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1. ABSTRACT 
 

The selectins: E-selectin, P-selectin, and L-
selectin are adhesion molecules that are crucial for binding 
of circulating leukocytes to vascular endothelium during 
the inflammatory response to injury or infection.  
Accumulated evidence indicates that selectins regulate 
adhesion of circulating cancer cells to the walls of blood 
vessels.  Selectin ligands are transmembrane glycoproteins 
expressed on leukocytes and cancer cells that promote bond 
formations with selectins to mediate inflammatory 
processes.  Selectins and selectin ligands also participate in 
signal transduction to regulate diverse cellular functions.  
Sialyl Lewis X (sLex) and sialyl Lewis A (sLea) 
tetrasaccharides are carbohydrate motifs displayed on 
protein or lipid scaffolds that are critical components of 
functional selectin ligands.  Selectin binding to sLex and 
sLea present on colon, gastric, bladder, pancreatic, breast, 
and prostate carcinomas enhances distant organ metastasis.  
High expression of sialyl Lewis ligands on these cancers is 
significantly correlated with a poor post-operative 
prognosis.  This review will focus on the roles of E-selectin 
and P-selectin in cancer progression. Understanding the 
role of selectins in cancer supports the development of 
novel selectin-based therapies to control metastasis.   

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The majority of cancer deaths are attributed to 
the metastatic spread of malignant cells to vital organs 
rather than to primary tumor growth.  Control of metastasis 
is a significant challenge of current anti-cancer strategies.  
Therefore, understanding the mechanisms that regulate 
metastasis is crucial to the discovery of successful therapies 
that could prolong the lives of cancer patients.  The 
mechanisms involved in the movement of leukocytes from 
the circulation into tissue sites of injury or infection are 
similar to those used by circulating tumor cells to enter 
target organs in the early events of metastasis (1, 2).  
Several cell adhesion molecules and soluble mediators such 
as chemokines facilitate contact of leukocytes in flowing 
blood with the vascular wall and arrest on endothelial cells.  
The cell adhesion molecules are grouped into three 
families: the selectins, the integrins, and the 
immunoglobulin supergene family.  The selectin family: E-
selectin, P-selectin, and L-selectin mediate the initial cell 
contact between leukocytes and endothelium which results 
in transient tethering and rolling of leukocytes on cytokine 
activated endothelial cells.  These binding events require 
the presence of free calcium ions and occur under dynamic 
shear forces of blood flow that exist in the vasculature.  
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Interruption of these initial events prevents subsequent 
leukocyte adhesion and emigration.  The rolling cells sense 
signals produced by chemokines and other factors that 
activate leukocyte integrins.  Integrins bind to 
immunoglobulin superfamily members on endothelial cells 
resulting in firm adhesion of leukocytes to the endothelium.  
Leukocytes subsequently migrate out of blood vessels and 
into tissues through the layer of endothelial cells and 
underlying basal membrane (3).  

 
For epithelial cancers known as carcinomas, the 

establishment of metastases in secondary organs is a 
complex multistep process that involves tumor 
transformation; separation of tumor cells from the primary 
tumor and local invasion; intravasation and dissemination 
of circulating cancer cells in blood; stasis, adhesion to 
blood vessels, extravasation; proliferation and growth; and 
vascularization of the metastatic tumor (4).  All steps must 
be completed sequentially in order for metastasis to be 
successful and the cancer must also overcome numerous 
host defenses.  In addition, tumor cells can remain dormant 
for many years after primary cancer treatment before 
metastases recur.   

 
Overall, metastasis is an inefficient process and 

very few cancer cells actually establish tumors at secondary 
sites.  The early steps in metastasis are completed more 
efficiently than the later steps involving growth of malignant 
cells in the secondary organ, vascularization, and formation 
of visible metastases.  The attachment of circulating tumor 
cells to vascular endothelium in target organs is a key step in 
metastasis and is necessary for subsequent extravasation and 
invasion into target tissues.  The sialyl Lewis x antigen and 
similar carbohydrate structures are selectin ligands on 
several types of carcinomas that have been identified as 
markers of cancer progression, particularly for 
gastrointestinal carcinomas (5).  E-selectin is the best 
studied selectin and mediates the adhesion of tumor cells to 
activated endothelial cells (6).  However, P-selectin and L-
selectin also participate in tumor dissemination as studies 
have shown that metastasis is impaired in P-selectin and L-
selectin deficient mice (7).  P-selectin and L-selectin 
mediate early interactions of platelets and leukocytes with 
circulating tumor cells (8).  Although L-selectin is an 
important contributor to cancer progression, it will not be 
thoroughly discussed here.  Instead, the focus of this review 
will be to discuss recent evidence that supports the 
importance of E-selectin and P-selectin interactions with 
selectin ligands in promotion of metastasis in a permissive 
microenvironment.  The impact of this information on the 
development of novel selectin-based therapies to control 
cancer dissemination will also be reviewed. 
 
3. CHARACTERISTICS OF SELECTINS AND 
THEIR LIGANDS 
 
3.1. Structure and localization of selectins  

Selectins are type-I transmembrane glycoproteins 
that bind to carbohydrate ligands in a calcium-dependent 
manner.  E-selectin, P-selectin, and L-selectin comprise this 
family of cell adhesion molecules and share similar 
structures.  Each selectin has a C-type lectin domain at the 

