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1. ABSTRACT 
 

At least one in four diabetic patients is affected by 
peripheral neuropathy. In this study, the MALDI-TOF-MS 
mass spectra of peptides and proteins were generated 
following WCX CLINPROT bead fractionation of 39 
diabetic peripheral neuropathy (DPN), 39 diabetes mellitus 
(DM), and 35 control (CON) serum samples. The spectra 
were analyzed statistically using flexAnalysisTM and Clin-
ProtTM bioinformatics software. Identification of the 
selected markers was performed and affinity bead-purified 
plasma protein was subjected to LTQ Orbitrap XL MS/MS 
analysis followed by Mascot identification of the peptide 
sequences. 89 differentially expressed peaks of serum 
proteins were identified. 17, 10 and 4 most significant 
peaks between CON vs. DM, CON vs. DPN, DM vs. DPN, 
respectively, were selected out using the ClinProTool 
software package and used to train a Supervised Neural 
Network. A veracity rate of 100% was obtained for all sets. 
Following this analysis, a 6631-Da marker was identified 
as a fragment of the Apolipoprotein C-I precursor. The 
peptides identified may have clinical utility as surrogate 
markers for detection and classification of DM and DPN. 

 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Diabetic neuropathy has been defined as a 
demonstrable disorder, evident either clinically or 
subclinical, that occurs in the setting of diabetes in the 
absence of other causes for peripheral neuropathy (1). 
Distal symmetric sensory or distal sensorimotor 
polyneuropathy (DSP) represents the most relevant clinical 
manifestation, affecting 30% of the hospital-based 
population and 25% of community-based samples of 
diabetic patients (2). Diabetic peripheral neuropathy (DPN) 
is the most common chronic complication of diabetes (3), 
and there are many methods utilized in DPN screening, 
such as the Toronto clinical neuropathy score (TCSS), 
Michigan Neuropathy Screening Instrument (MNSI), 
diabetic neuropathy symptom (DNS) score, and the 128Hz 
tuning fork examination, single-wire inspection and others. 
Though there is validation through clinical data which 
supports these methods, the actual efficiency of diagnoses 
varies due to each method’s different emphasis. Diagnosis 
of PDN requires the presence of a neuropathy consistent 
with diabetes, as well as the exclusion of other possible 
etiologies of neuropathy. The differential diagnosis is vast, 
including alcoholic, idiopathic, nutritional, and many other 
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types of neuropathy. Nerve conduction studies and 
electromyography can assist in the description and 
objective confirmation of the source of neuropathy. Nerve 
conduction studies are, however, best suited to rule out the 
other causes of neuropathy or to identify additional 
neuropathies. MNSI and DNS scores ignore a portion of 
patients with no obvious symptoms of DPN. The tuning 
fork and 10g monofilament examinations are simple, but 
the early screening positive rate is low. A nerve biopsy, 
although usually not required, can reveal the involvement 
of unmyelinated fibers, which are not routinely evaluated 
by electrophysiological tests. More recently, neuropathy 
associated with changes in intraepidermal nerve fiber 
density and dendritic nerve fiber length has been 
demonstrated in patients with impaired glucose tolerance 
and dysmetabolic syndrome. 
       

