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1. ABSTRACT 
 

The complement (C) system is a vital arm of 
innate immunity with many roles, including control of 
inflammation.  This article examines the (C) system with 
emphasis on recent developments on complement relevant 
to neurobiology, in particular regarding our understanding 
and treatment of immune-mediated diseases.  We will 
briefly outline the C system, and provide an updated review 
of its many receptors and regulatory factors.  This section 
concludes with a listing of important roles of the C system, 
from recruitment of neural stem/progenitor cells, to its’ 
relation to coagulation and adaptive immunity, and its 
lesser-known but beneficial roles in physiology.  We also 
review evidence for C-mediated diseases, which include 
multiple sclerosis and Alzheimer’s disease.  Therapeutic 
approaches for C-mediated diseases, considers emphasizing 
modulators of the C system including several less widely 
studied approaches such as heparinoids, vitamin D, and 
intravenous IgM.  Finally, we summarize cutting-edge 
work on the role of C-mediated natural antibodies in 
autoimmunity and treatment strategies based on those 
findings, e.g., for remyelination and post-ischemic stroke 
repair.  Improved understanding of the C system may hold 
great promise for the treatment of neurodegenerative 
diseases.    
 
2.  INTRODUCTION 
  

The complement (C) system is a major arm of 
innate immunity, distinct from adaptive immunity 
(production of antibodies and effector T cells).  It is an 
evolutionarily ancient and widely conserved system (1), yet 
significant differences in details are seen even between 
closely related species, such as human vs. mouse.  It is 
analogous to the system of blood clotting insofar as it is 
comprised of a set of circulating proteins (zymogens, or 
pro-enzymes) which when triggered results in a cascade of 
reactions leading to several outcomes, all of which are 
aimed at killing pathogens and eliminating infected or 

damaged self-cells, and repair of collateral damage.  
However, complement also plays many other vital roles. 
 
 It is also “ancient” in terms of the history of 
immunology, having been discovered more than a century 
ago, and its main outlines were well delineated by the 
1980’s.  For this reason, and because more recent 
discoveries such as the Toll-like receptors (TLR’s), 
captured the limelight, the C system lapsed into relative 
obscurity.  Fortunately, however, it has recently been 
“rediscovered” (2) and is again enjoying a renaissance of 
exciting new discoveries, many of which are reviewed here.  
Much of this new work has done by a comparatively small 
number of specialists, and is not yet widely appreciated.  A 
recent special issue of Science on innate immunity (3), 
while highlighting important new discoveries, scarcely 
mentions the C system, (nor did a special issue of Nature 
on autoimmunity) (4). We shall see that some of the most 
exciting work on autoimmunity hinges on the C system.  
Likewise, reviews of the “inflammasomes” of innate 
immunity (5, 6) make no mention of the C system, although 
many pathogens and other signals can activate both, 
suggesting their connection.  Lastly, because many reviews 
have thoroughly reviewed intracellular signalling pathways 
activated by C, it is not a focus of this examination. 
 
3. OUTLINES OF THE COMPLEMENT SYSTEM 
 
 A major resource describing these pathways is 
Halkers’ textbook ‘Mechanisms in Blood Coagulation, 
Fibrinolysis and the Complement System’ (7) and several 
other accounts (8, 9) and as noted below.  Other general 
reviews are available (10, 11) but do not stress the detailed 
steps. 
 
3.1. The classical pathway 

The classical pathway is shown in Figure 1. Panel 
(A) shows the starting players in circulation: C1q, C1r and 
C1s.  The C1r and C1s are widely understood to each 
circulate as dimers, but have also been shown to exist as 
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Figure 1.  Classical pathway.  
 
tetramers, C1r2C1s2, with some in complex with C1q (12), 
as more recently discussed (13).  Panel (B) describes the 
classical triggering event, binding of C1q to IgG or IgM 
bound at plasma membranes.  The C1q resembles a 
bouquet of 6 flowers.  A single IgM is theoretically 
sufficient, or at least two IgG.  Activation of this pathway 
by IgG is sensitive to subclass, usually IgG3 > IgG2 ≈ IgG1 
> IgG4, but this may vary with specific conditions (14).  
This binding causes a conformation change in C1q giving 
increased affinity for C1r and C1s, binding a pair of each, 
as in (B).  The bound C1r is then spontaneously activated, 
then immediately activates the bound C1s, resulting in the 
activated C1 complex, symbol C1* in panel (C).  The 
active C1s, called s’ in the figure, then attacks circulating 
C4, breaking it into C4a + C4b, as in panel (D).  The C4b 
then binds C2, and in this state, the C2 is split, also by 
active C1s in the complex, yielding C2a + C2b, in which 
the C2a remains bound to the C4b, as in panel (E).  This 
complex, C4bC2a, is known as the C3 convertase because 
it converts C3 to C3a + C3b, as in panel (F).  The C3b 
remains bound to C4bC2a, giving the trimolecular 
complex, C4bC2aC3b, called the C5 convertase because it 
converts C5 into C5a + C5b, shown in (F).  The C3b 
readily binds covalently to pathogen (or other) surfaces via 
its thioester, and is a key opsonin, i.e., marks the cell for 
phagocytosis.  The C3bC5b complex may then set in 
motion the sequential recruitment of C6, C7, C8, and C9, 
assembling the “membrane attack complex” (MAC), or 
“terminal complement complex” (TCC), also called “C5b-
9”, which punches a hole (pore) in the membrane of the 
invading cell, killing it.  Like all of the steps, details of 
MAC formation are complex.  Briefly, it is C5b-7 that 

inserts in the membrane, which then captures C8, which 
induces polymerization of a ring of C9 (as many as 18 C9 
per pore) to form either a toroidal (“donut”) or non-tubular 
pore (7).  Some readers will notice that the sequence of 
interactions of the C1q complex is not first with C2, then 
C3, C4, but rather is with C4, C2, then C3.  This is because 
the factors were discovered and numbered before these 
steps were established. 

 
 Thus, there are two main routes of pathogen 
killing, one being lysis by MAC (“lytic pathway”), the 
other being opsonization, meaning C fragments are 
deposited on the pathogen which designate it for 
phagocytosis.  The relative importance of these routes 
depends on specifics (one example Neisseria meningitidis 
is discussed by Granoff) (15).  Numerous regulatory 
mechanisms control all steps.  For example, ‘self’-cells are 
protected against the C3b opsonin in several ways, 
including heparin-like substances (like heparan sulfate) in 
the extracellular matrix (ECM) which potentiate the actions 
of specific C inhibitors (16), discussed presently.  
 
3.2. The alternative pathway 
A key distinction of this pathway is that it does not depend 
on immunoglobulin (Ig).  This route involves two 
additional core components, complement factors B (CFB) 
and D (CFD), plus three main regulators (discussed later, 
CFH, CFI, CFP), and a hydrolyzed form of C3 in which 
water (H:OH) is added to its thioester bond; see Figure 2, 
top left (17).  A small fraction of circulating C3 is always 
in this evanescent form, C3•HOH, which is able to bind 
CFB, keeping the system poised for explosive
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Figure 2. Alternative pathway. 
 
amplification.  Bound B can then be cleaved by CFD, a 
serine protease present in trace amounts in plasma fully 
active but specific for B in the form, C3 (HOH)B, yielding 
C3 (HOH)Bb + Ba.  This product has the ability to directly 
produce C3b from C3; (see lower left of Figure 2).  Now, 
factor B can bind to C3b, whose thioester can covalently 
bond to the pathogen surface, where B is attacked by D, 
yielding surface-bound C3bBb, known as the “alternative 
pathway C3 convertase”.  Since this produces more C3b, 
this sequence is called the “amplification loop”.  
Mechanisms which normally restrict this amplification are 
considered in following articles.  Mechanisms for 
distinguishing ‘self’-cells from pathogens are discussed by 
Pangburn et al (18) and are described later. 
 
3.3. The lectin pathway 

This ‘ancient’ pathway (1, 19), which does not 
need a separate figure, adds a few more players: the 
mannose binding lectin (MBL) - a.k.a. mannan-binding 
protein (MBP) - and the MBL-associated serine proteases 
(MASP-1, -2, -3), plus a smaller one, sMAP (20-22).  Here, 
MBL functions as the recognition element, similar to C1q, 
except in binding to unfamiliar carbohydrates or dying 
‘self’-cells rather than Ig.  MBL circulates bound to a 
MASP, which is activated upon engagement, to split C4 
and C2 into C4b and C2b, generating the C3 convertase.  
The rest is similar as previously described, with C3 the 
central effector.  Recent work on this finds even closer 
parallels with the classical pathway (23), already evident by 
1996 (20). 
 
  3.4. The extrinsic pathway 

A fourth pathway, the “extrinsic” pathway 
operates through the proteolytic action of thrombin which 
directly cleaves C3 and C5 (24-26).  Thrombin is normally 

active in appreciable amounts only briefly and locally 
during coagulation.  This pathway may therefore be 
important in cerebral hemorrhage (27); other relations of 
the C system to coagulation are discussed.    
 
4.  REGULATORY FACTORS OF THE 
COMPLEMENT SYSTEM 
 
 It is often noted that the number of C regulatory 
factors is considerably greater than the number of core 
constituents, yet they are equally vital to the proper 
regulation of the system.  The number of these “accessory 
factors” continues to grow. 
 
4.1. Early or general regulators 

The C1 inhibitor (or C1 esterase inhibitor) is a 
serine protease inhibitor (‘serpin’), C1 inhibitor being the 
only known inhibitor of C1r (and, less potently, of C1s).  It 
is inhibits MASP-1 in the lectin pathway (13), and is an 
important regulator of the contact pathway of coagulation, 
acting on factors XIa and XIIa, and on fibrinolysis by 
inhibiting plasmin, which interacts with the C system as 
discussed in part 4 (4).  C1 inhibitors’ official name is 
SERPING1 (28) and is abbreviated C1-INH.  
Carboxypeptidase N (CPN) acts to detoxify the 
anaphylatoxins (C3a, C5a) by removal of the carboxy 
terminal arginine.  An important recent discovery is that the 
plasma carboxypeptidase B (CPB) of the fibrinolytic 
system, (also known as the thrombin-activatable 
fibrinolysis inhibitor, TAFI), is at least equally effective 
(29), as may be other recently described CP’s (e.g. CPM) 
(30).  They are also important in thrombin-mediated 
inflammation (31).  The C4b binding protein (C4b-BP, or 
C4BP) promote assembly of the convertases of C3 and C5, 
and when bound to membranes can function as a C 
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receptor.  Sjoberg et al. have suggested multiple regulatory 
roles for C4BP (32).  The gene for C4BP is found in close 
proximity to those for several other C factors, on the long 
arm of chromosome 1, this cluster being known as the 
‘regulators of complement activation’ (RCA).  

4.2. Modulators of the alternative pathway  
Complement factor H (CFH) binds to C3b or 

C3:HOH to inhibit binding to factor B, limiting formation 
of the C3bB proenzyme (33).  Equally important, CFH is a 
cofactor for factor I, which degrades C3bH to inactive 
C3b, (designated iC3b).  Factor I circulates in active form.  
Further degradation of iC3b releases the fragment, C3c 
(150 kDa), leaving the degraded portion, C3dg, to persist 
on circulating cells.  The factor H-related proteins (FHR), 
of which there are 5, are similar in their short concensus 
repeats (SCR’s) and amino acid sequence at the N terminus 
(34, 35).  For example, unlike CFH, CFHR1 is not a 
cofactor of I, but it does bind C3b and so can be detected 
on pathogen surfaces.  Most of these five FHR bind 
heparin, and associate with circulating lipids, but their 
specific functions remain unclear.  (The “R” in acronym 
CFHR1 here indicates ‘related’, not ‘receptor’.) 
 
 Properdin, or complement factor P (CFP), has 
been known for more than 50 years to stabilize C3bBb, 
sustaining C activation in the alternative pathway.  This 
action is opposite to that of factor H.  However, the details 
of this scheme have long remained obscure, and solid work 
was too rapidly dismissed, with the result that it came to be 
viewed as only a minor component, hardly even mentioned 
in many reviews.  That has now changed due to work by 
Fourcade, Kemper, and others (recently reviewed in ref 
erence36).  Briefly, in addition to the above function, CFP 
is itself a pattern recognition molecule capable of binding 
to the surfaces of certain pathogens, as well as to apoptotic 
and necrotic ‘self’-cells and fragments, leading to 
convertase formation and destruction of the target.  
Deficiencies of CFP predispose to several pathologies 
including certain infections, abdominal aortic aneurysms, 
and other inflammatory and autoimmune disorders (36).    