amino terminus, an epidermal growth factor (EGF)-like 
domain, variable numbers of short consensus repeat domains 
(P-selectin has nine, E-selectin has six, and L-selectin has 
two), a single-pass transmembrane domain, and a short 
cytoplasmic tail at the carboxyl terminus (9).  The lectin 
domains of the selectins are 60% homologous and this 
feature is responsible for differences in carbohydrate binding 
and selectin specificity (10).  E-selectin (CD62E, ELAM-1, 
LECAM-2) is expressed exclusively on the surface of 
endothelial cells but is not constitutively expressed.  Instead, 
E-selectin is rapidly induced by inflammatory stimuli such 
as tumor necrosis factor-alpha (TNF-alpha) and interleukin-
1 beta (IL-1 beta), or disturbed blood flow and regulates 
leukocyte adhesion at sites of inflammation or injury (11, 
12).  After expression on the cell surface, E-selectin is 
slowly internalized and is targeted for degradation by 
lysosomes (13).  P-selectin (CD62P, LECAM-3, GMP-140, 
PADGEM) is constitutively expressed on endothelial cells 
and platelets and is stored in Weibel-Palade bodies and 
alpha-granules respectively in these cell types.  The 
activation of endothelial cells or platelets (e.g. by 
stimulation with histamine or thrombin) causes exocytosis 
and fusion of these secretory granules with the cell 
membrane, leading to rapid cell surface expression of P-
selectin (14, 15).  Subsequently, P-selectin molecules are 
rapidly internalized by endocytosis (16) and can be recycled 
(17).  Soluble forms of E- and P-selectin are found in serum 
and plasma.  Soluble E-selectin is released by activated or 
damaged human endothelial cells (18, 19), and is 
chemotactic for neutrophils, assists in their migration, and 
activates beta 2-integrins.  High levels of soluble P-selectin 
in plasma results in a pro-coagulant state, is associated with 
hypercholesterolemia, and may be a useful marker of 
endothelial dysfunction in these patients (20, 21).  Both E-
selectin and P-selectin are constitutively expressed in certain 
tissues in the absence of inflammatory stimuli.  For instance, 
the endothelium of human hematopoietic organs 
constitutively expresses E-selectin (22).  Venules in non-
inflamed skin support significant rolling of leukocytes that 
are partly mediated by P-selectin (23).  Thus, inflammatory 
stimuli are not strictly required for some blood vessels to 
express P-selectin.  L-selectin (CD62L, LAM-1, LECAM-1) 
is constitutively expressed on peripheral blood leukoctytes 
as well as many lymphocytes and is rapidly shed by 
proteolytic cleavage upon their activation (24).  In addition 
to its function in recruitment of leukocytes and lymphocytes 
to sites of inflammation, L-selectin is required for 
lymphocyte recirculation and homing to allow binding to 
high endothelial venules (HEV) of peripheral lymph nodes.  
Soluble L-selectin is produced by leukocytes located in 
tissues and high concentrations inhibit leukocyte attachment 
to endothelium (25).  L-selectin mediates the rolling of 
leukocytes on leukocytes adherent to the blood vessel wall 
in a process known as “secondary tethering” that will be 
discussed in section 3.3.   
 
3.2. Expression and function of selectin ligands 

The C-type lectin domain of selectins binds with 
high affinity to ligands modified with particular 
carbohydrate motifs.  Selectin ligands are transmembrane 
glycoproteins that require fucosylation to be properly 
functional and this is achieved by the fucose-generating FX 
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enzyme, which supplies 90% of cellular fucose.  Fucose 
decorates the termini of O-, N-, or lipid-linked glycans of 
selectin ligands and fucosylation determines their selectin 
binding ability which in turn, controls fundamental steps of 
selectin-dependent leukocyte adhesion and trafficking (26).  
Mice null for the FX enzyme are immunodeficient and have 
impaired leukocyte recruitment similar to patients with 
leukocyte adhesion deficiency type II (LAD-II) (27).   
Patients with this uncommon disease have a congenital 
defect in fucose processing and cannot produce functional 
fucosylated selectin ligands.  Their neutrophils do not roll 
effectively and the syndrome is associated with severe 
recurrent bacterial infections (28).  Sialyl Lewis X (sLex or 
CD15s) and its isomer sialyl Lewis A (sLea) tetrasaccharides 
are two of the minimum carbohydrate motifs displayed on 
protein or lipid scaffolds that are critical components of 
functional selectin ligands.  These motifs enable the 
presentation of several selectin ligands in clusters.  Mucin-
type O-glycans, N-glycans, or neolactosphingolipids 
expressed on the surface of leukocytes or cancer cells 
present sLex and sLea carbohydrates at their termini.  In 
inflammatory diseases and in certain cancers, sLex expressed 
on leukocytes and sLex and sLea on circulating tumor cells 
promote better recognition and high-affinity binding to 
selectins (29, 30).  Carbohydrate enzymes known as 
alpha1,3-fucosyltransferases (FucT), alpha2,3-
sialyltransferases, beta1,4-galactosyltransferases, and N-
acetylglucosaminyltransferases synthesize the carbohydrate 
motifs that comprise selectin ligands (11).  At least nine 
human FucT enzymes exist and five of them FucT-III – 
FucT-VII are involved in the biosynthesis of sLex.  In 
myeloid cells the most important carbohydrate modifying 
enzymes are FucT-IV and FucT-VII.  E-selectin, P-selectin, 
and L-selectin dependent rolling is abolished in mice 
deficient in FucT-IV and FucT-VII.  This absence of rolling 
demonstrates the importance of alpha1,3 fucosylation for the 
generation of selectin ligands (26).  Interestingly, other 
selectin ligands may exist in mice deficient in FucT-IV and 
FucT-VII as platelets of these doubly deficient mice are still 
able to bind to and roll on P-selectin expressed on 
endothelium in vivo (31).  FucT-III and FucT-VI appear to 
be the predominant fucosyltransferases that synthesize sLex 
in multiple cancer cell lines and in colorectal cancer tissues 
(32, 33).  Thus, these fucosyltransferases may be useful 
targets to develop therapies for reduction of the metastatic 
potential of cancer cells.     

All three selectins bind to the well characterized 
ligand P-selectin glycoprotein ligand-1 (PSGL-1) which is 
expressed on myeloid, lymphoid, and dendritic cells (34) 
(Figure  1).  PSGL-1 is the main physiological ligand for P-
selectin although high strength binding occurs to both P-
selectin and L-selectin due to sulfation of tyrosine residues 
and O-glycosylation in the N-terminus of PSGL-1 (35).  
Glycosylation regulates PSGL-1 binding and glycosylated 
PSGL-1 binds to E-selectin.  Binding is insensitive to 
sulfation of PSGL-1 indicating that the epitope recognized 
by E-selectin is different from that recognized by P-selectin 
and L-selectin (36).  CD24, expressed on neutrophils, is a 
small O-linked oligosaccharide-modified glycoprotein that 
functions as another P-selectin ligand and mediates rolling 
on P-selectin when PSGL-1 is absent.  Using CD24+ cell 