Human blood plasma is the most complex human 
derived proteome, as well as the most informative 
proteome from a medical point of view. The attractiveness 
of plasma for disease diagnosis lies in two characteristics: 
the ease with which it can be obtained and the fact that it 
comprehensively samples the human phenotype (the bodily 
state at a particular point in time). The proteins in plasma 
can be categorized into several functional groups. These 
include the proteins secreted by solid tissues, 
immunoglobulin (about 10 million different sequences) that 
circulate in plasma, “long distance” receptor ligands which 
include the classical peptides and protein hormones, “local” 
receptor ligands which include cytokines and other short 
distance mediators of cellular response, temporary 
passengers, tissue leakage products, aberrant secretions and 
foreign proteins which are proteins from infectious 
organisms or parasites that are released into the circulation. 
Given this variety of classes of protein components, 
plasma is thus the most comprehensive and the largest 
version of the human proteome. On the other hand, more 
than half of the total protein mass in plasma is comprised 
of one protein (albumin), while the top ten proteins 
together make up 90% of the total. This enormous 
dynamic range (nearly 12 orders of magnitude between 
the high abundance and very low abundance) of proteins 
currently falls outside the range of available technologies 
in proteomics. To address this complexity, plasma 
samples can be fractionated using multidimensional 
separation techniques, for example fractionation at the 
peptide level where the proteome is first digested with a 
protease such as trypsin, then the peptides are separated 
using reverse phase and cation exchange liquid 
chromatography. Alternatively, separations at the protein 
level, using pre-fractionation methods such as ion 
exchange, size exclusion, hydrophobic interaction, and 
various affinity methods have been attempted. One such 
pre-fractionation method is the removal of high 
abundance proteins, which can dramatically improve the 
number of proteins identified by reducing the dynamic 
range of protein levels in biological fluids to better 
match the analytical platform. A variety of depletion 
methods for specific removal of high abundance proteins 
from bodily fluids have been developed. One example is 
matrix-assisted laser desorption/ionization time-of-flight 
known as MALDI-TOF (4-9). 

Proteomic expression profiles generated with mass 
spectrometry have been suggested as potential tools for the 
early diagnosis of diseases. Different protein profiles can 
be associated with varying responses to therapeutics. It has 
been postulated that on the basis of the presence/absence of 
multiple low-molecular-weight serum proteins using time-
of-flight (TOF) mass spectrometry technologies, such as 
SELDI-TOF and MALDI-TOF, biomarkers can be 
identified (10-14). Although the data from these studies are 
encouraging, critical notes have been made on both study 
design and experimental procedures for proteomic profiling 
(15, 16). In addition, the importance of avoiding 
confounding biological variables, as well as technological 
factors that may bias the results, have previously been 
stressed by several authors. Among the huge amount of 
biomarkers discovered by other technologies, only a few of 
them have been identified due to the technique limitations 
concerning direct identification on a chip using ProteinChip 
Array. In fact, identification of these candidates will not 
only assist in exploring the mechanism of disease 
occurrence, but also facilitate the development of a more 
traditional multiprotein antibody array for the early 
detection of DPN. 

 
3. MATERIALS AND METHODS 

 
3.1. Patients and blood sample  

The diagnostic criteria for diabetes mellitus (DM): 
fasting blood glucose (FPG) ≥ 7.0 mmol/L and (or) 2 hours 
after glucose load blood glucose (2hPG) ≥ 11.1 mmol/L. 
Diabetic peripheral neuropathy (DPN) diagnostic criteria: 
meeting the diagnostic criteria for diabetes mellitus and 
with abnormal NCV examination (excluding unrelated 
reasons for peripheral neuropathy). Healthy controls (CON) 
populations were collected from the health examination in 
the Changzheng Hospital from November 2005 through 
January 2007, including 238 inpatient cases and 158 cases 
of healthy volunteers. The study groups included a normal 
control (CON) group of 35 patients, diabetes not 
accompanied by any chronic complication (DM) group of 
39 patients, and diabetes only associated with peripheral 
neuropathy (DPN) group of 39 patients. The final study 
groups excluded cases of dyslipidemia and hypertension, 
therefore 25 CON cases, 25 DM cases, and 25 DPN cases 
were used to construct the model; and 10 CON cases, 14 
DM cases, and 14 DPN cases were used for the blind test 
and general information such as included in Table 1. 

 
Neural electrophysiological examination for DM patients: 
A Nihon Kohden Neuropaek-2 was used to evoke 
potential/EMG, and the instrument was placed in a separate 
shielded room. Three parameters of motor conduction 
velocity (MNCV) and sensory conduction velocity (SNCV) 
were determined, including distal latency, distal amplitude 
of median nerve, and superficial peroneal nerve. For the 
assessment of neuropathological symptoms of peripheral 
neuropathy, the total symptoms score (TSS) was used for 
assessment of the drug treatment of DPN. Scoring included 
lower limb and foot numbness, paresthesia, burning 
sensation, gill pain and the severity of four symptoms 
(none, mild, moderate, severe) and frequency (occasional, 
frequent, almost continuous), respectively, were scored and
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Table 1. Serum samples characteristics 
 Modeling group Testing group 
 characteristics  CON(25) DM(25) DPN(25) CON(10) DM(14) DPN(14) 