4.3. The complement receptors 
The chief function of complement receptor 1 

(CR1, CD35) is to clear immune complexs (IC) (37).  CR1 
was formerly known as the C3b/C4b receptor because its 
main ligands are those components bearing immune 
complex (IC).  It is widely distributed, but CR1 of 
erythrocytes (RBC) dominate because of their vast 
numbers.  After capture, the IC is removed in the liver and 
the RBC return to the circulation unscathed (38).  CR2 
(CD21) is found on B lymphocytes, and can complex with 
CR1, CD18, CD81 and TAPA (39, 40).  It binds the 
antigen-bearing C3 fragments, iC3b, C3dg, and C3d, by 
which it functions in linking innate immunity to adaptive 
immunity, as outlined in part 4 (4) below.  Some authors 
classify CR1 and CR2 among the ‘RCAs’ (41, 42). 

 
  CR3 is the CD11b/CD18 complex and CR4 is the 
CD11c/CD18 complex, also known as integrin 
Alpha2Beta1.  These are often referred to collectively as 
“beta-2 integrins”. A fourth member, CD11d/CD18 is 
described but is not yet understood in this system (43).  

Lambris mentions evidence for a “CR5” (his quotation 
marks) but it is not yet defined (44).  CR3 on neutrophils 
recognizes β-glucans (45) and promotes T cell priming in 
viral infections (46).  CR3 expression on splenic B cells is 
regulated in part by C3 (47).  Of note, the T-regulatory 
(Treg) subpopulation are CD11c+CD8+ (48), but those 
authors do not discuss their findings in terms of CR4, or the 
role of C in modulating Treg population. 
 

  Ghebrehowet and Peerschke identified two C 
receptors, cC1qR, which is identical to calreticulin, and 
gC1qR/p33, where the prefix ‘c’ denotes binding to the 
collagen-like tail of C1q, and ‘g’ the globnular head (49).  
That review provides evidence of key roles of these 
receptors in infection (50), in the contact pathway leading 
to bradykinin generation, in the activation of platelets and 
endothelial cells, in inflammation, and in B-cells, T-cells, 
and other immune cell proliferation and responsiveness.  
For example, the hepatitis C virus appears to evade 
immunity via gC1aR (51, 52).  The gC1qR/p33 (also 
‘hyaluronic acid binding protein’ HABP-1) is located in 
various subcellular compartments, including mitochondria, 
as well as the plasma membrane (50), bringing up the 
important fact that the C system is now known to operates 
inside cells as well as in the plasma and at external cell 
surfaces.  In the same journal issue, another C1q receptor 
was identified, integrin Alpha2Beta1, on T cells, natural 
killer (NK) cells, and some others (53).  Its ligands include 
all the ‘collectins’. 

 
 Phagocytosis of pathogens proceeds by several 
machanisms involving C, illustrated by the fact that some 
fungi avoid phagocytic engulfment by blockade of CR2 and 
CR3 (54).  Those authors suggest that CR3 is another link 
between the C system to adaptive immunity.  With regard 
to the phagocytic clearance of apoptotic self-cells, which is 
highly relevant to autoimmune disease, both CR3 and CR4 
have been implicated (55), as has the opsonin iC3b (56).  It 
had been observed that C1q stimulated phagocytosis of 
apoptotic cells, and CD93 was implicated in this effect, 
whence it was termed C1qRp, where suffix ‘p’ stands for 
phagocytosis (57).  However, knock-out of this gene in 
2004 failed to eliminate the C1q-stimulation of 
phagocytosis (58), though it did hamper phagocytosis, as 
more recently discussed (59, 60).  Thus, there must be 
redundancy, or yet-undiscovered receptors.  Because of its 
many ligands and putative functions, some authors assert 
that the function of CD93 is unknown (61) while others 
support its role in phagocytosis (62).  Another putative C-
related receptor, or co-receptor, involved with phagocytosis 
is CD91 in complex with cC1qR / calreticulin (49, 63).  
However, CD91 (a.k.a. low-density lipoprotein-related 
receptor 1 (LRP1)) does not appear to be responsible for 
the C1q-triggered enhancement of phagocytosis (60). 
 
 The topic of C receptors is complicated by the 
different terminologies used by various authors, which may 
stem partly from the fact that multiple receptor complexes 
seem to be involved, partly from the promiscuity of these 
receptors leading to alternative names, and partly from the 
unsettled state of knowledge.  For example, a recent review 
of calreticulin (cC1qR) does not discuss it as a C receptor 
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at all (64), though it does discuss its role with CD91 in 
phagocytosis, as does Gardai et al (63), who find that it can 
either suppress or enhance inflammation. 
 
4.4. Membrane-bound self-cell protecting proteins 

Three proteins protect self-cells against 
autologous (self) C-mediated injury: the membrane 
cofactor protein (MCP, CD46), the decay accelerating 
factor (DAF, CD55), and the membrane inhibitor of 
reactive lysis (MIRL, CD59), a.k.a. protectin, a.k.a. 
homologous restriction factor (HRF).  Both DAF and 
MIRL are anchored to the membrane by a glycosyl 
phosphatidyl inositol (GPI) tether, which can be cut by a 
specific phospholipase C (65).  This topic was 
comprehensively reviewed by Morgan and Meri in 1994 
(66) but new details and relations to disease have since 
come to light (67, 68).  MCP, as its name implies, acts as a 
cofactor for the degradation of C3b and C4b by CFH and 
CFI.  It is widely distributed but absent from RBC.  
Protectin protects self-cells by blocking completion of 
MAC via binding C8 and/or C9.  DAF accelerates the 
decay of C3 convertase, and binds C3bBb (42) and is of 
interest in Alzheimer’s disease (AlzD) (69). 

4.5. Anaphylatoxins and their receptors 
The cleavage fragments C3a and C5a are the 

main anaphylatoxins (AT’s), so called for their 
inflammatory effects.  Both are potent chemotactic agents 
which play essential roles in innate immunity (70, 71), and 
adaptive immunity, contributing to many pathologies such 
as sepsis (72), which will come up again in this review.  
When bound, the C5a receptor (C5aR, CD88) activates 
neutrophils increasing intracellular calcium, degranulation 
and respiratory burst.  Less clear is the function of the pool 
of C5aR-like receptor-2 (C5L2), which is mainly stored in 
cytoplasm, and binds C5a or C5adesArg. This may be 
involved with lipid metabolism in adipocytes, where it is 
known as acylation-stimulating protein (ASP) (73).  ASP 
can sequester and internalize C5a to act as an anti-
inflammatory, opposing C5aR.  The duties of C5aR and 
C5L2 in chemotaxis overlap with the N-formyl peptide 
receptors (74).  In the CNS, C5L2 is found on glia and 
neurons, and is reportedly anti-inflammatory (75). 

 
 Roles of AT’s in neurodegenerative diseases have 
been discussed by Klos et al. (72) and chemotaxis towards 
AT gradients have been described (76).  The gene for C5aR 
is near that of other peptide receptors e.g. bradykinin 
receptor.  The AT’s can also be generated directly by the 
mast cell enzyme, β-tryptase, acting on C3, C4 or C5 (77).  
Other AT’s are known, such as C3f and C3fdes-Arg (78).   

4.6. Additional pathogen recognition factors 
In addition to C1q and MBL, several other 

proteins function in the C system to recognize pathogen-
associated molecular patterns (PAMP’s) (79).  These are 
mainly lectins, proteins which bind to specific 
carbohydrates, usually those foreign to the host, or those 
which mark injured or dying self-cells. Lectins, also 
recognize some lipids, e.g. lyso-phosphatidyl choline.  
MBL belongs to the collectin family, which also includes 
the pulmonary surfactant proteins (SP) (21, 80), which 
participate in C regulation in the lung (81).  Ficolins, also 

of the collectin family where (“coll-“ denotes collagen-
like), are active participants in the lectin pathway which 
recognize pathogens and activating MASP-2, similarly to 
MBL (82, 83).  Runza et al. noted differences among 
species in ficolin specificities, which underlie species 
differences in susceptibilities to particular pathogens or 
strains. 
 
 C-reactive protein (CRP) and serum amyloid 
protein (SAP) belong to the pentraxin family (84, 85), so 
called for their five subunits, and both are “acute phase 
reactants” (APR’s).  CRP was discovered and named for its 
ability to precipitate polysaccharides from pneumococci.  CRP 
can bind pathogens and function like IgG or IgM, including by 
binding to FcγRI, II (86), by activation of C via C1q, as well as 
by binding to the inhibitory Fc receptor, FcγRIIb.  CRP 
protects mice against infections which would otherwise be 
fatal (87), proving its role in immunity.  Botazzi et al. (84) 
citing Szalai et al. (87) claim that CRP protects even when it 
does not bind pathogen but that citation does not support that.  
However, Agrawal et al. discuss theories about CRP functions, 
including bacterial killing without binding, concluding that it is 
an unsolved enigma (88).  In addition to SAP and CRP, which 
are “short” pentraxins, there are “long” pentraxins such as 
PRX3, produced in macrophages and dendritic cells in 
response to proinflammatory stimuli (89). 
 
 This listing should also include at least some of 
the C-type lectins (90), as it has been demonstrated that 
SIGN-R1, a relative of DC-SIGN and the main receptor on 
macrophages for certain pathogens, initiates the classical C 
pathway, independent of IgG/M (91, 92).  Also likely to be 
involved with the C system are the galectins, which are 
released or actively secreted by infected or dying cells, and 
which recognize many PAMP’s and “danger-associated 
molecular patterns” (DAMP’s) (93, 94). These authors do 
not discuss relationships of galectins to the C system. 

4.7. Additional compelemet modulators 
 
4.7.1. Clusterin 

Clusterin (CLU) was known in earlier C literature 
as protein SP-40,40, owing to its two chains of 40 kDa 
each; or as complement lysis inhibitor (CLI).  Clusterin was 
the name originally given for its ability to cluster several 
cell types (95).  However, CLU has other functions, 
including lipid trafficking in lipids where it is known as 
apolipoprotein J (apoJ); CLU also acts as a chaperonin.  
CLU may be regarded as another acute phase reactant 
insofar as CLU serum levels often rise in stress.  In the 
brain, CLU is secreted mainly by astrocytes.  Its function in 
the C system is to sequester terminal C components C7, C8, 
C9, blocking assembly of the MAC (42).  The relevance of 
CLU to the C system has been challenged (96), this finding 
was not conclusive in view of decades of papers supporting 
CLU modulation of C, and for technical reasons.  Current 
interest in CLU is increasing in cancer research. Its 
potential relevance to MS and Alzheimer’s disease (AlzD) 
has also resurfaced (see part 5). 
 

 4.7.2. Osteopontin 
Osteopontin (OPN) is a protein known to 

neurologists as one of a trio on the ‘radar screen’ of the MS 
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community (97).  OPN has been described as a 
proinflammatory mediator (98) but in the C-system, it can 
block or shut down the alternative pathway by potentiating 
inhibitory factor H, following binding to the vitronectin 
receptor, AlphaVBeta3 (S protein receptor) or CD44 (99).  
OPN can protect self-cells against C attack in a manner 
similar to the MCP, as does bone sialoprotein-1 (BSP1) 
(99, 100).  Other authors find OPN to participate in tissue 
repair as a guidance molecule (101).  Its Janus-like 
properties remind us of other C-related molecules in 
neurological disorders (such as CLU), a fact which gives 
pause when hearing them proposed as “targets of therapy” 
– should we inhibit, or increase them?   

 
4.7.3. S protein, also vitronectin 

Perhaps the best evidence that vitronectin (VTN) 
is important is the fact that at least two pathogens (Moraxella 
catarrhalis and H. influenzae) acquire this protein, using it as a 
defensive shield against C attack (102, 103).  For example, if 
the serum source of C is first depleted of VTN, it kills the 
pathogen; if VTN is added back it survives (102).  VTN 
contains the canonical RGD sequence (Arg-Gly-Asp) of 
fibrinogen and fibronectin which can bind to platelet GP 
IIb/IIIa and other integrins with this motif.  VTN is also 
a heparin-binding protein with several important 
functions (104) including coagulation.  In the C system, 
it binds incomplete MAC such as C5-b7, as well as to 
complete MAC (C5b-9), preventing MAC from harming 
cells, known as “non-lytic MAC”, (referenced in 103).  
Of course, if plasma VTN always had this action the C 
system would be crippled, therefore this might happen 
mainly at the extracellular matrix (ECM), which is VTN-
rich, for protection of self-cells, in much the way that the 
above-mentioned bacteria protect themselves by ‘donning a 
cloak’ of VTN. 
 