lines, Aigner et al. determined that this rolling interaction 
requires expression of the sLex antigen (37).  In addition to 
PSGL-1, E-selectin binds many ligands including E-selectin 
ligand-1 (ESL-1), CD44, CD43, beta 2-integrins, and L-selectin 
(38-43) however the physiological relevance of these 
interactions requires further investigation.  L-selectin binds to 
sulfated sLex epitopes (6-sulfo- sLex) expressed on O-glycans of 
glycoprotein ligands and sulfation is essential for binding.  
These interactions allow lymphocyte rolling along HEV of 
peripheral lymph nodes and Peyer’s patches.  In the HEV of 
peripheral lymph nodes, L-selectin binds to sialomucins known 
as peripheral node addressins (PNAds).  PNAds include 
glycosylation-dependent cell adhesion molecule-1 (GlyCAM-1 
or Sgp50), CD34 (Sgp90), podocalyxin, endomucin and 
nepmucin (44).  L-selectin also interacts with the endothelial 
mucin mucosal vascular addressin cell adhesion molecule-1 
(MAdCAM-1) in Peyer’s patches.  Sgp200 is another HEV-
expressed L-selectin ligand that participates in lymphocyte 
homing and exists in both cell associated and secreted forms.  
CD34 is expressed on the surface of endothelial cells.  Sgp200 
and CD34 may control the initial loose tethering of lymphocytes 
to HEV (45).  GlyCAM-1 is secreted and may primarily 
participate in signal transduction mechanisms of leukocytes.  
MAdCAM-1 interacts with both L-selectin and alpha4, 
beta7 integrin to support lymphocyte tethering and rolling. 
The selectin-selectin ligand interactions that are well 
characterized are shown in Figure  1. 

 
Recently, Mantovani and colleagues reported that 

the pentraxin protein PTX3 which augments innate 
immunity, also diminishes neutrophil recruitment in vivo 
(46, 47).  PTX3 appears to be a selectin ligand that limits 
inflammation by binding to P-selectin and inhibiting the 
rolling of neutrophils on P-selectin.  P-selectin may bind 
with slower on- and off-rates to PTX3 than to PSGL-1 but 
this phenomenon remains to be confirmed.  PTX3 may be as 
effective in inhibition of P-selectin function as P-selectin 
function blocking antibodies or genetic deficiency in P-
selectin.  Endothelial cells, macrophages, and dendritic cells 
stimulated with cytokines or endotoxins can synthesize 
PTX3 and neutrophils are able to store PTX3 in specific 
granules.  PTX3 exerts anti-inflammatory effects as 
demonstrated by the increased susceptibility of PTX3-
deficient mice to ischemia-reperfusion injury (48) however 
the mechanisms are not well understood.  It is unknown 
whether the binding interactions of PTX3 with P-selectin are 
Ca2+ ion dependent.  Interestingly, recombinant PTX3 has 
been reported to bind to P-selectin but not E-selectin and L-
selectin but the reasons for this discrepancy are unclear (46).  
Although much still needs to be elucidated about the 
function of PTX3 as a selectin ligand, this molecule may 
have potential therapeutic usefulness in the regulation of 
inflammatory reactions in vivo. 
 
3.3. Interactions of selectins with endothelial cells 

The selectins are key adhesion molecules that 
mediate hemostasis and initiate tethering of 
circulating blood cells to each other or to 
endothelium during migration of leukocytes from the 
blood vessel and recruitment into inflamed tissues.  
Binding of leukocytes to the endothelium of blood vessels 
is tightly regulated by a complex cascade of 
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Figure 1.  Structure of selectins and interactions with selectin ligands.  Selectin binding is calcium dependent and occurs through 
the C-type lectin domain.  E-selectin and P-selectin are expressed on activated vascular endothelium.  Ligands for E-selectin 
include E-selectin ligand-1 (ESL-1), P-selectin glycoprotein-1 (PSGL-1), and L-selectin.  P-selectin binds to PSGL-1 with high 
affinity and also binds to CD24.  L-selectin is present on leukocytes and binds to PSGL-1 strongly.  L-selectin also binds to 
CD34 and the homing receptors glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1), and mucosal addressin cell 
adhesion molecule 1 (MAdCAM-1) on endothelial cells.  These CAMs play key roles in leukocyte trafficking into sites of 
inflammation and the mucosal immune compartment.  The arrows indicate the binding interactions of selectins with their ligands.  
 

dynamic interactions between leukocytes and endothelial 
cells that are mediated by selectins, integrins, and the 
immunoglobulin supergene family of cell adhesion 
molecules (IgCAMs).  The selectins mediate low affinity 
transient and reversible rolling adhesions of leukocytes on 
activated endothelium.  The integrins regulate firm adhesion 
and migration of leukocytes through the endothelium.  
Integrins are heterodimers composed of an alpha and a beta 
chain that recognize multiple ligands including extracellular 
matrix proteins, cell surface glycoproteins, complement 
factors, and other soluble hematogenous factors.  Integrins 
are present on many cell types including leukocytes which 
express beta 2-integrins (CD11/CD18) and some leukocyte 
subpopulations express beta 1, beta 7 and alpha 4 integrins 
on their surface.  The endothelial IgCAMS directly bind to 
leukocyte cell-surface integrins and also play key roles in 
adhesion and transmigration of leukocytes (49, 50).  At sites 
of inflammation, the rolling contacts of leukocytes with the 
vascular endothelium are facilitated by chemokines that are 

secreted from the inflamed environment.  The chemokines 
transcytose through the endothelium and bind to the 
endothelial cell surface associated with proteoglycans.  
These chemokines interact with the G-protein coupled 
chemokine receptors on leukocytes and induce intracellular 
signals leading to inside-out integrin activation and firm 
leukocyte adhesion.  The leukocytes undergo shape changes 
associated with the conversion of G-actin to F-actin and 
pseudopod formation which enable leukocytes to adhere to 
endothelium and complete transmigration (51).   
  

