families) 

35 (31 
families) (184) 

RDS SP-A1 Finnish 6A2  risk 88 (76 
families) 

35 (31 
families) (184) 

RDS SP-A1 Finnish 6A3  protective 88 (76 
families) 

35 (31 
families) (184) 

RDS SP-A2 Finnish 1A0  risk 93 (76 
families) 

38 (31 
families) (184) 

RDS SP-A1 Finnish 6A2  risk 46 43 (185) 
RDS SP-A1 Finnish 6A3  protective 46 43 (185) 
RDS SP-A1/SP-A2 Finnish 6A2/1A0  risk 88 88 (185) 

RDS SP-A1 mixed 6A2  risk 122 (32 
families)  (186) 

RDS SP-A1 mixed 6A4  protective 122 (32 
families)  (186) 

RDS SP-A2 mixed 1A0  risk 122 (32 
families)  (186) 

RDS SP-A2 mixed 1A5  protective 122 (32 
families)  (186) 

RDS SP-A1/SP-A2 mixed 6A2/1A0  risk 122 (32 
families)  (186) 

RDS SP-A1/ SP-A2 mixed 6A4/1A5  protective 122 (32 
families)  (186) 

RDS SP-A1 Finnish 6A2  riske 184 500 (188) 
RDS SP-A1 Finnish 6A3  protectivee 184 500 (188) 
RDS SP-A1/SPA2 Finnish 6A2/1A0  riske 184 500 (188) 
RDS SP-A1/SP-A2 Finnish 6A3/1A2  protectivee 184 500 (188) 
RDS SP-A1 Black 6A3  protectiveg 40 38 (192) 
RDS SP-A1 Caucasian 6A2  riskf 203 331 (192) 
RDS SP-A2 Caucasian 1A0  riskf 203 331 (192) 
RDS SP-A2 Caucasian 1A0  risk 106 86 (196) 

RDS: respiratory distress syndrome; BPD: bronchopulmonary dysplasia; atwin pairs; bsingletons; ctwin or multiple infants; 
dprotective if twins are discordant for RDS, but risk if twins are concordant for RDS; etogether with SP-B Thr/Thr genotype at 
Ile131Thr polymorphism; ftogether with the SP-B genotype 9306(A/G) or intron 4 (del/*); gtogether with the SP-B genotype 
1580(T/T). 
 
In addition, the SP-D rs721917 SNP has been shown to 
influence oligomerization, function, and serum 
concentration of SP-D (131).  With regards to SP-A, since 
the functional activity of SP-A1 and SP-A2 has been shown 
to differ (33, 43, 44, 52), the overall functional activity of 

human SP-A cannot be assessed if total SP-A levels are 
reported.  Therefore, the relative SP-A1/SP-A2 ratio is 
likely to be more informative of the total functional SP-A 
activity in the lung, and potentially provide a more disease-
specific marker, especially if it is further correlated with the
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Table 6. Summary of SP-A1, SP-A2, and SP-D SNPs and disease susceptibility 
Gene SNP Nucleotide (aa) Risk Protection 
SP-A1 rs1059047 C (Ala) HAPE 

Otitis Media 
rUTI 

RSV 

 rs1136450 C (Leu) IPF  
 rs1136451 A (Pro) 

 
G (Val) 

COPD 
TB 
IPF 

 

 rs4253527 T (Trp) 
 

IPF 
TB 

 

SP-A2 rs1059046 A (Asn) RSV  
 rs17886395 C (Pro) TB RSV 
 rs1965708 A (Lys) 

 
 
C (Gln) 
 
 

AR 
Meningococcal Disease 
RSV 
HAPE 
rUTI 
TB 

 

SP-D rs721917 C (Thr) 
 
 
 
T (Met) 

AR 
Cardiovascular (CS) 
COPD 
TB 
Asthma 
RSV 

BPD1 
RDS1 
 
 
RSV2 

 rs6413520 C (Ser) COPD  
 rs2243639 A (Thr) 

 
G (Ala) 

RSV 
UC 
 

RDS1 

 
RSV1 
BPD1 
RDS3 

 rs1923537 G  RDS 
 rs2245121 A COPD  
 rs911887 G COPD 

UC 
 

 rs7078012 C COPD  
AR: allergic rhinitis; BPD: bronchopulmonary dysplasia; CS: coronary stenosis; COPD: chronic obstructive pulmonary disease; 
HAPE: high altitude pulmonary edema; IPF: idiopathic pulmonary fibrosis; rUTI: recurrent urinary tract infection; RDS: 
respiratory distress syndrome; RSV: respiratory syncytial virus infection; TB: tuberculosis; UC: ulcerative colitis. 1 haplotypes 
with SP-A1 and/or SP-A2 polymorphisms; 2 haplotype with SP-D rs2243639; 3 both SNP alleles were associated with protection, 
depending on the population  
 