4.7.4. Phospholipase A2 

Although phospholipase A2 (PLA2) is not 
usually listed among the C factors, it is an acute phase 
reactant (89), increasing up to 1000-fold in inflammation, 
closely paralleling CRP (105).  PLA2 participates in the C-
mediated task of clearing apoptotic cells or debris, particularly 
those displaying anionic phospholipids such as phosphatidyl 
serine (PS), by inducing uptake of such particles, in partnership 
with CRP (106, 107).  PLA2 cooperates with C in killing 
Staphylococcus aureus and Listeria monocuytogenes, and 
doubtless many other pathogens (108), establishing its role in 
innate immunity.  Its role in the eicosanoid pathway 
(producing arachadonic acid) is one of several links between 
the C system and lipid mediators.  Since it specifically 
degrades anionic phospholipids such as PS, it acts as an 
anticoagulant in vitro; however, this activity is inhibited in 
plasma (109).  Interestingly, PLA2 was inhibited by the 
multiple sclerosis therapy, FTY720 (fingolamide) (110).  PLA2 
is a current drug target of neurodegenerative disease (111) 
including AlzD (112).  In spinal cord injury, it leads to the 
production of the highly inflammatory platelet activating 
factor (PAF) (113).  Plasma gelsolin, implicated in AlzD 
(114), is a regulator of PAF (115).  In the brain, Herpes 
simplex, (a neurotropic virus), generates an miRNA that 
down-regulates factor H to evade C killing, and also up-
regulates PLA2, in experiments bearing on AlzD (116). 

4.7.5. Note on acute phase reactants 
As mentioned earlier, plasma levels of several C 

factors rise dramatically in the hours following infection.  
Therefore, experiments using serum as a source of C can 
yield very different results if serum from acute phase 
subjects is used compared to normal serum (108).  A 1994 
review of acute phase reactants (APR’s) (117) listed about 
30 APR’s but did not include PLA2 or several others more 
recently proposed, e.g., M-ficolin (83), pentraxin 3 (89).  
Several APR’s are now used as clinicalinflammatory 
biomarkers, most notably CRP. 
4.7.6. Apha-2 Macroglobulin 

Most authors do not include Alpha-2 
Macroglobulin (A2M) among the C factors but it is one of 
many accessory proteins which modulate the C system (7).  
It is believed that A2M is the original ancestor of the core 
C factors (C3, C4, C5), the latter having arisen from gene 
duplications (11).  A2M inhibits many proteases, including 
MASP-1 in the lectin pathway (118).  Since many 
pathogens use proteases as virulence factors, A2M can be 
anti-microbial.  For example, A2M is a key effector against 
trypanosomatids (119).  A2M inhibit proteases by an 
unusual mechanism, offering its “bait” region to the likely 
protease, then trapping it by covalent attachment through 
trans-acylation to its thioester (11, 120).  In humans, this 
large (700 kDa) plasma protein is abundant (2 mg/mL), is 
an acute-phase reactant (APR), and can also inhibit the 
coagulation enzymes, kallikrein, thrombin, and plasmin.  
Depletion of >35% of A2M in rats or dogs is lethal.  It may 
also inhibiting the zinc-dependent matrix metalloproteases 
(MMP’s) which participate in neurodegenerative disease 
(121) and is of interest in AlzD. 
 
4.7.7. The A2M receptor 

CD91 is the A2M receptor (A2MR) and was 
originally termed the lipoprotein receptor-related protein 
(LPR).  A2M engages CD91 with high affinity (Kd=0.5 
nM) following capture of a protease (120).  It is now 
considered to be also the receptor for heat-shock proteins 
such as HSP70 and HSP90, chaperonins (122) which 
govern proper protein folding.  As mentioned earlier, CD91 
complexes with calreticulin, which binds to the collagen-
like tail of C1q (cC1q) and to lung surfactant proteins, SP-
A and SP-D, to promote or suppress inflammation (63).  
Thus, CD91 is another C1qR.  Other reports not here cited 
document its interactions with C1q and CD93, its role in 
antigen presentation and autoimmunity, in HIV infection, 
and its function as a “scavenger receptor”.  CD91 
expression on monocytes was the only marker 
distinguishing HIV+ patients who did not progress to AIDS, 
and of melanoma patients with exceptionally long survival 
(122).  In that study, however, the assay was by antibody 
against A2M, not CD91 per se, raising technical questions 
of interpretation.  (For a review, see 123). 
 
4.7.8. Others 

Another plasma protein which deserves mention 
among the modulators of the C system is histidine-rich 
glycoprotein (HRG). HRG prevents aggregation of immune 
complexes, blocking inappropriate interaction of IgG with 
Fc receptors (FcR), aiding in safe disposal of apoptotic 
cells, and other effects involving the C system (124).  The 
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family of small leucine-rich regulatory proteins (SLRP’s) 
of the extra-cellular matrix have also been shown to be 
important in governing C activation at the cell surface via 
factor H (125); those authors discuss implications of 
SLRPs’ in inflammatory disorders.  A more recent review 
of some members of this family in innate immunity focuses 
on the Toll-like receptors (TLR’s) (and does not mention 
the C system at all) (126). 

4.8. Mouse models of C-mediated disorders 
Since many studies are done in mice, it must be 

emphasized that significant differences between murine and 
human C systems are known to exist, which may confound 
or even invalidate the relevance to humans, depending on 
the study.  These differences arise from variations in C 
gene duplications, alternative splicings, post-translational 
modifications, and tissue distribution (127).  For 
example, the membrane cofactor protein (MCP) is 
ubiquitous in humans, but in mice is restricted to the 
testes. Mouse erythrocytes express a protein known as 
Crry (complement receptor-1 related protein, y), 
considered to be the functional counterpart of human 
MCP (68, 128).  Common polymorphisms occur in 
human C4 and differ from those in the mouse (129).  
Such differences will affect sensitivity to a given 
activator, as might be expected from pronounced 
differences in species susceptibility to infectious 
diseases.  This has been a serious impediment in some 
research fields.  In transplant surgery, rodents do not 
mount C-mediated graft rejection as readily as humans 
(130).  In murine models of Alzheimer’s disease (AlzD), 
the mouse C system is less responsive to the Aβ protein 
than human, especially in formation of the terminal MAC 
(131, 132).  In an effort to improve this situation for 
AlzD models, the murine C1q A chain was humanized, 
this strategy failed to improve sensitivity to Aβ (133). 
 
5.  OTHER ROLES, OTHER SYSTEMS 
 
 An understanding is emerging that the C system 
has major roles beyond those traditionally recognized, and 
overlaps or interacts with other systems. 
 
5.1. Neuroprotective roles of C 

The C system has traditionally been viewed as a 
source of destructive inflammation but is now increasingly 
recognized as having beneficial actions as well (apart from 
immune defense).  One of these is recruitment of neural 
stem cells.  It was shown in 2006 that neural stem / 
progenitor cells are recruited via C factors, C3a, C5a and 
their receptors (134).  Those studies suggest important 
therapeutic applications of this finding.  Kimberly et al. cite 
three references which show a role for C factors in limb 
regeneration (135).  The anaphylatoxins are believed to be 
critical also for recruiting hematopoietic stem cells (136, 
137).  On the other hand, blockade of inflammation by 
NSAIDs (e.g. indomethacin) was said to restore 
neurogenesis after endotoxin-induced inflammation or 
irradiation (138). That finding is not necessarily 
inconsistent, or may involve different pathways, since 
NSAIDs are not known to block the C system, (except 
possibly in platelets).  With regard to stem cell recruitment, 

transformation of stem cells requires vitamin C (139) as an 
factor essential in cell culture (140). 

 
 Tegla et al. have discussed the neuroprotective 
effects of C in multiple sclerosis (MS) with a focus on 
oligodendrocytes (oligo’s) (141).  Oligo’s are able to 
defensively shed off MAC with vesicles (142), as can other 
cell types (143, 144), but MAC readily lyses them if 
present in sufficient levels (145).  Not mentioned by Tegla 
et al. is the fact that oligo’s are exquisitely sensitive to C 
since they lack GPI-anchored proteins which are protective 
against autologous C (146).  Tegla et al. cite data that sub-
lytic MAC can protect oligo’s from apoptosis, and that C5a 
protects axons, promotes remyelination, and inhibits 
gliosis.  Support for this is found in several papers by them 
and others using the EAE mouse model of MS which 
showing that deficiency of C5 (and C6) worsens disease, 
and alters expression of some 2500 genes, about 900 of 
which were differentially regulated in acute vs. recovery of 
EAE (147). 
 
 Three independent reports found that deficiency 
of the early C components not only failed to protect in the 
AlzD mouse, but exacerbated progression (148-150), 
suggesting a protective action of C.  However, as noted 
above, mouse models do not always faithfully reproduce 
human C activation in AlzD. Their meaning remains 
controversial and uncertain.  Relatedly, it was reported that 
C5a was strongly neuroprotective against glutamate 
toxicity (151); but in a mouse model of AlzD, others found 
that blocking the C5a receptor (C5aR, CD88) was 
protective (152).  Reiter et al. described “C-induced 
protection” by which sub-lytic amounts of C protected 
against subsequent lytic doses (153).  Others have also 
reported neuroprotection by MAC in sub-lytic amounts 
(141, 154).  This may be similar to the phenomenon of 
“accomodation” (155), the significance of which is not 
limited to transplant medicine. This refers to the 
observation that normally harmful antibodies can become 
benign, in a manner different from tolerance.  Systemic 
lupus erythematosus (SLE) is a well-known example in 
which C appears to play a protective role, since deficiencies 
of early components (e.g., C1q, C4) predisposes to the 
disease (156).  Turning again to AlzD, Veerhuis et al. 
report that Aβ in the presence of C1q and SAP, (but not in 
their absence), promoted secretion of proinflammatory 
cytokines from microglia in vitro (157).  Hence, the 
putative protective role of C in AlzD mouse models 
remains an open question.  Perhaps C is protective in the 
early stage of AlzD, since C can clear circulating Aβ (158), 
but is adverse in the later stages.  
 
 The broader question has been debated as to 
whether inflammation generally, and C in particular, is 
harmful or helpful in progressive neurodegeneration.  This 
was recently discussed in light of new evidence implicating 
inflammation and C activation in AlzD (159).  The term, 
inflammation, is exceedingly broad, obscuring important 
mechanistic differences among its pathways, including the 
compensatory anti-inflammatory response syndrome 
(CARS) (160).  Our laborartory entered the debate about 
whether inflammation was helpful or harmful in surviving 
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sepsis, and reported clear association of reduced mortality 
with increased inflammatory markers (161). 
 
 It was recently reported that the sushi domains 
characteristic of the C control proteins are vital to the 
proper clustering of acetylcholine receptors in the worm, C. 
elegans, leading those authors to expect a similarly vital 
role for C factors in human nerves (162).  Findings from 
other lower organisms are also instructive.  As noted later 
(part 6 (4)), the C system is involved in the release of 
antimicrobial peptides. It has been shown in the medicinal 
leech, (which depends on the C system for its immune 
function) (19, 163), that these peptides are synthesized in 
neurons and glia, and act to promote neuronal regeneration 
following axotomy (164). 
 
5.2. Role in autoimmunity 

As mentioned above, nearly all individuals who 
are deficient in early C factors, C1q, C2, or C4 develop 
SLE, as do mouse models with these defects (156).  
However, C activation is also responsible for progression 
of the disease in later stages, so this presents a paradox.  
According to Carroll (165), the tentative explanation has 
been based on evidence that these factors, which trap 
cellular debris such as apoptotic blebs, “present” these self-
antigens to autoreactive B cells to induce anergic tolerance.  
Mice lacking C1q or C3 resist induction of tolerance (166).  
Similar observations have been made in ischemia-
reperfusion (I/R) injury (167), and may apply also to MS 
and AlzD models.  The role of C in clearance of apoptotic 
cells had been controversial but now appears to be 
established, such as by Fraser et al (62), who show C1q to 
play the central role, but C3b opsonization, the alternative 
pathway, and other serum factors contribute to this 
complex process.  The scenario is modified somewhat in 
the CNS where the glia (astrocytes, microglia, ependymal 
cells) play prominent roles (168). 
 
 Defective clearance of apoptotic cells and debris 
by the C system is now thought to promote systemic 
autoimmune disease (62, 169).  This mechanism has been 
discussed with specific regard to the brain (168).  A mouse 
that spontaneously develops autoimmune diabetes and 
other autoimmunities was persuasively attributed to 
defective clearance of apoptotic cells (170).  The role of C 
in autoimmune diseases is complex, as further considered 
later in this review. 

5.3. Role in adaptive immunity 
It had been known since the 1970’s that depletion 

of C3 impaired the antibody response to antigens, and that 
lymphocytes possessed C receptors, yet two decades 
elapsed before the pivotal role of C in adaptive immunity 
came to be widely accepted (171).  The key evidence 
clarifying this connection was supplied by Fearon, 
Dempsey and colleagues, who demonstrated that antigen 
bound to C3d greatly enhanced the humoral response, via 
CR2 (CD21) interacting with CD19 on B cells (39, 172).  
In effect, the C3d was acting as a natural adjuvant, greatly 
lowering the threshold of response (173).  Another class of 
natural adjuvants was subsequently appreciated, namely, 
natural antibodies (174-176), discussed later. Additional C 
factors are now known to be involved with T- and B-cell 

signaling, such as MIRL (CD59) (135, 177).  Interestingly, 
transcription of C genes increased when adaptive immunity 
was disabled by deletion of the recombination activation 
gene 1 (rag1), in zebra fish (178).   
 