In addition to the direct capture (primary 
tethering) of circulating leukocytes on the vascular 
endothelium as described above, leukocytes can be arrested 
from free-flowing blood indirectly by previously attached 
leukocytes and platelets (secondary tethering) (52, 53).  
Thus, a free-flowing leukocyte can be captured by an 
attached leukocyte and after collision, advances over the 
attached leukocyte before accumulation downstream of the 
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Figure 2.  Mechanisms of leukocyte accumulation on 
activated vascular endothelium.  Selectins initiate the 
tethering of leukocytes to endothelial cells.  Leukocytes 
that are captured from free-flowing blood roll along the 
blood vessel wall and sense chemokines which are 
deposited on the endothelial cell surface.  In primary 
tethers, leukocytes bind directly to E-selectin or P-selectin 
expressed by endothelial cells.  In secondary tethers, a free-
flowing leukocyte binds to and rolls on an already adherent 
leukocyte through L-selectin and PSGL-1 interactions 
before depositing on the endothelium downstream of the 
collision.  These rolling adhesions result in activation of 
leukocyte integrins that bind to members of the 
immunoglobulin gene superfamily.  The integrins mediate 
arrest of the rolling leukocyte and firm adhesion to 
endothelial cells.  Leukocytes then migrate through the 
spaces between endothelial cells to enter tissues by using 
integrins for traction and by following directed cues from 
chemoattractants.   

 
interaction.  Secondary tethering occurs through binding of 
L-selectin to PSGL-1 and accounts for up to 70% of 
leukocyte accumulation on activated endothelium (54).  We 
have recently demonstrated that under hydrodynamic shear 
flow conditions similar to the forces that are present in blood 
vessels, secondary tethering significantly augments 
leukocyte accumulation on P-selectin in flowing whole 
blood (55).  This mechanism may enhance leukocyte 
accumulation on activated endothelium and increase the 
density of leukocytes within these discrete areas at sites of 
inflammation (Figure  2). 
 
3.4. Functions of E- and P-selectin in disease  

The study of selectin and selectin ligand deficient 
mice has revealed the important functions of selectins in 
many physiological processes including inflammation, 
immunity, hemostasis, and wound repair (56-58).  Selectins 
also play important roles in many disease states including 
cancer which will be discussed in the next section.  E-
selectin may play a role in cardiovascular disease as elevated 
levels have been found in hypertension, diabetes and 
hyperlipidemia (59).  Raised levels of soluble E-selectin are 
detected in children with severe Plasmodium falciparum 
malaria compared to children with mild malaria (60).  High 
E-selectin or soluble E-selectin levels are also associated 
with acute ischemic stroke (61), bronchial asthma (62), 
psoriasis (63), eczema (64), atopic and allergic dermatitis 

(63), Kawasaki disease (65), Guillain-Barre syndrome (66), 
and Graves’ disease (67) compared with healthy subjects.  
The means by which soluble E-selectin may enhance 
symptoms of inflammatory disease may be through 
activation of beta 2-integrins, control of leukocyte 
movement, or stimulation of the respiratory burst and release 
of reactive oxygen species (68).   

 
P-selectin or soluble P-selectin may also be 

important in clinical disease as elevated levels are found in 
many inflammatory states including systemic sclerosis (69), 
malaria (70), acute lung injury (71), adult respiratory 
distress syndrome, ischemia-reperfusion injury, gram-
negative septic shock, rheumatoid arthritis (72), thrombotic 
diseases (73), and connective tissue diseases (74).  E- or P-
selectin deficient mice are protected from acute 
inflammation and tissue damage in models of 
ischemia/reperfusion-induced acute renal failure (75) and 
endotoxemia (76) thus demonstrating the key roles that these 
selectins play in inflammation.  It is thought that E- and P-
selectin work together to allow neutrophils and monocytes 
to bind to endothelial cells at sites of acute inflammation 
(56, 77).  In an experimental septic shock model, 
significantly decreased disseminated intravascular 
coagulation and mortality was observed in after inhibition of 
E- or P-selectin by antibodies or heparin (78).  Both E- and 
P-selectin have been implicated in the pathogenesis of 
atherosclerosis whereas the absence of these selectins 
reduces atherosclerotic lesions (79, 80).  This is in part 
because P-selectin expressed by activated platelets mediates 
their rolling on activated endothelial cells and monocyte 
recruitment during atherogenesis (81, 82).  The role of L-
selectin in disease has been extensively reviewed elsewhere 
and will not be addressed in detail in this article (72, 83).   

 
3.5. Factors that regulate E- and P-selectin expression 

Several transcription factors regulate the 
transcription of E-selectin such as TNF-alpha, IL-1, nuclear 
factor kappa B (NF-kappa B), and activator protein 1 (AP-1) 
(84, 85).  Peak levels of E-selectin on the endothelial cell 
surface are expressed by 2 – 6 hours after stimulation by de 
novo synthesis and return to basal levels within 24 hours 
(86).  Mouse E-selectin appears to be regulated by a similar 
mechanism and kinetics when assessed on mouse 
endothelioma cells (87).  There are four regulatory elements 
in the human E-selectin promoter: three elements are NF-
kappa B binding sites and one is an activating transcription 
factor (ATF)-binding element. NF-kappa B is necessary but 
not sufficient for cytokine-stimulated induction of E-selectin 
transcription and ATF is also involved in this process (88).  
E-selectin expression is induced by other factors such as 
shear stress (89), vascular endothelial growth factor (VEGF) 
(90), high mobility group 1 B-box (HMGB1) (91), and 
monocytes (92).  Furthermore, activation of Rho family 
GTPases by various stimuli up-regulates E-selectin 
expression (93).  E-selectin expression is blocked by 
inhibitors of transcription and translation including 
actinomycin D and cyclohexamide, cytokines such as 
transforming growth factor-beta (TGF-beta), glucocorticoids 
(94), elevations of cyclic adenosine monophosphate (95), 
and the histamine H2-receptor antagonist cimetidine (96-
98).  TNF-alpha stimulation of E-selectin expression is 
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inhibited by IL-4 through the actions of STAT6, which 
antagonizes the binding of NF-kappa B (99).   