Table 7. Summary of SP-A1 and SP-A2 genetic variants and disease susceptibility  

Gene Variant Risk Protection 
SP-A1 6A 

 
Asthma 
CF 

RSV 

 6A2 Otitis Media  
  

 
6A3 

RSVa 
RDS 
CF 

 
 
RDS 

 6A4 

 

6A6 

6A11 

IPF 
Lung cancer 
BPD 
Lung cancer 

Otitis Mediab 
RDSb 
 

SP-A2 1A Asthmaa RSV 
 1A0 RDS 

Otitis Media 
RSVc 

 

 1A1 CF 
RSV 

RDSa 

 1A2  AR 
RSV 
BPDa 
RDSa 

 1A3 RSV 
TB 

 

 1A5 Otitis Mediaa 
TB 

RDS 

AR: allergic rhinitis; BPD: bronchopulmonary dysplasia; CF: cystic fibrosis; IPF: idiopathic pulmonary fibrosis; RDS: 
respiratory distress syndrome; RSV: respiratory syncytial virus infection; TB: tuberculosis. a only in haplotypes (with SP-A or 
SP-D), b in Otitis Media, 6A4 is risk if in haplotype with 1A5, but in RDS remains protective if in haplotype with 1A5, c risk in 
1A0/1A3, protective in 1A0/1A0. 
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Table 8. SP-A and SP-D protein levels in disease, and other clinical conditions, compared to control. 
Disease Serum levels References BAL levels References 

 SP-A SP-D  SP-A SP-D  

Asthma  ↑ (200) 
 

↓ 
↑ 

 
↑ 

(226) 
(227) 

BPD    ↓  (228) 

Bronchitis ↑  (201)    

CF  ↑ (202) ↓ (no infection) 
 
↑ (infection) 

 
↓ (no infection) 
 
↓ (infection) 

(142) 
(140, 141) 
(229) 
(140, 141) 

CLE ↑  (203)    

COPD ↑  
↑ 

(204) 
(205) 

↑1  
↓ 

(230, 231) 
(232) 

HP  ↑ (206) ↑  (233, 234) 

IPF ↑  
↑ 

(207-212) 
(210, 211, 213, 214) 

↓  (235, 236) 

Lung trauma    ↓  (237) 

Measles  ↑ (215)    

PAP ↑ 
 

 
↑ 

(207) 
(210) 

↑ 
↑2 
 

 
 
↑ 

(207, 238) 
(239) 
(210, 240, 241) 

Pneumonia  ↑ (213, 216, 217) ↓ 
↑ (HIV +) 

 
 
↑ 

(242-244) 
(244, 245) 
(217) 

RA  ↓ (218, 219)    

RDS ↑ 
↓ 

 
 
↑ 

(203, 220-222) 
(223) 
(211, 221, 224) 

↓ 
 
↓2 

 
↓ 
 
↓2 

(242, 246, 247) 
(220, 222, 250) 
(248, 249) 
(249) 

RSV     ↓ (251) 

Sarcoidosis  ↑ (210, 225) ↑  
↑ 

(233) 
(210) 

TB  ↑ (210)    

BPD: bronchopulmonary dysplasia, CF: cystic fibrosis, CLE: cardiac lung edema, HP: hypersensitivity pneumonitis, IPF: 
idiopatic pulmonary fibrosis, PAP: pulmonary alveolar proteinosis, RA: rheumatoid arthritis, RDS: respiratory distress syndrome, 
RSV: respiratory syncytial virus infection, TB: tuberculosis. 1 Levels measured in induced sputum and lung tissue, 2The samples 
from these studies are from tracheal aspirates 
 
specific SP-A1 and SP-A2 genotype.  Future studies may 
focus on potential correlations among SP-A and SP-D 
genetic polymorphisms, protein levels, and susceptibility to 
disease, and provide further evidence of collectins as 
genetic biomarkers for disease.   
 
5. SUMMARY 
 
 We have reviewed the available experimental 
evidence of SP-A1, SP-A2, and SP-D genetic associations 
with disease susceptibility in adults, children, and 
newborns.  Interactions among these and other genes 
products, as well as the impact of environmental factors, 
and other genetic and non-genetic factors are a necessary 
extension of this work, and will broaden our knowledge 
about the complexities underlying the role of collectins in 
respiratory disease.  Understanding these complexities, and 

the impact of genetic variability will help us understand 
individual disease-susceptibilities, identify risk groups, 
permit early detection of risk in neonates, and therefore 
design proper interventions in an attempt to decrease the 
long-term pulmonary injury. 
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