5.4. Links to coagulation 

Some of the connections between C and the 
coagulation system have been recognized since the 1980s 
or before (179, 180).  More recent developments include 
the thrombin-activated “extrinsic pathway” of C, and the 
role of TAFI in the C system, cited earlier.  Plasmin can 
partner with MAC to induce the inflammatory lipid, PAF 
(181).  Of growing importance in C research is the kinin-
kallikrein system (KKS) of the contact pathway of 
coagulation, in part because of its possible involvement in 
MS (182), and because one of its most potent products, 
bradykinin, is controlled by C1-INH (183).  Endothelial 
cells (EC) are a target of both the KKS and C systems 
(184).  Already in 1993, the anaphylaxis caused by insect 
stings was attributed to enzymes of the contact pathway, 
which in turn induces activation of C (185).  More recently, 
it was shown that coagulation factors Xa and XIa can 
directly cleave C5 and C3 to produce C5a and C3a (25, 26).  
In their most recent work, Amara et al. show how both 
coagulation and C are activated at a wound site and work 
together, including inflammatory response (26).     
 
 Other enzymes released in the micro-environment 
can likewise produce C3a and C5a directly, such as by 
neutrophils and mast cells (77, 186).  Tissue factor (TF), the 
main initiator of coagulation and thrombosis, is now also 
linked to the C system (187, 188).  Protein S, a cofactor in the 
protein-C anticoagulant system (not to be confused with the S 
protein, vitronectin) circulates bound to C4b BP (189). C4-BP 
genetic variant is a risk factor for venous thromboembolism 
(190).  Another component of the protein C anticoagulant 
system, thrombomodulin (TM), was shown to be an important 
inhibitor of the C system (191), of special interest in neurology 
for several reasons: (i) the distribution of TM in brain 
endothelium is very uneven (192); (ii) coagulation products are 
found in lesions of several neurological diseases such as MS. 
Fibrinogen, a signal transducer in the CNS, interacts with CR3 
and CR4 (CD11b/CD18, CD11c/CD18) and with platelets in 
brain (193). Last, (iii) recombinant soluble TM provided 
neuroprotection in spinal cord injury (194), as did C1-INH 
(195). 
 
 Platelets, which partner with coagulation in blood 
clotting, are themselves a rich source of C factors, receptors 
(C1qR, CR2, 3, 4), regulators (H, C1-INH, CD59, DAF), and 
factor D (196), and can deploy the C5b-9 attack complex 
(MAC) (197).  For more recent perspective on how 
platelets and their microparticles (PMP) can “focus 
complement to sites of vascular injury”, see Peerschke et al 
(198).  Platelets can bind the S protein (VTN) of the C 
system at several of its receptors, especially AlphaVBeta3.  
The neurotoxic effects of thrombin following cerebral 
hemorrhage were ameliorated by inhibiting C (27).  For the 
many roles of thrombin in the CNS, see Festoff et al (199). 
 
 Since osteopontin (OPN, also Eta-1) is of much 
current interest in MS (200), it is worth noting that 
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thrombin can cleave OPN to yield OPN-Arg, which has 
greatly increased chemotactic potency for neutrophils and 
T cell subsets. At the same time it exposes a new integrin 
binding sequence (SVVYGLR) which increases its affinity 
for the more restricted ß1 subset, α4ß1 and α9ß1.  Finally, 
thrombin can further cleave this transiently active molecule 
into inactive OPN-Lys.  OPN may also be cleaved by 
plasmin, cathepsin D, and even some matrix 
metalloproteases (201). 
 
5.5. CNS influence, and roles in lipid traffic 

It is reported that centrally administered C3a 
suppresses food intake, while C5a stimulates (202).  In that 
report, the authors suggest that this is prostaglandin 
mediated.  The C fragment, C3desArg, also called ‘acylation 
stimulating protein’ (ASP), interacts with C5L2 to govern 
fat metabolism via adipokines (203).  Several C factors are 
lipid-associated, notably CLU (ApoJ). 

 
 According to Baciu (204), a role for the CNS in 
regulating the immune system was proposed in 1945, and 
by 2005 the vagus nerve was established as an important 
conduit for this control (205).  CNS regulation of innate 
immunity / inflammation has been well reviewed (206, 
207) but the focus there is largely on cytokines, not the C 
system per se.  It is now known that many leukocytes can 
themselves produce and secrete neurotransmitters which 
regulate and coordinate their functions in an autocrine / 
paracrine manner (C-mediated acute lung injury for 
example) (208).  On the other hand, it has been shown that 
C1q family members present in the brain can function as 
“trans-neuronal cytokines” regulating synpase development 
and plasticity (209), though it is not clear how or if they 
participate in the C system per se. 
 
 The febrile response to endotoxin 
(lipopolysaccharide, LPS) was impaired by reducing C 
components (210) or by cutting the vagus nerve (211), 
implying that there is cross-talk between C and CNS.  The 
febrile response to LPS had been attributed to cytokines, 
but Sehic et al.  demonstrated that the cytokines emerge 
only after the febrile response, and hence, that C activation 
triggers the cytokine release (210).  The same is likely true 
for many other phenomena attributed to cytokines or 
“cytokine storms”.   
 
5.6. Links to other arms of innate immunity 

As mentioned in the introduction, the C system 
has been overshadowed by the more recently discovered 
Toll-like receptors (TLR’s) (212), NOD-like receptors, 
inflammasomes, and other new elements of innate 
immunity (5, 6).  We could not find articles devoted to 
connections among these arms but many lines of evidence 
suggest inter-connections.  For example, dextran sulfate, a 
potent inhibitor of the C system, inhibited the TLR-
mediated activation of human NK cells (213).  The TLR’s 
are involved in the vitamin D anti-microbial response 
(214), but so is the C system (215).  A component of 
Neisseria meningitidis is a ligand for TLR2 (216) but this 
bacterium is also recognized by C, and likewise for 
numerous viruses and other pathogens beyond the scope of 
this article.  Certain particles such as silica and alum which 

activate inflammasomes (5) are also classic activators of 
the contact pathway of coagulation which, as noted above, 
is intimately linked to the C system.  The traditional 
distinction, that C acts in the plasma phase while TLR’s are 
intracellular, is no longer valid since it is known that many 
C components are synthesized and active within many cell 
types, including neurons and glia of the CNS (168).  There 
is no clear distinction in the kinds or classes of PAMP’s 
and DAMP’s that can activate the C system vs. TLR’s vs. 
inflammasomes.  Consequently, it is safe to assume that all 
components of immunity function cooperatively as an 
integrated whole; and that if hierarchy exists among them, 
the C system likely predominates; Zhang et al. provide 
evidence that TLR-mediated inflammation and adaptive 
immunity are controlled by the C system, chiefly via C3aR 
and C5aR (217).   
 
6. COMPLEMENT MEDIATED DISEASES  
 

The following paragraphs briefly review diseases 
known or suspected to involve C.  Since the emphasis here 
is on neurological conditions, several major groups 
(cancers, heart disease, sepsis, etc.) are not included.  On 
the other hand, some are included which are of limited 
interest in neurology, either for historical reasons or 
because they illustrate general or unusual mechanisms.  
There are various ways to group or classify these disorders, 
such as genetic, acquired, autoimmune, and secondary to 
other states; or by the C pathway involved; etc., but no such 
classification is attempted here.  The section on therapeutic 
approaches, which follows this section, provides added 
dimension on some of the examples.  For general review of 
manifestations of C deficiencies, see (218). 

 
 6.1. CNS infections & relation to autoimmune disease 

Deficiency of late-acting components (C5 - C9) 
confers up to 10,000-fold increased risk of bacterial 
meningitis (219), while defective properdin (CFP) 
conferred a 250-fold higher risk (220).  Most cases are 
caused by Streptococcus pneumoniae, Haemophilus 
influenza, or Neisseria meningititis, which gain entry to 
CNS via the laminin receptor at the BBB (221).  
Interestingly, meningitis related to C deficiency, 
although far more common than in the general 
population, is milder and has lower mortality.  Welsch 
and Ram offer an hypothesis for why this is so, 
suggesting that the reduced level of terminal C 
components also reduces the C-induced release of lipid A 
from the bacteria, which in turn reduces the 
inflammatory response (219).  They also mention that 
persons with these C deficiencies are more prone to less 
virulent strains (reasons are not given), offering this as 
another hypothesis for the lower mortality in these individuals. 

 
  Of special interest here is the close association 

between deficiencies of C and autoimmune diseases.  Table 
2, adapted from Tedesco (220), shows the frequency of 
some infections in relation to the factors deficient.  Deficit 
of C5 - C9 are the “late-acting C component deficiencies” 
(LCCD).  The reader may note that deficits of the early 
acting components (C1 - C4) correlate most strongly with 
autoimmunity.  
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Table 1.  Listing of principal C factors 
Core Constituents   

Classical C1q, C1r, C1s  
 C1 complex: C1q(C1r)2(C1s)2 
 "Early" C1, C2, C3, C4 
 “Late” C5,C6,C7,C8,C9 
Alternative B, D, H, I, P  
Lectin MBL, MASP’s & ficolins  
Extrinsic Thrombin and others (see text)  
Membrane Regulators:   
 DAF CD35 
 MCP CD46 
 MIRL CD59        (HRF20) 
Receptors CD a.k.a. 
             CR1   
             CR2 CD21 EBV receptor 
             CR3 CD11b/CD18 CD11b= Mo1 
             CR4 CD11c/CD18 CD11c= leukocyte surface antigen p150,95 
             C3aR   
             C5aR CD88  
             C5L2   
             C1qR CD93 (gC1qR) 
             SIGNR1 CD209  
Regulators on plasma membrane a.k.a.  
DAF CD35  
MCP CD46  
MIRL CD59 HRF or HRF20 
Regulators in fluid phase (plasma) a.k.a.  
 C1 inhibitor (C1-INH)  
 Properdin (CFP)  
 Factor H (CFH)  
 C4b binding protein  
 S protein Vitronectin (VTN) 
 Clusterin (CLU) Protein S40, 40 
 Carboxypeptidase N CPN (& others, see text) 
Others LPS binding protein CD14 
 Alpha-2-macroglobulin  (A2M) 
 A2M receptor CD91 
 Phospholipase A (PLA2)  

For full names of the acronymns, see Glossary, Table 2.  For details such as plasma concentrations, molecular weights, genes and 
chromosomes, subunit and chain compositions, see Halkier (7). 
 
Table 2.  Glossary of acronymns  

C-related Diseases 
CFHR1 C factor H related protein 1 AIHA Autoimmune hemolytic anemia 
CPB Carboxypeptidase B (a.k.a. TAFI) AMG Age-related macular degeneration 
CPN Carboxypeptidase N AML Amyotropic lateral sclerosis 
CRP C reactive protein APL Anti-phospholipid antibody (aPL) 
DAF Decay accelerating factor APS Anti-phospholipid syndrome 
DAMP Danger-associated molecular pattern HUS Hemolytic uremic syndrome 
FHL1 Factor H-like protein 1 I/R Ischemia reperfusion injury 
GPCR G protein coupled receptors ITP Immune thrombocytopenic purpura 
GPI Glycosyl phosphatidyl inositol MS Multiple sclerosis 
HRF20 Homologous restriction factor, a.k.a MIRL PNH Paroxysmal nocturnal hemoglobinuria 
MASP Mannan-binding lectin serine protease SLE Systemic lupus erythematosus 
MBL Mannan-binding lectin (=MBP) TTP Thrombotic thrombocytopenic purpura 
MBP Mannose-binding protein   
MCP Membrane cofactor protein   
MIRL Membrane inhib'r of reactive lysis (=HRF)   
P Properdin   
PAMP Pathogen-associated molecular pattern   
SCR Short concensus repeat   
VTN Vitronectin (S protein)   

 
6.2. Age-related macular degeneration 

This leading cause of blindness is recently 
understood as a C-mediated disease.  According to a 
perspective in Science (222), much credit goes to G. 
Hagerman and colleagues who over many years of study 
detected C components, including C5b-9, in eye deposits 
termed “drusen”, from patients with age-related macular

 
degeneration (AMD).  In 2005, three groups independently 
found mutations in a gene for factor H in AMD patients, 
and in the following year the original group reported 
defects also in factor B and CR2, pushing the gene-based 
prediction rate (penetrance) to 74% of afflicted patients 
(223).  (For an overview of the factor H genes in disease, 
see 34).  Patel et al. discuss a single nucleotide
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Table 3.  Consequences of factor deficiencies 
(A) C1, C4, C2 C3, H, I C5-C8 
Neisseria 65% 28% 65% 
S. Pneumonia 17% 28% 1% 
H. Influenza 3% 4% 05 
S. Aureus 2% 0% 0% 
(B)    
Deficit Infection Autoimmune Both 
C1 9% 39% 45% 
C4 2% 16% 40% 
C2 16% 18% 20% 
C3 71% 2% 17% 
C5 80% 7% 2% 
C6 76% 2% 9% 
C7 51% 6% 14% 
C8 55% 2% 8% 
C9 16% 1% 2% 
P 73% 2% 2% 
I 96% 1% 2% 

 
Adapted with permission (220).  (A) Percentage of 
individuals deficient in the indicated factors (early, late) 
who suffer high frequency of the infections listed.  High 
frequency of infections associated with deficits of late 
factors imply importance of MAC (C5b-9), while infections 
related to defects in others (such as properdin) suggest that 
alternative or other pathways are more important for those 
infections.  (B) Frequencies of autoimmune diseases 
associated with defects in various C factors  
 
polymorphism (SNP) in the C3 gene conferring an odds 
ratio of 2.6 for risk of AMD (if two copies) (224), and cites 
additional strong associations subsequently found for the 
genes of factors H and B, and for C2 in humans.  As might 
be expected, this multiplicity of risk factors has resulted in 
some controversy, as discussed (225), but there is an 
emerging concensus that C defects are responsible for 
AMD.  There is also evidence that prior infection with 
Chlamydia pneumoniae predisposes to AMD; not all 
studies agree on this (224).  Exactly why the retina is 
targeted is not clear, or why it generally happens only after 
age 60. Several C-related disorders show high specificity 
for particular organs or tissues, and many transgenic rodent 
models of C-mediated diseases show characteristic age of 
onset of symptoms.  It should be added that there are two 
main forms of AMD, “wet” and “dry”; the wet form is 
effectively treated by anti-VEGF to inhibit angiogenesis. 