 
The transcription of P-selectin and protein 

expression is regulated by IL-4, IL-13, and oncostatin M in 
human endothelial cells which lasts 72 hours (100, 101).  
TNF-alpha was found to stimulate transcription and protein 
expression of P-selectin in murine and bovine endothelial 
cells with similar kinetics to that of E-selectin (87).  These 
data were confirmed in vivo for the mouse (102) and the rat 
(103).  Unlike the murine P-selectin promoter, the human 
promoter does not contain a NF-kappa B binding site and 
thus P-selectin mRNA synthesis is regulated by TNF-alpha 
and LPS in murine cells but not in human cells (104, 105).  
In mice, IL-4 or oncostatin M stimulates P-selectin 
expression more slowly than TNF-alpha.  Oncostatin M is 
also reported to stimulate the transport of P-selectin from 
storage granules to the cell surface (106).   
 
3.6. Selectins and selectin ligands mediate signal 
transduction  

In addition to their roles in leukocyte adhesion, 
selectins and their ligands may function as signal 
transduction receptors.  All three selectins contain a 
cytoplasmic tail and thus may receive outside-in signals 
from selectin ligands (107, 108).  L-selectin and PSGL-1 are 
the best characterized signal transduction receptors that 
when ligated with physiological ligands or antibodies, result 
in diverse responses including up-regulation of beta 2-
integrin-mediated adhesion to the IgCAM intercellular 
adhesion molecule-1 (ICAM-1) (109), oxidative burst, and 
secretion of cytokines such as TNF-alpha and IL-8 (110).  L-
selectin and PSGL-1 also activate the cytoplasmic tyrosine 
kinase c-Abl leading to F-actin redistribution and assembly 
(111, 112) which underscores the importance of L-selectin- 
and PSGL-1-dependent signaling in leukocyte rolling. 

 
Phosphorylation of serine or tyrosine residues in 

the cytoplasmic tail of E-selectin is regulated by engagement 
of E-selectin by leukocyte counter-receptors, cross-linking 
by anti-E-selectin antibodies, and with P-selectin 
glycoprotein ligand-1 (PSGL-1) coated beads (107, 113, 
114).   E-selectin directly transduces signals into endothelial 
cells by p38 and p42/p44 mitogen-activated protein kinase 
(MAPK) pathways (115).  Neutrophil slow rolling is 
initiated by E-selectin binding to PSGL-1 which activates 
beta 2-integrins through the SYK and Src kinase pathways 
(116).  E-selectin clustering leads to its association with the 
endothelial actin cytoskeleton and several proteins such as 
alpha-actinin, filamin, vinculin, paxillin, and focal adhesion 
kinase (FAK) (117).  Thus, E-selectin is a functional 
signaling receptor on activated endothelial cells. In addition, 
TNF-alpha stimulation of endothelial cells activates NF-
kappa B, Jun NH2-terminal kinase (JNK1), and p38 kinase 
signaling pathways that are critical for cytokine-induced 
maximal E-selectin gene expression. (118).  The selectins 
may also have co-stimulatory functions on cells.  The 
binding of P-selectin to PSGL-1 on mouse neutrophils 
results in the PSGL-1 mediated transmission of signals that 
cause the activation of beta 2-integrins (119).  The 
interaction of P-selectin with monocytes is sufficient to 
initiate signal transduction and up-regulation of tissue factor 

expression because inhibitory antibodies to P-selectin 
block cell-cell interactions and the tissue factor response 
(120).  Binding of P-selectin on platelets to PSGL-1 on 
monocytes initiates signaling that leads to nuclear 
translocation of the NF-kB/Rel family of transcription 
factors and monocyte chemotactic protein -1 (MCP-1) 
secretion (121).  In contrast, little information is available 
on direct P-selectin mediated signaling.  P-selectin 
binding to PSGL-1 activates leukocyte integrins through 
the Src kinase family, Nef-associated factor 1 and 
phosphoinositide-3-OH-kinase signal transduction 
pathways (122, 123).  Ligation of P-selectin transmits 
signals to endothelial cells and platelets by an unclear 
mechanism (124).  Thus, P-selectin is able to activate 
signals in human and in mouse neutrophils however, only 
mouse neutrophils have a signaling mechanism that 
directly connects stimulation of PSGL-1 with the 
activation of beta 2 integrins.   

 
Selectin ligands also actively participate in signal 

transduction.  Purified or recombinant E-selectin or P-
selectin delivers signals to cells expressing their selectin 
ligands.  Adhesion of the HT-29 human colorectal 
carcinoma cell line to an E-selectin-Ig fusion protein 
stimulates tyrosine phosphorylation of several proteins in 
cells including c-src (125).  The binding of human colorectal 
cancer cells to human umbilical vein endothelial cells 
expressing E-selectin or to a recombinant E-selectin/Fc 
chimera leads to the activation of SAPK2/p38 in the cancer 
cells (126).  Blocking the activation of SAPK2/p38 of these 
cells inhibits their trans-endothelial migration.   
 