 
6.3. Myasthenia gravis 

In 1993 myasthenia gravis (MG) was identified 
as an autoimmune disease against the bungarotoxin-binding 
receptor for acetylcholine (AChR) (226).  Approximately 
80% of patients have this AutoAb.  However, it was 
subsequently found that C3 levels correlate with severity of 
MG (227), and that an SNP) of the DAF gene was closely 
associated with that subtype of MG involving extraocular 
muscle paresis (228).  Further supporting C-mediation of 
MG is that an inhibitor of C ameliorated symptoms in 
animal model (229). 

 
Sheng et al. made the interesting observation that 

AChR become over-expressed in the mouse model of MG, 
possibly compensating for the blockade by AutoAb, but 
these hastily-assembled receptors are defective in failing to 
bind bugarotoxin (230).  The authors suggest that this helps 

drive the autoimmune response.  Several C-mediated 
diseases exhibit age-dependent onset, including the model 
of MG used by Graus et al. (231). 

 
6.4. Alzheimer’s disease 

The etiology and pathophysiology of Alzheimer’s 
disease is complex and controversial, including with regard 
to the role of C in it.  Accordingly, this article is limited to 
a few paragraphs suggesting a major role for the C system, 
supplementing earlier comments.  Deposits of C 
components have been detected in AlzD brains since the 
1980s in close proximity to the amyloid-beta (Aβ) plaques 
and neurofibrillary tangles.  They occur along with other so 
called Aβ-associated proteins, many of which are acute 
phase reactants (232).  Several of the Aβ-associated 
proteins, such as SAP, A2M and CLU, earlier 
discussed in part 3 (6-7), are often listed apart from 
the C factors but are important modulators of the C 
system.  In 1989, McGeer and colleagues documented 
the presence of terminal MAC in these deposits, but 
no evidence for participation of the alternative 
pathway was found (233, 234).  A further advance was 
the discovery by Rodgers et al. (235), subsequently 
confirmed by others, that Aβ could itself activate the 
C cascade directly, independent of antibody, 
indicating activation by pattern recognition of altered 
self (236).  More recently, it was shown by Rodgers et 
al that Aβ peptides occur also in the peripheral 
circulation but are normally eliminated via CR1 of 
erythrocytes in a C3b-dependent manner (158). 
 

Work on the role of C in AlzD was for a time 
overshadowed by the clear association of APOE gene 
polymorphism with AlzD.  However, a subsequent large 
study found strong new associations, notably including 
variants of the C factors, CR1 and clusterin (CLU) (237), 
now confirmed and extended (238).  Similar results were 
found in another large study published in the same 
journal issue (239), the latter emphasizing also the 
PICALM gene, which participates in lipid traffic.  As 
mentioned earlier, the C system has links with lipid 
mediators, such as via CLU (ApoJ) and phospholipase 
A2 (PLA2), implicated in AlzD (112), as is gelsolin 
(114), a modulator of the inflammatory lipid, PAF (115).  
There is more limited evidence supporting involvement 
also of polymorphism of A2M (240).  A2M, a zinc-
binding protein which aids in control of matrix 
metalloproteases, is a mediator of TNF-a, and has also 
been discussed in relation to AlzD (121). 
 
 We have earlier mentioned the finding by three 
independent groups that deficiency of early C factors (such 
as C3) in mouse models of AlzD not only failed to protect, 
but actually exacerbated disease progression (148-150), 
consistent with protection mediated by C, at least in early 
stages.  However, the transgenic mouse models of AlzD are 
considered unreliable (131), therefore the significance of 
these findings for human AlzD is uncertain.  Nevertheless, 
Nuutinen et al. have outlined a good case for a central role 
of C in AlzD (95).  Their article concludes by questioning 
if CLU, and C generally, are a “guardian or enemy” in 
AlzD.  The high levels of CLU observed could be viewed 
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as a protective response since CLU is a classical C 
inhibitor. 
 
 There is a great deal evidence showing systemic 
inflammation in AlzD, such as the recent study showing 
that inflammatory markers, especially TNF-α, correlated 
with cognitive decline (241), and discussed in other reports 
(159).  According to Emmerling et al. writing in 2000, “more 
than 20 studies” have documented the efficacy of NSAID in 
AlzD (242).  Unfortunately, several later and larger studies 
failed to confirm their benefit.  To our knowledge, NSAIDs 
have limited impact on C activation (except possibly in 
platelets), so those failures might be interpreted as evidence for 
the clinical significance of C in AlzD.  Salminen et al., in 
reviewing the role of innate immunity in AlzD, listed a large 
number of components besides the C system that may be 
implicated in AlzD, e.g., TLRs, NOD-like receptors, N-formyl 
peptide receptors, cytokines, etc. (236).  It is tempting to 
suggest that many or most of these effects might share a 
common cause, and might be networked with the C system. 
 
6.5. Prion diseases 

Like AlzD, the prion diseases are considered to 
be protein-misfolding diseases, and oligomers of prions, 
like oligomers of Aβ, appear to be cytotoxic.  It is now 
emerging that the C system is involved in prion disease 
pathogenesis, recently by the demonstration that C1q binds 
oligomerice forms of cytotoxic prion (243). 

6.6. Amyotropic lateral sclerosis 
Amyotropic lateral sclerosis (ALS) is considered 

a motor neuron disease and several candidate causal factors 
are identified including defect in the superoxide dismusase 
(SOD) gene, immune involvement, and the C system (244).  
To further evaluate the role of C, Chiu et al. confirmed 
dense deposition of C in the affected areas of a mouse ALS 
model, but knockout of C4 failed to alter the age of onset or 
survival (245).  However, this work may not have been 
completely interpretable. Others have shown that C 
activation can occur independent of C4, such as via the 
extrinsic pathway by which coagulation factors (thrombin, 
plasmin, FXa, FXIa) can activate C3 and C5 directly (26, 
71).  This possibility is supported by the fact that C4 
deficiency does not predispose to infections as markedly as 
do deficits of C3 or C5 (220), suggesting that C4 is not 
essential to the efficacy of C3, C5 in fighting infection.  
The possibility therefore remains that ALS is significantly a 
C-driven disease. 
 
6.7. Multiple sclerosis 

Complement components were identified in 
multiple sclerosis (MS) lesions as early as the 1960’s-70’s, 
and the role of C in MS has been debated ever since.  By 
the newer method of gene microarray analysis, several C 
components were identified in lesions at autopsy (246).  It 
is of great interest that AutoAb’s against C regulatory 
proteins, nootably against CD46, were identified in CSF of 
MS patients, and correlated with exacerbations and EDSS 
(247). This is of special interest because herpesviruses like 
EBV and HHV6, which are incresingly implicated in MS 
etiology, express this protein in their genomes possibly as a 
means of protection against C-mediated attack or entry 

(248).  The presence of these antibodies could impair the 
normal function of CD46, rendering self-cells more 
sensitive to C-mediated injury.  Although it is not possible 
in the space available here to review the ’infectious 
etiology’ hypothesis of MS, a history of mononucleosis 
was shown to be more than additive with the MS risk 
haplotype, HLA-DRB*15 (249), the mechanistic 
significance of that haplotype is not yet clear (250).  
However, even in absence of genetic C dysfunction, it is 
possible for C activation to contribute significant 
inflammatory burden (or possibly to exert protective effects 
(141)), particularly if self-defense against C is impaired. 
 
 The role of C in MS was recently briefly 
reviewed (251), and pointed out that comparatively little 
research on C in MS has been accomplished.  It was 
reported that the demyelinating influence of AutoAb 
towards MS target antigens was directly related to their 
ability to fix C (252).  Space limitations prevent us from 
discussing some of the interesting but complicated 
relationships that could support a role of C in MS, such as 
amelioration of symptoms in a rodent model of MS by 
vasoactive intestinal peptide (VIP) (253), known to act on 
CR1 (CD35) and CR3 (CD11b) as well as on the VIP 
receptor (VPAC1) and the N-formyl peptide receptor-like-1 
(FPRL1) (254), all of which seem to be related through 
certain C-relevant ligands.  Relatedly, interferon-Alpha 
(IFN-Alpha) has been identified as a fourth class of ligand 
for CR2 (40), which is of great interest in regulating 
autoimmunity (255).  In a study of the classes and 
subclasses of AutoAb against two target antigens described 
to be MS-specific (MOG, MBP), it was found that IgM 
predominated; however, only IgG3 correlated with 
exacerbations (256), which is noteworthy since IgG3 is 
most potent at activating C.  On the other hand, we 
observed that anti-phospholipid antibodies in RRMS 
correlated with exacerbations, and were exclusively IgM 
(257).  The specific protein target of those antibodies is not 
yet known. 

6.8. Hereditary angioedema (HAE) 
Although not strictly neurological, hereditary 

angioedema (HAE) well illustrates the complexity of C-
mediated diseases, and in 1971, was historically the first 
non-infectious hereditary disease shown to be caused by a 
C deficiency, namely, lack of C1 inhibitor (C1-INH) (258, 
259).  Nearly 200 mutations or polymorphisms are now 
known, classified as types I and, II. (260). The disease has 
a highly variable course, and triggers of flareups are 
unclear, but seem to include psychological stress.  Acquired 
forms can be induced by drugs such as ACE inhibitors or 
by AutoAb (261).  It has been hypothesized that all of these 
effects involve altered B cell proliferation (262).  A rare 
homozygous deficiency has been reported which is 
believed to be non-responsive to androgens for that reason 
(263). 
 
 The cause of the disease appears to be excessive 
bradykinin production, not C activation per se (183).  
Accordingly, HAE can also be caused by defects in 
coagulation factor XII gene responsible for bradykinin, 
termed type III HAE (264).  Symptoms are often related to 
estrogen (oral contraceptives, onset at puberty) but 
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according to Cugno et al., it is not clear why HAE responds 
to androgens such as danazol (183).  Although C1-INH is 
the only known inhibitor of C1r and C1s, it also functions 
to control MASP-1, -2, and coagulation factors XI, XII, 
thrombin, plasmin, tissue plasminogen activator (tPA), and 
crucially, kallikrein, which yields bradykinin (28).  It is 
beyond this review to convey the complicated interplay 
among systems resulting in the disease (183), but the 
reason for discussing it at all is to point out that complexity.  
Moreover, C1-INH, which is an effective therapy, has 
important functions which are independent of its action as 
an enzyme inhibitor; Davis et al list five roles: binding to 
components of the extracellular matrix; inhibiting the 
alternative pathway by binding C3b; binding to E- and P-
selectins of endothelial cells; etc. (265).  Thorgersen et al 
find other broad anti-inflammatory effects of C1-INH 
(266). 
 
6.9. Ischemia reperfusion injury 

Ischemia reperfusion injury (I/R) refers to the 
injury sustained by tissues when blood circulation is 
restored following ischemia and is of great importance in 
many areas of medicine, especially ischemic stroke.  I/R 
injury has been recognized to be largely C-mediated since 
at least the 1980’s (267), and was thoroughly confirmed 
through the 1990s (268, 269).  One report questioned if the 
role of C was primary or secondary, based on experiments 
using cobra venom to deplete C (270). The concensus holds 
it to be primary, involving the role of C in clearing 
apoptotic and necrotic cells.  Recent advances in 
understanding I/R injury are presented in part 7. 
 