4.  ROLES OF SELECTIN: SELECTIN LIGAND 
INTERACTIONS IN CANCER METASTASIS  
 
4.1. Selectins regulate tumor cell extravasation  

Metastatic disease is an urgent clinical concern 
because metastasis rather than primary tumor growth is the 
predominant cause of many cancer deaths.  The metastatic 
cascade is a series of well-characterized steps that include 
local invasiveness, cell detachment, hematogenous or 
lymphogenic vascular invasion, circulation, cell arrest, 
extravasation, survival, proliferation, and angiogenesis.  All 
steps must be completed in order for a malignant cell to 
successfully metastasize (127).  In 1889, Stephen Paget 
proposed in his “seed-and-soil theory” from a study of breast 
cancers whereby the microenvironment of the target tissue 
provides the “soil” necessary to allow tumor cells to 
establish metastases or “seed” at specific secondary sites 
(128).  This theory was later challenged by James Ewing in 
1928 who proposed that cancer cells become established at 
particular metastatic sites due to the direction of blood flow 
and lymphatics which cause circulating tumor cells to 
become lodged in capillaries (mechanical tumor arrest) 
(129).  Although tumor cells are almost twice the diameter 
of leukocytes and may not easily travel through the 
microvasculature, there is much evidence to support the 
occurrence of specific adhesions with endothelial cells that 
facilitate the exit of tumor cells from circulating blood into 
distant tissues (organ-specific metastasis) (2, 6, 8, 130).  
Both mechanisms may participate in metastasis depending 
on tumor type and the metastatic environment (4).   
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Although still controversial, accumulated data 
supports the concept that cancer cells utilize similar 
processes in metastasis that are engaged during leukocyte 
extravasation.  Tumor cell transendothelial migration is 
dependent on the heterotypic interactions of tumor cells 
expressing selectin ligands, endothelial cells expressing E- 
and P-selectin, and other blood components (2, 8, 130-132).  
The modulation of these interactions using selectin-ligand 
mimetics (133), alterations in selectin ligand biosynthesis 
(134), inhibition of carbohydrates that participate in selectin 
interactions with their ligands (135), or inhibition of E-
selectin expression (136) altered tumor cell adhesion and 
metastasis formation.  A study demonstrated that metastases 
were redirected from the lung to the liver in mice over-
expressing E-selectin in the liver, which provides evidence 
that E-selectin present on activated endothelium can 
facilitate tumor cell seeding (137).  Early evidence using 
human colon carcinoma cells demonstrated that the 
development of experimental liver metastases was 
dependent on E-selectin (6).  P-selectin may also promote 
the metastatic process by helping colorectal cancer cells to 
evade the inflammatory response but its function is not 
entirely clear.  In colorectal cancer specimens, P-selectin 
expression and leukocyte infiltration were almost 
undetectable in liver metastases when compared to primary 
tumors that expressed high levels of P-selectin and high 
numbers of leukocytes (138).  P-selectin also appears to 
mediate metastasis through platelet and tumor cell 
interactions and a synergistic effect of P- and L-selectin has 
been reported in the metastasis of colon carcinoma (7).  P-
selectin expression is increased in gastric and breast cancers 
but decreased expression in melanoma and colorectal cancer 
is associated with tumor progression (138-142).  In 
melanomas, P-selectin is not expressed in the 
microvasculature of advanced primary tumors and 
metastases compared to benign melanocytic lesions.  The 
observed decrease in P-selectin expression may be due to its 
enhanced shedding into the circulation (142).   
 

The tumor-promoting role of selectins in cancer 
progression is not clear cut as some evidence indicates that 
selectins do not participate in tumor progression.  For 
instance, clinical studies conclude that levels of soluble E-
selectin in circulation are not different from controls in 
samples obtained from colorectal cancer, breast cancer, and 
hepatocellular cancer patients (143-145).  In selectin-
deficient mice, the primary growth of human colon 
carcinoma or melanoma is significantly enhanced which is 
thought to be due to a lack of monocyte/macrophage 
infiltration into tumors (146).  Glinskii et al. found that 
selectins did not significantly participate in the arrest of 
breast and prostate carcinoma cells in murine lung 
microvasculature because function-blocking antibodies 
directed against E-selectin, L-selectin, and P-selectin did not 
inhibit the formation of sub-pleural metastatic deposits 
(147).  Lastly, another study reported that multiple prostate 
carcinoma cell lines did not adhere to selectins although they 
expressed sLex antigens (148) however static adhesion 
assays were used which may not accurately reflect the 
dynamics of attachment of cells to activated vascular 
endothelium.  Thus, tumor type, location, physiological 
shear, factors in the tumor microenvironment, and other 

conditions all appear to be important in determining the role 
of selectins in tumor adhesion.   
 
4.2. The involvement of selectin ligands in cancer 
metastasis 

Tumor cells are abnormally glycosylated and 
display alterations in sialylated and fucosylated selectin 
ligands.  This pattern was first described in 1969 by Meezan 
et al. with the observation that healthy fibroblasts have 
smaller membrane glycoproteins than transformed 
fibroblasts (149).  Selectin ligands such as PSGL-1, ESL-1, 
CD24, sLex, sLea, CD34, MAdCAM-1, lysosomal 
membrane glycoproteins LAMP-1 and LAMP-2, sulfatides, 
CD44, and death receptor-3 (DR-3) that are expressed on 
leukocytes are also up-regulated on the surface of cancer 
cells (150).  However, in many cases their biological 
significance remains to be elucidated.  The carbohydrate 
determinants sLex and sLea are ligands for endothelial E-
selectin and both are expressed on carcinomas of the large 
bowel.  These determinants are synthesized by 
glycosyltransferases: GlcNac transferase, Gal transferase, 
sialyl transferase and fucosyltransferase and altered 
functioning of these enzymes may result in changes in 
selectin-mediated metastasis (151).  Selectin binding to sLex 

and sLea carbohydrates present on several carcinomas 
including colon, gastric, bladder, pancreatic, breast, and 
prostate carcinomas has been shown to regulate distant 
organ metastasis and furthermore, high expression of sialyl 
Lewis ligands on these cancers is significantly correlated 
with a poor post-operative prognosis (140, 152-156).   

 
On leukocytes, the enzyme core 2 β1,6-N-

acetylglucosaminyltransferase (C2GnT1) facilitates core 2 
carbohydrate branching and is required for PSGL-1 to 
recognize L-and P-selectin but not E-selectin (157).  
Expression of C2GnT1 results in synthesis of sLex decorated 
core 2 branched O-linked carbohydrates (C2-O-sLex) on 
leukocytes that bind with much greater affinity to selectins 
than sLex alone.  Our group has recently reported that C2-O-
sLex carbohydrates are tumor-associated antigens on colon 
and hepatic carcinoma cells that regulate their invasive 
properties (158), strongly bind to E-selectin (159), are 
predominantly expressed at the advancing edge of invasive 
colorectal adenocarcinomas, and that high mRNA levels of 
C2GnT1 are present in these carcinomas compared to 
normal colonic tissues (160).  Our findings support other 
studies where high C2GnT1 expression in carcinomas has 
been correlated with vessel invasion, depth of tumor 
invasion, and metastasis (161-163).  However, for other 
tumor types, the link between selectin-ligand interactions 
and tumor cell extravasation and metastasis is less clear.  
Highly metastatic ras-transformed NIH/3T3 fibroblasts and 
control cells have similar kinetics of extravasation that are 
independent of the metastatic capacity or the transformation 
status of the cells (164). 

 
CD44 transmembrane glycoproteins are a family 

of molecules consisting of several isoforms expressed on 
epithelial, endothelial, and tumor cells.  The extracellular 
domains of these isoforms contain combinations of at least 
10 alternatively spliced exons.  CD44 functions as a receptor 
for hyaluron, collagen, laminin and fibronectin, and interacts 
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with other molecules such as osteopontin, matrix 
metalloproteinases and selectins to regulate cell adhesion.  
CD44 appears to play important roles in cell survival, 
invasiveness, migration, and angiogenesis (165).  The CD44 
variant isoform CD44v is over-expressed in gastric, 
pancreatic, lung, and renal cancer and modulates tumor 
growth and metastasis (166).  In vitro studies with colon 
carcinoma cells demonstrated that CD44v isoforms facilitate 
tumor cell adhesion to platelets, leukocytes, and endothelial 
cells by binding with E-selectin, P-selectin, L-selectin, and 
fibrin (167, 168). 

                                                                                                                                                                                      
DR-3 is a member of the TNFR family and was 

recently recognized as a sialylated and signaling counter 
receptor for E-selectin expressed by metastatic colon cancer 
cells (169).  It is expressed mainly by peripheral blood 
lymphocytes as alternatively spliced isoforms and aberrant 
expression induces signals in mammalian cells that result in 
caspase-induced apoptosis or activation of NF kappa B (170, 
171).  DR-3 is expressed on colorectal cancer cells but not 
on normal colon tissues (169).  The binding of DR-3 to E-
selectin activates both DR-3 and E-selectin, activates the 
MAP kinases p38 and ERK, induces signaling in endothelial 
cells, and ultimately increases endothelial permeability 
which allows transendothelial migration of cancer cells 
(169, 172).  Overall, these studies underscore the importance 
of selectins and selectin ligands in cancer cell adhesion and 
metastasis. 

 
5. THE ROLE OF SELECTINS AND THEIR 
LIGANDS IN CANCER INFLAMMATION 
 

The tumor microenvironment of primary tumors 
and distant metastases often contain a diverse inflammatory 
cell population consisting of infiltrates of platelets, 
neutrophils, macrophages, dendritic cells, and lymphocytes.  
These cells can all produce pro-inflammatory cytokines that 
can up-regulate selectin expression in the microvasculature, 
along with other mediators including chemokines, cytotoxic 
factors such as reactive oxygen species, serine and cysteine 
proteases, matrix metalloproteinases, membrane perforating 
agents, mediators of cell killing, and coagulation factors 
(173).   Thus, there appears to be a link between 
inflammation and cancer progression.   
 

In models of experimental liver and lung 
metastasis, within a few hours after the arrest of cancer cells 
in the microvasculature, markers of endothelial cell 
activation and inflammation are up-regulated (174, 175).  
Activated endothelial cells mediate the recruitment of 
leukocytes, promote inflammation and enhance metastatic 
colonization (41, 176).  In an in vivo mouse model of liver 
metastasis, highly metastatic murine lung carcinoma and 
human colorectal carcinoma cell lines rapidly induced TNF-
α production by Kupffer cells located in sinusoidal vessels 
around the invading tumor cells.  Furthermore, high TNF-α 
levels resulted in increased tumor-specific expression of E-
selectin, P-selectin, intercellular adhesion molecule-1 
(ICAM-1), and vascular cell adhesion molecule 1 (VCAM-
1) on sinusoidal endothelial cells (176).  Increased levels of 
soluble E-selectin, (ICAM-1), and (VCAM-1) found in the 
serum of colon cancer patients are markers indicating the 

activated state of endothelial cells (177).  In contrast, 
inhibition of endothelial activation attenuates metastasis 
(97).  Activated endothelial cells up-regulate cell adhesion 
molecules and the production of chemokines, which recruit 
leukocytes, neutrophils, and monocytes from the 
microcirculation (178).   

 
Recently, it was shown that selectin-mediated 

interactions of tumor cells with platelets and leukocytes 
caused activation of endothelial cells, induced production of 
C-C chemokine ligand 5 (CCL5) and promoted metastasis 
(179).  Soluble inflammatory mediators can also increase the 
expression of selectin ligands on cancer cells (2, 180, 181).  
McDonald et al. reported that two interrelated processes: 
direct endothelial selectin-selectin ligand interactions and 
activated and adherent neutrophils within the sinusoids both 
significantly facilitated the sinusoidal arrest and adhesion of 
lung carcinoma cells in the inflamed liver vasculature (182).  
Our group observed that neutrophils provided a source of 
TNF-alpha that significantly up-regulated the selectin ligand 
sLex on transfected non-small cell lung cancer cell lines 
expressing sLex.  TNF-alpha stimulation also increased 
binding to E-selectin.  The TNF-alpha stimulated tumor cells 
were more invasive and displayed morphological changes 
consistent with increased motility (manuscript in press).  
Overall, these changes indicated that neutrophil-derived 
TNF-alpha up-regulated selectin-mediated metastatic 
behavior of the non-small cell lung cancer cells.  The studies 
reported here suggest that the inflammatory response 
augments the metastatic potential of cancer cells.  A 
potential model for the inflammatory mechanisms that 
facilitate extravasation, invasion, and metastasis of 
circulating cancer cells is shown in Figure  3.    

  
6. CLINICAL APPLICATIONS OF SELECTIN-
LIGAND INTERACTIONS IN CANCER 
 

Targeting selectins and their ligands to control 
cancer progression is an attractive prospect because much 
evidence suggests that these interactions drive tumor 
progression.  Therefore, the development of drugs to inhibit 
selectin binding could potentially interrupt the metastatic 
cascade.  A limitation of this strategy is that selectins play a 
central physiological role in inflammation and thrombosis 
and therefore potential risk exists of causing undesired and 
unexpected effects on host immune function with long-term 
drug administration.  Furthermore, selectins act in concert 
with other adhesion molecules and their ligands to mediate 
metastasis of circulating tumor cells which needs to be taken 
into account when considering therapeutic intervention.   