6.10. Paroxysmal nocturnal hemoglobinuria 

Many important membrane proteins are anchored 
to the membrane by a glycosyl phosphatidyl inositide (GPI) 
linkage, including the C-protective DAF and MIRL (271).  
Paroxysmal nocturnal hemoglobinuria (PNH) was long of 
interest in hematology but is now known to have 
neurological consequences (272, 273), notably, persistent 
absence seizures in a familial pattern, although the affected 
children had no hematologic symptoms (272).  The mystery 
of PNH was resolved with discovery of a PNH-associated 
gene, PIG-A, preventing formation of the GPI linkage and 
resulting in deficiency of cell-bound GPI-linked proteins 
(274).  Most important for PNH is deficiency of MIRL 
(CD59), leading to sporadic episdoes of self-cell 
destruction by C, the most obvious symptom being 
hemolysis, often at night.  To our knowledge, it is not yet 
clear how this leads to the neurological complications, 
since absence of GPI-linked proteins unrelated to C could 
be responsible.  It may be relevant to note that brain 
oligodendrocytes are reported to naturally lack these 
proteins (146). 

 
6.11. Traumatic brain and spinal cord injuries 

Activation of C is believed to contribute 
substantially to the sequelae of traumatic brain injury, 
including the systemic inflammatory responses syndrome 
(SIRS) (160).  These events, both early and late, are very 
complex but the totality of data suggests that C activation 
could be the central and unifying player.  The neuroactive 
steroid, progesterone, is known to alleviate symptoms by 

reduction of proinflammatory cytokines, and has been 
shown to upregulation the potent C inhibitor, DAF (CD55) 
which has been proposed to explain its observed benefits 
(275).  Complement activation markers such as C5b9 in CSF 
correlated closely over time with the injury marker S100B in 
20 patients post-TBI (276).  Administration of C1-INH was 
protective against traumatic spinal cord injury (SCI) (195).  
Inhibition of the alternative pathway by a monoclonal 
antibody against factor B gave dramatic protection in a 
mouse model of TBI (277).  On the other hand, it was 
reported that deficiency of mannan bindling lectin 
(MBL) by gene knock-out worsened outcome of TBI in 
mice, suggesting a protective role for MBL (278).  The 
review of Lu et al. cited above devotes a section to 
coagulopathy in TBI, stating that thrombin is a major 
player in brain edema, and that PAF, whose expression 
has links also to coagulation, is also implicated in TBI 
(160).  That is to say, the coagulopathy seen post-TBI 
may be viewed as linked to C activation.  For 
example, links between thrombomodulin (TM) and the 
C system were mentioned earlier (part 4 (4)) and TM 
was seen to be neuroprotective in SCI (194).  The 
brain edema seen following intracranial hemorrhage in 
rats was also attenuated by systemic depletion of C 
(by cobra venom factor) (279).  Work by Nguyen et 
al. demonstrates clearly a sharp upregulation of C 
factors, including MAC, specifically in PMN 
infiltrating the SCI site with time, and associated 
inflammatory markers (280), and other work by those 
authors demonstrates protection against SCI sequelae 
by C1q deficiency. 

 
6.12. Atypical hemolytic uremic syndrome 

Atypical hemolytic uremic syndrome (aHUS) is 
a thrombotic microangiopathy (TMA) which frequently 
manifests with neurological symptoms (281, 282) and is a 
leading cause of renal failure.  It was shown in 1983 that 
the majority of HUS cases (≈75%) are caused by certain 
strains of E. coli, chiefly 0157:H7, carried by cattle, which 
secretes a shiga-like verotoxin (283) as well as several 
secondary toxins (284).  The remaining cases are termed 
“atypical” (aHUS) and have been shown to associate with 
hereditary C deficiencies.  It must be added, however, that 
it was recently shown that the E. coli toxin itself strongly 
activates C (285), hence both HUS and aHUS can be C-
mediated, but in different ways.  The familial pattern of 
aHUS was known since 1980 but only in 1999 was a 
mutation of factor H implicated (286).  Multiple reports in 
2000 and later amply confirmed that finding, and at least a 
dozen papers on aHUIS appeared in 2009 alone.  In brief, 
gene variants of C factors now implicated in aHUS include 
those for factors C3, H, I, B, MCP (CD46), and factor H-
related proteins (CFHR1, CFHR3, CFHR4).  Some 14 
mutations of factor I alone are related to aHUS (287).  Most 
recently, a defect in the gene for clusterin (CLU) was 
associated with aHUS, bringing to 75% the number of 
aHUS cases accounted for by C-related genetic anomalies 
(288).  It is instructive that such a profusion of defects all 
predispose to aHUS.  Of particular interest in this review is 
the parallel frequency of AutoAb to C factors in aHUS, 
such as anti-factor H  (289).  Skerka et al has identified a 
subtype, DEAP-HUS, the acronym being “deficiency of 
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CFHR1 and CFHR3 and autoantibody positive” (34, 290); 
see also (42, 291). 

 
6.13. Thrombotic thrombocytopenic purpura 

Fluctuating neurological disturbances are 
hallmarks of this thrombotic microangiopathy (TMA), 
which is often discussed along with HUS.  The cause of 
thrombotic thrombocytopenic purpura (TTP) was identified 
by Moake and colleages as a defect in the enzyme 
ADAMTS13 which cleaves von Willebrand factor (vWF) 
(292, 293). However many have questioned if this is a 
complete explanation, or if it applies to all cases.  Evidence 
that C is a major culprit of TTP was suggested in 1989 
(294), and further supported more recently (295, 296).  
Rock et al. had reported AutoAb to CD36 in TTP (297), as 
investigated further by our lab (298).  AutoAb to 
ADAMTS13 has been found in TTP (299), as have 
antibodies to unspecified antigens on the microvascular 
endothelium (300).    

 
6.14. Systemic lupus erythematosus 

Cource and manifestations of systemic lupus 
erythematosus (SLE) are very diverse, notably including 
neurological, renal, cutaneous, infectious, and thrombotic.  
These effects are attributed to a broad array of AutoAb 
including anti-nuclear and antiphospholipid (aPL), together 
with their immune complexes (IC) (301, 302).  The IC 
which most strongly activate C are also the most 
pathogenic (303).  The detailed role of C in SLE is highly 
convoluted and well beyond the scope of this review; (see 
156).  Of special interest in that review is discussion of the 
paradox of protective vs. harmful effects of C, as 
mentioned earlier.  Carroll also discusses this paradox 
(165).  More recently, genetic polymorphisms of CR2 were 
shown to associate with SLE (304), supporting prior reports 
back to the 1970’s, such as familial deficiency of C2 with 
SLE-like syndromes (305, 306). 

 
 Recent reviews of SLE genetics cite evidence for 
association with deficits of C1q, C2 and C4 (307, 308).  
The association with deficit of C1q is most persuasive since 
nearly all with this defect develop SLE-like symptoms, as 
do mice deficient in C1q.  A novel explanation for this, 
involving interferon-alpha, has been proposed (309).  A 
study of 17 pairs of monozygotic twins, one with SLE the 
other not, revealed epigenetic differences in 49 genes, 
including several immune-related (e.g. interferon) but not C 
factors per se (310).  Neuro-psychiatric lupus appears to 
result from cross-reaction of certain anti-nuclear antibodies 
with brain NMDA receptors (311).  Exposure to Epstein-
Barr virus has been proposed as a triggering event for SLE 
(312); it would be interesting to know if EBV+ SLE have 
AutoAb to CD46.  Impaired opsonization of bacteria in a 
cohort of SLE patients was reported (313), consistent with 
high frequency of infections and C deficits.  Platelet-bound 
C4d was found to be a highly specific biomarker for SLE 
(314). 
 
6.15. Antiphospholipid syndrome and antibodies 

The “lupus anticoagulant” was originally thought 
to be specific for SLE patients, most of whom are 
antiphospholipid antibodies (aPL+).  In view of this and 

other facts, it has been proposed that antiphospholipid 
syndrome (APS) and SLE lie on the same etiologic 
spectrum (315).  It has been pointed out that APS and MS 
also often have very similar clinical presentations (316, 
317).  We have briefly reviewed the role of C in APS (318).  
Some but not all reviews of APS assign high importance to 
the role of C (319-321).  Munakata et al. found that C-
fixing aPL were specifically associated with thrombosis 
(322).  Important work in this area concerns recurrent fetal 
loss (RFL), which is among the defining criteria of APS.  
Following suggstive early work and later work by 
Shoenfeld and colleagues (323), Salmon and colleagues 
demonstrated an absolute requirement of C for RFL (324, 
325).  A related advance was establishing the role of C in 
preeclampsia (326), also by assay of C factor Bb in plasma.  
APS often has neurological involvement but the role of C 
in this specific regard has not been extensively 
investigated. 

 
6.16. Immune thrombocytopenia 

Although not considered a neurological disorder, 
a subgroup of immune thrombocytopenia (ITP) with 
progressive vascular dementia has been identified (327).  
Apart from that, ITP is the archetype of autoimmune 
diseases, first identified as such in the early 1950’s (328).  
Evidence for a role of C in platelet destruction in ITP was 
widely debated in the 1980s (329-331) but interest in that 
has since waned.  In preliminary studies, we identified two 
subgroups of ITP, one with evidence of deposition of C, the 
other not (332) 
 
6.17. Note on detection of C deposition 

It has been shown that deposition of C can 
induce vesiculation, carrying off the C from the parent cell 
(143, 144, 333).  Accordingly, evidence of C-mediated 
attack may not be detectable on the cell but will be found 
on the microparticles (MP) released.  Biro et al detected 
elevation of several C fragments on MP from the synovial 
fluid and plasma of patients with rheumatoid arthritis (RA) 
(334).  These observations suggest that so-called soluble 
C5b-9 often detected in plasma and CSF may in reality be 
MP-bound.  Relatedly, it is possible that in the work of 
Lynch et al., who found that elevated Bb levels in plasma 
correlated with pre-term birth (325) and preeclampsia 
(326), the Bb may have been bound to MP. 

 
6.18. Progress in gene association studies 

Improved methods have revealed gene 
associations previously missed.  Here we mention some 
other opportunities.  One is post-translational editing of 
RNA transcripts by adenosine deaminases RNA-binding 
(ADAR’s), termed “RNA re-coding”.  According to Cies 
and Maas, re-coding effects have been mistaken for SNP’s 
by certain methods, but still show great promise (335).  
Remarkably, they find sharply different outcomes in 
different brain regions.  Also of potential importance are 
copy number variations, not commonly tabulated, but 
recently shown to be major determinants of the phenotype 
of C factors (336).  Another avenue only beginning to be 
explored are epigenetic marks, which are expected to be 
most relevant in diseases suspected to have environmental 
components such as MS. 
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 7. ANTI-COMPLEMENT THERAPIES, OLD AND 
NEW 
  

A central role of C in many pathologies has long 
been known or suspected but therapeutic options have been 
limited.  That situation is poised to change (337).  This 
section emphasizes C-targeting therapies that are less well 
covered in other reviews (337-339), and also serves to 
introduce the next and final section. 
 
7.1. Recently approved, in trials, or in pipe-line 

Already in 1998, about ten C-targeting drugs 
were listed in commercial development (340, 341).  Since 
this topic is covered in depth by others, only highlights are 
considered here.  Among the first to reach phase 3 clinical 
trials is a monoclonal antibody, eculizumab (Soliris™, 
Alexion), which blocks activation of C5; it is FDA-
approved for treatment of PNH (342, 343) but is expected 
to have wide off-label applications.  General inhibition of C 
will increase risk of infection, but blocking C5 should 
minimally affect activation of C3. 
 
 Compstatin is a cyclic tri-decapeptide discovered 
by J. Lambris using phage display libraries, which binds C3 
to inhibit its activation (344, 345).  It is in clinical trials for 
some types of age-related macular degeneration (AMD) 
and if approved, will also probably find other off-label 
uses.  It has been useful in research to elucidate problems 
such as the role of the C5a receptor (C5aR) in bacterial 
killing (346), the role of C in cancers (347), and in the 
adverse effects of extra-corporeal blood circulation devices 
(338).  Of note, since CR3, together with CR2 (CD21), is 
important for B cell activation and anergy (47, 348, 349). 
Inhibitors such as compstatin may have far-reaching effects 
not limited to reducing inflammation.  Lambris has since 
found compstatin related peptides which have increased 
potency.  Others are also working with other peptidic C 
inhibitors, such as one targeting C5a (350).  (For more 
complete reviews see references 338, 339). 
 
 FUT-175 is a serine protease inhibitor which has 
been in use as an anti-thrombotic but is also known to have 
potent inhibitory actions against several C factors.  
Therefore, it was tested in the EAE mouse model of MS 
with promising results (351).  That paper also briefly 
reviews new insights on C production and activation within 
and between T cells and antigen presenting cells (APC’s), 
in relation to MS.  Also of interest is use of cobra venom 
factor (CVF) for anti-C therapy (352).  CVF has long been 
used to deplete C in laboratory animals, by causing massive 
C activation.  It is remarkable that a single treatment has 
few ill-effects, hence is continuing consideration for human 
use. 
 
7.2. Previously established C-targeting therapies 

As early as 1980, a partially purified C1 inhibitor 
(C1-INH) from pooled plasma came into use for treating 
hereditary angioedema (HAE) in emergencies such as 
laryngeal edema, and is still used.  More recently, C1-INH 
gave significant protection in acute spinal cord injury, 
p<0.01 (195).  A recombinant C1-INH from transgenic 
animals is now in development (183).  Animal studies also 

support benefit of C1-INH in sepsis (353).  C1-INH therapy 
has been recently reviewed (354).  Like many C 
components, C1-INH has several actions apart from its 
best-known role as protease inhibitor (265). 

 
  In the 1990’s, many reports 
demonstrated great reduction of I/R injury by a soluble 
form of CR1 (sCR1), in several organs of animal models of 
I/R, e.g., (355, 356).  In that form, it presumably acts as a 
“decoy receptor”, capturing otherwise injurious products, 
especially immune complexes.  The observed benefits 
further support the central role of C in I/R injury.  Of note, 
at least one of those reports presented reasonable evidence 
that neutrophil-mediated I/R injury, (which had been an 
alternative hypothesis), was secondary to C activation 
(357), confirmed in the paper cited above (280).  A 
glycosylated (sialyl Lewis x) form of sCR1 also proved 
highly promising (358) for neuronal protection in stroke. 
 
7.3. Insights from pathogen evasion strategies  

By definition, a pathogen has means of evading 
or neutralizing immune defenses.  A highlight of recent 
research has been elucidation of the strategies for evading 
the C system, all pointing to a “next generation” of C 
inhibitors, as well as new vaccines and other approaches to 
infection control.  For example, the vaccinia complement 
control protein (VCP) has been termed a “potential wonder 
drug” (359); see also (360, 361).  The smallpox inhibitor of 
C enzymes (SPICE) is another case in point (362).  The 
authors compared inhibitors from several pox viruses and 
found SPICE to be most potent and, aside from potential 
therapies based on SPICE, suggest that mAb against it 
could be therapeutic against the disease.  In other work by 
the same group, the rhesus rhadinovirus C control protein 
(RCP) was shown to promote degradation of C3b and C4b 
by factor I, and to accelerate decay of the C3 convertase 
(363).  The authors state that this is the first known such 
inhibitor that does not require a heparin binding site (364).   
 
 Not only viruses but pathogens of every kind 
have developed means of evading C-mediated killing.  
Candida albicans produces an iC3b receptor reminiscent of 
integrins CD11b,c which is required for its infectivity in 
mice (365).  The Candida strategies are discussed by Zipfel 
(366), who cites more comprehensive treatments of the 
many “cloaks and disguises” used by pathogens to evade C. 
 
 The tick-borne pathogen Borrelia hermsii 
acquires factor H as well as plasminogen (367), as does 
Pseudomonas aeruginosa (368).  The latter authors offer 
several likely reasons for the capture of plasminogen, such 
as its’ ability to degrade vitronectin (S protein). The former 
authors point out that Staphylococcus aureus activates 
plasminogen to plasmin, which in turn degrades IgG and 
C3b at the bacterium’s surface, citing Rooijakkers et al. 
(369).  This supports the paradigm that plasmin, an enzyme 
of fibrinolysis, may have C-suppressing actions.  
Rossmann et al. list ~10 other bacterial pathogens which 
also capture factor H, among their tactics (367).  Kunert et 
al. (368) mention several other pathogens known to bind 
plasminogen (e.g. S. pneumoniae, B. Burgdorferi, S. 
Pyogenes, and the yeast C. albicans) but the plasminogen 
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binding motif they find on P. aeruginosa is unique.  From 
an evolutionary perspective this is interesting since it 
implies independent invention (parallel evolution) of the same 
strategy rather than horizontal gene transmission or common 
heritage. 
 
 Another approach to therapy is suggested by Welsch 
and Ram, who point out that susceptibility to many diseases 
(e.g., meningococci) are human-specific, implying that the C 
systems of resistant mammals, such as rats, have slightly 
different components - in this case factor H - which might be 
exploited for our own protection (219).  (For a consideration of 
the role of CFH in human diseases, see ref. 370).  These 
references are only a small sampler of a large and growing 
literature on this topic, aimed at new therapies. 
 
 Note on role of C in viral attack. It is obvious from 
the above that the C system is a component of the defense 
again many viral pathogens.  Examples of this include viral 
influenza (46), Herpes (371), flaviviruses such as West Nile 
and Dengue (372), and others (361).  We mention this 
because several reviews of innate defenses against viruses 
fail to mention the C system at all, focusing instead and 
exclusively on the TLR’s and signaling pathways such as 
the interferon (IFN) response, e.g., (373, 374).  This could 
lead to an inappropriate bias against C, especially for 
students. 
 
7.4. Vitamin D and the C system 

Recent discoveries on the role of vitamin D in 
immunity may be of great importance to public health.  
Deficiency of this vitamin has purportedly been linked to 
neurological disorders, notably MS (375-378).  In view of 
the known latitude gradient in the epidemiology of MS 
(375), and of cancers, hypertension, and many autoimmune 
diseases (379), many have suggested a connection.  To our 
knowledge, discovery of the immune benefits of vitamin 
D3 was by Cannelli (380), after his reading of the role of 
this vitamin in generating the antimicrobial peptide, 
cathelicidin (381).  This seminal paper was followed by 
numerous studies, including on the role of this vitamin in 
autoimmune diseases such as MS, SLE, RA, and others 
(382, 383).  A key link between vitamin D3 and the C 
system is the vitamin D binding protein (Gc-globulin), a 
cofactor in the chemotactic activity of C5a (384-387).  
Mice deficient in vitamin D receptor (VDR) show an 
increased propensity for autoimmune diseases (388).  
Conversely, it had been earlier shown that production of C3 in 
bone marrow stromal cells and osteoblasts is regulated by 
vitamin D (215), this finding has been extended to monocytes 
(389).  Gene polymorphisms for Gc-globulin and for properdin 
were found to be in Hardy-Weinberg equilibrium (390).  In a 
proteomic study of autoimmune uveitis, Gc-globulin was 
down-regulated in parallel with C1q and C4 (391).  In pediatric 
MS, a proteomic study revealed 12 proteins significantly 
elevated including Gc-globulin together with several C factors, 
viz., factor I, serum amyloid P (SAP), clusterin (CLU), 
kininogen-1, and others more distantly involved such as 
gelsolin and hemopexin (392).  As we have noted earlier, 
plasma gelsolin is a regulator of PAF (115), and PAF, in turn, 
can be up-regulated via C activation, e.g. (181).  According to 
Roach et al., PAF is syngergistic with C5a signaling (393).  In 

summary, these observations may warrant further study of the 
relation of C to vitamin D in autoimmune diseases such as MS. 

 
7.5. Heparin and “heparinoids”   

This glycosaminoglycan (GAG), heparin, has 
been known as an inhibitor of the C system since 1929 
(394) and some of its pleiotropic benefits doubtless owe to 
this fact.  Heparin is best known as an anticoagulant, acting 
chiefly by potentiating the inhibition of thrombin by 
antithrombin III and heparin cofactor II.  It also inhibits 
other serine proteases to varying degrees, as well as von 
Willebrand factor (395) but it has many other actions as 
well (396, 397), notably including “immunomodulation” 
(398), as reviewed more recently (399).  This might be 
expected since heparin binds to some 22% of total plasma 
protein, while a related polyanion, dermatan sulfate, binds 
7%, and chondroitin sulfate, 0.23% (400).  Heparin is 
normally present in plasma in modest amounts (401) but to 
our knowledge, has not been measured in disease states.  
The related GAG, heparan sulfate, is also an important 
constituant of the ECM, (mentioned earlier). 
 
 Related GAG’s were shown in vitro to inhibit the 
neurodegenerative effects of the C-related factor, serum 
amyloid P (SAP), which is thought to contribute to AlzD 
via binding to Aβ (402).  Many studies have documented 
the efficacy of heparin in reducing C-mediate damage from 
ischemia-reperfusion (I/R) (403).  This effect likely 
contributes to its benefits in surgical procedures.  Spring et 
al. provide evidence for benefit of the heparinoid, dextran 
sulfate, for I/R injury, allografts, and immune tolerance by 
“impeding the link between innate and adaptive immunity” 
(404).  Heparin proved useful for treating C-mediated 
intravascular hemolysis (405), was more effective than 
IVIG for recurring APS-related pregnancy loss (406). Its 
value in obstetrics is attributed in large measure to its 
passivation of C (407).  Although we did not perform a 
meta-analysis, our readings in the APS literature suggest 
that heparin was most often the most effective 
treatment, consistent with a central role of C in APS 
(321). 
 
 Mechanistically, heparin inhibits the C system 
at several points, notably by potentiating C inhibitors 
such as factor H (16) and C1-INH (408, 409) the details 
are complex but are now being elucidated (404).   
Heparin also inhibits CR4 signaling (CD11c/CD18) 
(410).  Many of the C factors have heparin binding 
domains, and this has been exploited for assessing 
mutations in C components that result in reduced 
heparin binding, e.g. in aHUS (411).  Black et al. used 
acetylated heparin, (which lacks anticoagulant activity), 
in a canine model of I/R injury, and observed protection 
as good as native heparin (412).  It was also protective 
in cerebral hemorrhage (413) and reduced neurological 
deficits induced by thrombin (27).  (On the other hand, 
C1 selectively bound the fraction of heparin with 
highest anticoagulant activity (414).)  The question has 
been raised if such protection can be entirely 
attributable to C inhibition since many other actions are 
known (397).  Thourani et al. used a different 
chemically modified heparin, which in addition to 
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lacking anticoagulant activity had greatly reduced C 
inhibition (415), yet still observed good protection in 
canine I/R.  However, some technical caveats could be 
raised about this study, especially the assay method used 
to show absence of C inhibition. The concentration of 
native heparin needed for 90% inhibition of lysis (1 
mg/mL, ≈ 500 units/mL) in this study was supra-
physiological and 100-fold more than needed by other 
workers (408).  Groth et al. has carefully compared the C-
inhibiting power of several GAG’s, revealing important 
differences (416).  An orally-available pentosan 
polyphosphate showed good promise as a practical C 
inhibitor (417). 
 
7.6. Intravenous immunoglobulins 

The use of intravenous immunoglobulins (IVIG) 
for treatment of a wide variety of immune-mediated and 
inflammatory disorders is growing, including for treatment 
of MS (418, 419), neurological critical care (420), SLE 
(421), APS (406), sepsis, and other conditions (422).  Many 
explanations are proposed, the most prominent include C 
modulation, however the mechanism of benefit remains 
unsettled (423).  One recent hypothesis centers on dendritic 
cells (DC) (424).  The hypothesis that it ameliorates C-
mediated inflammation is attractive because this could 
cooperate with some other putative mechanisms, e.g., 
correction of “cytokine imbalance”.  On the other hand, (as 
reviewed in the next article), the hypothesis that IVIG acts 
by supplying corrective natural antibodies is increasingly 
persuasive. 
 
 In MS, many reports had shown benefit of IVIG 
but the large PRIVIG study showed no benefit of monthly 
treatment over 1 year (418).  (Interestingly, the placebo 
group receiving albumin did show benefit, prompting 
comments (425).)  This negative conclusion provoked 
letters objecting to the study design, chiefly on the grounds 
that dosing was too low.  Bayry et al. (419), asserting that 
alternative novel therapies (426) are unrealistic, still 
advocates IVIG for MS despite that negative report.  In 
other autoimmune disorders such as SLE and APS, results 
with IVIG are consistently favorable. 
 
7.7. Intravenous IgM and the idiotype hypothesis 
introduced 

If it is true that normal humans naturally harbor 
many auto-antibodies which are masked by IgM antibodies 
against them (anti-idiotypes), then we have the hypothesis 
that autoimmune diseases are often caused by insufficient 
IgM control.  On this hypothesis, here over-simplified, 
Hurez et al in 1997 prepared IgM-enriched 
immunoglobulins (IVIgM) and showed that it could 
suppress auto-antibodies from patients with autoimmune 
diseases more effectively than IVIG (427).  Moreover, rats 
infused with IVIgM were protected against experimental 
uveitis.  Under this hypothesis, the active agent in IVIG is 
IgM.  If true, this could explain explain why such a high 
dose of IVIG is required for effective therapy, e.g., in MS. 
 
 More recently, Hoffmann et al., after observing 
by meta-analyses of literature that IVIgM showed a trend 
for improved survival in sepsis patients compared to IVIG, 

demonstrated in hamsters that IVIgM, but not IVIG, 
significantly reduced leukocyte adhesion in venules and 
normalized capillary perfusion 24 hours post-endotoxemia 
induction (428).  The discussion in their paper cites further 
references on IVIG vs. IVIgM. One such report showed 
that IVIgM was significantly better than IVIG in preventing 
renal damage in a rat model of inflammation, which was 
attributed to reduced C activation (429).  Another study by 
that group showed that despite C inhibition by IVIgM, 
bacterial killing by C was not impaired (430).  The next 
section further explores these important issues. 
 