 
Varied anti-selectin therapies targeting interactions 
between leukocytes, platelets, and endothelial cells have 
been attempted for the treatment of inflammatory diseases.  
Promising results have been observed for treatment of 
conditions such as psoriasis, graft-versus-host-disease, 
arthritis, asthma, atherosclerosis, or ischemia-reperfusion 
injury using experimental animal models but clinical trials 
have overall been disappointing.  These studies are 
described in detail in excellent recent reviews (45, 72, 183) 
and only highlights will be briefly discussed here.  Several 
selectin antagonists have been tested but are not cell 
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Figure 3.  A potential model of selectin-mediated extravasation of cancer cells into an inflammatory tissue microenvironment 
during metastasis.  Epithelial cancer cells intravasate into a blood vessel from a primary tumor, circulate, and interact with blood 
components such as leukocytes and platelets before arrest on endothelium in the peripheral vasculature including post-capillary 
venules.  Cytokines and other factors produced by leukocytes in the inflammatory microenvironment may up-regulate 
fucosyltransferases and other glycosyltransferases in cancer cells resulting in increased expression of the sLex antigen on the 
cancer cell surface and high-affinity selectin binding. The binding of sLex on cancer cells to E-selectin may activate signal 
transduction pathways that result in enhanced invasion and metastasis.  Neutrophils and other leukocytes that have extravasated 
into tissues may also facilitate invasion and metastasis through the secretion of cytokines that promote sLex presentation on 
cancer cells.  
 

type specific.  In mouse models of ischemia-reperfusion 
injury, anti-E-selectin and anti-P-selectin monoclonal 
antibodies were protective against ischemia-reperfusion-
induced severe acute renal failure by reducing neutrophil 
infiltration into the kidney after ischemia (75, 184).  
SPLAT-1 (CDP850) is an engineered human antibody to E-
selectin that was effective in inhibiting leukocyte 
recruitment to inflamed human skin grafted on SCID mice 
but failed to decrease leukocyte numbers in psoriasis 
patients or to improve symptoms and therefore further 
studies were not conducted (185, 186).  Another anti-E-
selectin antibody decreased inflammation in subarachnoid 
hemorrhage in mice and could have been potentially used to 
treat cerebral ischemia in patients but was not further 
characterized (187).  In an atherosclerosis model using 

apolipoprotein E-deficient mice, blockade of P-selectin or 
PSGL-1 using monoclonal antibodies RB 40.34 and 4RA10 
respectively significantly reduced neointima formation, 
plaque macrophage content, and vessel wall thickening after 
arterial injury which has applications as a treatment against 
restenosis (188).  

 
A recombinant soluble form of human PSGL-1 

covalently linked to immunoglobulin G (rPSGL-1-Ig) was 
developed that blocks leukocyte rolling in vivo and prevents 
inflammation but this product was discontinued due to high 
production costs (45, 72, 183). Biamosiamose is a pan-
selectin antagonist that targets all three selectins and is 
effective in animal models of asthma and reperfusion injury 
after myocardial infarction (189, 190).  Clinical improvement 
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was documented after biamosiamose was administered to 
psoriasis patients and was thought to be due to inhibition of 
leukocyte extravasation or mediated by E-selectin.  Other 
glycomimetics directed against selectins have been tested 
including the sLex mimetics cylexine in phase II and III clinical 
trials and efomycine M in preclinical trials.  Cylexine reduced 
reperfusion lung injury after pulmonary thromboendartectomy 
but was not effective in improving early mortality or post-
operative recovery in infant heart surgery for congenital heart 
defects and thus further testing is needed.  Efomycine M was 
non-toxic, demonstrated the most selective inhibition of 
selectin-mediated adhesion of leukocytes to endothelium in 
vitro, and diminished inflammatory responses in animal models 
of psoriasis, myocardial infarction and reperfusion injury, and 
T cell mediated-allergic reactions (183). 

 
The induction of E-selectin tolerance has also 

been attempted to achieve an anti-inflammatory effect at 
selectin-positive target sites.  In this system, the host’s own 
immune system produces regulatory T cells against E-
selectin.  A low dose of E-selectin was repetitively 
administered by nasal instillation to spontaneously 
hypertensive stroke-prone rats which reduced the incidence 
of ischemic and hemorrhagic strokes (191).  In humans, the 
safety and efficacy of an intranasal E-selectin spray in 
healthy patients with previous stroke was evaluated in a 
phase II study that was subsequently terminated.     

 
Limited studies have been performed on the use of 

strategies targeting selectins as anti-cancer agents.  
Therapies aimed at blocking the effects of all three selectins 
and their ligand PSGL-1 simultaneously rather than as 
individual molecules may have the greatest effect in 
modulating metastasis.  Drug design is difficult because the 
same cancer cell type may have multiple selectin ligands 
(32, 192).  One study found that anti-P-selectin monoclonal 
antibodies suppressed metastasis of gastric cancer in mice 
orthotopically implanted with human gastric cancer tissues 
and did not adversely affect immune function (193).   
Another approach used glycometabolic inhibitors to inhibit 
O-glycosylation of mucins and fucosyltransferases and 
thereby indirectly reduce the production of selectin ligands 
(194).  Metastasis was attenuated after treatment of cancer 
cells with a disaccharide-based inhibitor that was a decoy for 
glycan synthesis (195, 196).  Low molecular weight 
heparins and unfractionated heparin have been developed 
that inhibit lung metastasis in experimental mouse models 
most likely by inhibiting the binding of cancer cells to L- 
and P-selectin (197).  Heparins are also associated with a 
better survival of cancer patients in clinical trials (198). 
 
7. CONCLUSIONS AND FUTURE PERSPECTIVES 
 

The selectin-mediated adhesion of circulating 
cancer cells to endothelial cells is crucial for the homing of 
cancer cells to specific target organs during metastasis.  
However, much remains to be learned about the metastatic 
process.  Unraveling the molecular mechanisms involved in 
metastasis will allow effective and highly specific selectin-
based anti-cancer treatments to be developed in the future.  
As outlined above, a diverse array of inhibitors that target 
selectins and selectin ligands has been identified to 

potentially treat tumor metastasis using animal models.   
However, progress into clinical trials is slow in part because 
of technical issues created by the fact that these molecules 
participate in numerous physiological functions and their 
inhibition could potentially cause many unexpected or 
unwanted complications in vivo.  The expression of selectins 
and their ligands is regulated by many factors in the 
microenvironment that are involved in inflammatory 
reactions and therefore the identification of specific targets 
to successfully inhibit selectins is challenging.  In spite of 
these limitations, pursuit of selectin-based therapies to 
control cancer metastasis and inflammatory diseases is an 
exciting and novel scientific direction that deserves further 
study.     
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