8. NATURAL ANTIBODIES, COMPLEMENT, AND 
AUTOIMMUNITY 
 
8.1. Introduction 

When we reviewed the antiphospholipid 
syndrome (APS) (318), two hypotheses for its etiology 
emerged as the most convincing, (i) C activation, and/or (ii) 
dysregulation of natural auto-antibodies (NatAb) which are 
normally suppressed by antibodies against them (anti-
idiotypes).  Here we summarize recent evidence uniting 
and further supporting these two hypotheses. 

 
8.2. Background on natural auto-antibodies (auto-Ab) 
 

Compelling evidence accumulated over decades 
shows that the general population carries a large repertoire 
of auto-antibodies (auto-Ab) which are normally masked 
by inhibitory IgM.  For example, Adib et al. showed in 
1990 that mouse sera reacted only weakly to selected self-
antigens but after the IgG was purified, it reacted strongly, 
indicating the presence of an inhibitor of IgG in plasma, 
ultimately shown to be IgM (431).  When the mouse was 
infected with Trypanosoma cruzi, the IgM was less 
inhibitory.  The authors concluded that their findings, 
together with previous work by co-author Ternynck and 
colleagues, are consistent with an “idiotype-like network” 
in which self-reactive IgG is normally suppressed by IgM 
ant-idiotypes. 
 
  (The idiotype network theory, first proposed by 
Jerne in 1974 (432), is beyond the scope of this review.  It 
was widely discussed after Jerne’s paper but grew quite 
complicated and fell out of fashion.  However, Behn’s 
review of 2007 refers to a “renaissance” of interest (433).  
His review is from the perspective of a physicist, who 
speaks of immunology as a “playground for physicists” 
because of its daunting complexity.  For a succint review 
with emphasis on the example of factor VIII inhibitors, see 
Gilles et al (434); and see Menshikov and Beduleva for the 
example of autoimmune hemolytic anemia (435).) 
 
 We earlier mentioned the report of Hurez et al. 
(427), (the title of which explicitly states the hypothesis as 
a fact supported by the findings.  Cheng et al. observed that 
all normal sera became positive for several aPL after 
heating (436), and this was repeatedly confirmed by several 
groups by different methods (437-440).  The few negative 
reports (441) are likely explained by technical issues.  For 
example, as noted by Adib et al. (431), recovery of 
antibodies from adsorption columns can be impaired by 
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acid elution compared to the gentler method of 
concentrated MgCl2 for example. (437).  Pan et al. 
demonstrated SLE IgG AutoAb’s in all normal sera, and 
showed they were masked by IgG anti-Id’s (442).  Stahl et 
al. demonstrated that AutoAb’s responsible for 
autoimmune hemolytic anemia (AIHA) are very similar to 
natural antibodies in the general population. Using methods 
similar to those above (purification of IgG/M, re-mixing, 
etc.), they propose that the disease likely results from 
failure of control by IgM (443). 
 
 Some natural antibodies are not masked. The best 
example of this are those natural antibodies directed against 
non-self ABO blood group antigens.  In such cases, 
masking is not needed since the antigen is absent.  Natural 
Ab’s are part of the humoral innate immune response, 
encoded in the germ line, and are believed to be important 
to distinguish self from non-self (434).  Work by Gyorgy et 
al. on Natural Ab in rheumatoid arthritis (RA) shows them 
to be at least a biomarker of disease activity (444).  
Interestingly, they report that high levels of IgM against the 
antigens of interest correlate with mild disease and low IgM 
with severe disease.  Our study of aPL in MS revealed 
exclusively IgM aPL associated with exacerbations (257). 
 
8.3. The complement connection 

Assuming that auto-immune disease can be 
caused by loss of anti-Id control, a role for the C system 
may be implied by the observed high frequency of 
autoimmune diseases associated with defects in the C 
system.  However, it now appears that not only C, but also 
Natural Ab’s are crucial players in adaptive immunity 
(176).  That reference updates Carroll’s description of the 
role of C in the selection and expansion of B-1 cells (171), 
which are CD5+ and the source of Natural Ab (434).  
Holers and Kulik have review new findings showing 
relations between CR2, Natural Ab, and autoimmunity in 
SLE and I/R (175).  Those studies include intriguing 
findings on interferon-Alpha (IFN-Alpha), a known ligand 
of CR2 (40). 
 
 The main point in these studies is that C plays a 
pivotal role in regulating Natural Ab in autoimmune 
disease, and probably also the regulatory anti-Id’s.  
Moreover, since several auto-immune diseases are linked to 
HLA haplotypes, it is noteworthy that serum levels of 
Natural Ab are significant associated with those genotypes 
(445). 
 
8.4. Remyelination mediated by C and natural 
antibodies  

Warrington et al, building on prior work aimed 
at MS (446), produced a recombinant IgM from a patient 
with lymphoproliferative disorder, and demonstrated that it 
restored remyelination in several EAE mouse models of 
MS (447).  More recently, they reported upcoming clinical 
trials using this product (448).  In view of its source, this 
antibody is presumably a natural IgM.  It did not, however, 
protect against neurodegeneration, (i.e., of loss of motor 
neurons).  In this regard, it is of great interest to note that 
axon cell death in EAE results not from MAC deposition 
but from another pore-forming weapon, perforin (449, 

450), wielded by NK cells and cytotoxic T lymphocytes 
(CTL); i.e., neuron death in EAE was prevented by deletion 
of the perforin gene, but demyelination was not affected 
(451, 452).  Relatedly, it was shown that MIRL (CD59), 
which normally protects against autologous MAC attack, 
provided no protection against the molecularly comparable 
perforin (453).  Some of the same authors have also 
implicated kallikreins (182).  They have discussed their 
exciting findings in terms of clinical applications (454, 
455).  Later findings from that group were recently 
reviewed (448, 456), with a specific emphasis on natural 
antibodies (457) 
 
 Cid et al. attribute failure of remyelination in MS 
to the depletion of oligodendrocyte precursor cells (OPC’s) 
by AutoAb’s to heat-shock protein 90 (HSP90) in CSF of 
patients. They find that C activation is critical in this 
mainly by demonstrating that C1-INH could prevent the 
anti-HSP90-mediated death of OPC’s (458).  Earlier in this 
review we cited evidence for the role of C in recruitment of 
neural stem / progenitor cells.  Interestingly, HSP90 is 
liberated by glucocorticoids (206). 
 
 Following work by them and others documenting 
that sublytic C5b-9 inhibits apoptosis of oligodendrocytes, 
and that C5 promoted remyelination in EAE (459), Cudrici 
et al. performed a genetic study of EAE mice with 
knockout of the C5 gene (147).  Their aim was to identify 
which other genes (proteins) might be associated with the 
C5-dependent remyelination.  About 400 genes were found 
to be differentially expressed in the C5-/- mice, and in 
various pairwise analyses (acute EAE vs. baseline, 
recovery, chronic, and wild-type C5+/+). The authors 
concluded that insulin-like growth factor binding proteins 
(ILGF-BP) were perhaps of greatest interest, (for reasons 
given in their discussion (147).  For a full discussion of 
their findings, see Tegla (141). 
 
8.5. Natural antibodies and ischemia/ reperfusion injury 

From similar clues, Zhang et al. were able to 
identify the target of the natural auto-Ab responsible for 
ischemia-reperfusion (I/R) injury as a non-muscle myosin 
heavy chain, which promotes C activation and tissue 
damage (460, 461); (reviewed in 462).  This appears to be a 
real conceptual breakthrough, since it implies effective 
treatment using the anti-Id.  They documented this 
mechanism for two different tissues, it may well apply to 
I/R of all organs and tissues. 
 

It may be relevant to note early work by 
Pinckard et al, who demonstrated strong activation of the 
classical C pathway by mitochondria from human heart in 
vitro and in coronary surgery patients, in absence of anti-
mitochondrial antibodies (463, 464).  It is tempting to 
suggest that this was caused by natural anti-cardiolipin 
antibodies (since mitochondria are rich in cardiolipin) but 
the authors convincingly exclude a role of antibodies in this 
instance. 
 
8.6. Natural antibodies, C, and adaptive immunity 

The purpose of natural antibodies (NatAb) has 
been uncertain, but in 1998, an important role for them, 
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particularly IgM, in C-mediated activation of antigen-
specific B cells, and in the elimination of self-reactive B 
cells, was considered (171).  More recently, that author 
(M.C. Carroll) has discussed the broader role of C as a 
major regulator of multiple pathways in adaptive immunity 
(465), and in the processing of antigens for antigen-
presenting cells (APC’s) (466).  Gonzalez et al. have 
shown that natural IgM, acting in concert with C3 and 
CR1/CR2, are essential for long-term immunological 
‘memory’ (176).  They also stated in that study, that IgM and 
C are in general, essential for normal antibody responses. 
 
 The C system mkght also be involved in the 
locomotion of leukocytes and formation of immune synapses. 
It has been shown that the Wiskott-Aldrich syndrome protein 
(WASP) binds specifically to C5aR (467).  It is known that 
WASP is important to cell locomotion at the level of the actin 
cytoskeleton, supported by a study of that syndome in which 
the WASP protein is defective, entailing recurring infections, a 
high rate of autoimmune disease, cancers, thrombocytopenic 
bleeding, and eczema (468, 469).  The syndrome also shows 
reduced C receptors on B cells, low plasma IgM, and an 
impaired ability to form immune synapses (470, 471).  Thus, 
C5aR may represent a common denominator of these 
activities that require actin cytoskeletal reorganization: 
dysregulation of C-mediated control of auto-Ab’s could be 
among the consequences.  
 
8.7. Concepts of anti-idiotypes 

A now-classic example was the production of a 
monoclonal antibody from an SLE patient, called idiotype 
16/6 (16/6 Id), which occurs commonly in SLE patients, 
correlates with disease activity, and is deposited in afflicted 
tissues, (reviewed by Shoenfeld in 1990, 472).  Mice 
immunized with 16/6 Id developed SLE-like disease and a 
spectrum of antibodies similar to SLE.  (Patients with SLE 
have antibodies to as many as 25 self-targets, many of them 
intracellular.)  Briefly, they explain this by supposing that 
some of the anti-Id generated in the mouse duplicate the 
original antigen pattern, which in turn could yield an anti-
anti Id to drive the SLE-like response.  (For related 
perspectives, see McGuire and Holmes (473).)  The details 
are complex but generally support this broad concept (472).  
Similar work had been accomplished earlier by Johnson 
and Smalley (474), who immunized mice with rheumatoid 
factor (RF) from RA patients, which is known to react with 
streptococcal polysaccharides (PS), to obtain antibodies 
reactive to the original PS; i.e., anti-Id.  Implications for 
autoimmunity are obvious, including potential etiologies 
attributable to pathogen exposure; but it is equally apparent 
that mechanisms must normally exist which limit this from 
happening. 
 
8.8. More roles of natural antibodies 

Su et al have demonstrated that natural anti-
phosphoryl choline (PC), which can be extracted from 
pooled normal IVIG, appears to play a protective role in 
SLE (475).  It has been argued that autoimmune hemolytic 
anemia (AIHA) results from disruption of an idiotype 
network (435).  Quan et al. also made interesting 
observations on shifts in the repertoire of natural antibodies 
in treated vs. untreated HIV patients (476).  Deliberate 

construction of anti-idiotypes against pathogenic AutoAb 
has been proposed for treatment of autoimmune diseases 
such as ITP (477).  The significance of natural antibodies in 
IVIG therapy was recently reviewed (457). 
 
9.  SUMMARY AND PERSPECTIVE 
 
 This review clearly shows that the C system can 
no longer be viewed as in independent arm of the immune 
system, but is rather intricately connected to many aspects 
of immunity, including auto-immunity, and self-repair.  In 
addition, the C system is closely connected with the 
coagulation system, accounting for many otherwise 
puzzling observations, reflecting its appreciation as a 
source of inflammatory mediators. 
 
 From the standpoint of new paradigms leading to 
potential therapies for several neurological diseases, 
perhaps most promising is the work reviewed in the last 
section pertaining to natural antibodies, raising hopes for 
effective treatments of dymelinating disease, I/R injury, 
and other immune-mediated disorders, entirely free of 
generalized immune suppression.  Equally exciting is the 
new insight on the role of C in recruiting neural stem / 
progenitor cells, and related insights on neuronal repair after 
injury, e.g. remyelination. 
 
 Among the take-home lessons is to proceed with 
caution on the use of the many C inhibitors now in 
development because of the numerous beneficial activities of 
the C system.  Another lesson, (a humbling one), concerns our 
ignorance of the detailed operation of the C system and its 
relation to other arms of immunity.  It seems paradoxical, but 
true, that the more we learn about biological systems, the less 
certain we are that we understand them.  Ulrich Behn best 
phrased it this way: “There is a need to better understand the 
immune system at all temporal and spatial scales and at all 
levels of complexity” (433). 
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