Gender  Male/n 15 13 13 6 8 10 
 Female/n 10 12 12 4 6 4 
Age <45/n 12 5 6 5 2 1 
 ≥45/n 13 20 19 5 12 13 
 means+/-SD 46.4+/-14.0 55.1+/-10.1 58.2+/-13.1 40.7+/-20 62.9+/-13.1 58.6+/-9.8 
Stage <5Y/n — 14 14 — 4 6 
 ≥5Y/n — 11 11 — 10 8 
 means+/-SD — 3.6+/-4.9 5.3+/-5.7 — 8.6+/-7.7 7.1+/-6.0 
Family history Yes/n 12 12 13 3 7 5 
 No/n 13 13 12 7 7 9 
HbA1c <6.5%/n — 5 3 — 8 1 
 ≥6.5%/n — 20 22 — 6 13 
 means+/-SD — 7.7+/-1.4 8.1+/-1.7 — 6.7+/-1.1 8.6+/-1.7 

 
counted as 0 ~ 3.66 to record the rate of TSS before and 
after treatment (data not shown). 

 
3.2. Blood sample preparation 

Blood samples were drawn upon study entry (Day 
0) and in the 6th month via an indwelling arterial catheter. 
Serum samples were collected in glass tubes without 
additive (BD Vacutainer™ Franklin Lakes, NJ) and was 
allowed to clot at room temperature for 40 min. Serum was 
separated by centrifugation at 2000 rpm for 15 min, 
immediately split into 200µl aliquots and frozen at -80 °C 
until time of analysis. The time from collection to frozen 
storage was no more than 60 min for all samples. The 
processing, collection and storage protocols for all 
individuals were identical. For serum protein fractionation, 
the sera were left at 4~6� for 2h, centrifuged at 10000 
rpm, 4� for 10 min. 10Μl MB-WCX binding solution and 
5Μl serum sample were added to the beads and mixed 
completely. The samples were then placed on the magnetic 
bead separation device (MPC-auto96, Dynal, Oslo, 
Norway) where the beads were pulled to the side by 
magnetic force, allowing for the supernatant to be removed 
and discarded. The magnetic beads were washed three 
times with MB-WCX washing solution by shaking the 
beads up and down as needed. The supernatant was 
removed and the beads remained in place. 5Μl elution 
solvent was added to the bead pellet and mixed by pipeting 
up and down, then the beads were pulled to the side and a 
fraction of the eluate was transferred to another tube. 10Μl 
α-cyano-4-hydroxycinnamic acid (0.3 g/L in ethanol: 
acetone 2:1) was added to the 1Μl elution in a 348-well 
microtiter plate and mixed carefully. 1Μl mixture was 
spotted in quadruplicate onto a MALDI AnchorChip™ 
(Bruker Daltonics, Bremen, Germany). 

 
3.3. Quality control and standards detection for 
MALDI-TOF-MS 

Each standard was calibrated around a range of four 
molecular weight protein samples. Each point was acquired 
multiple times to obtain a standard map, and the molecular 
weight bias correction did not exceed 0.01%. A single 
standard serum was used as a quality control for the entire 
experimental process. Every 7 samples were matched with 
the standard serum. When a standard serum pattern map 
was obtained, it was compared with maps already present 
in the database, which had been constructed using the same 
standard serum maps treated with the identical WCX

 
magnetic bead method. From this data, the coefficient of 
variation was calculated. 
 
3.4. Mass spectrometry analysis to profiling 
serum proteome 

For MALDI-TOF-MS analysis, 1 Μl of the above 
diluted purified serum was mixed with 0.5 µl of matrix 
solution (2 g/L α-cyano-4-hydroxycinnamic acid, and 1% 
formic acid in 50% acetonitrile) and allowed to dry onto a 
MALDI sample plate (600 µm AnchorChip™, Bruker 
Daltonics Company). Two peptides were also included in 
the matrix solution for internal calibration: 10 pmol/Ml 
angiotensin II and 10 pmol/Ml ACTH18-39 (Bruker 
Daltonics). Laser desorption was targeted randomly on the 
sample plate and samples were measured using an Autoflex 
II MALDI-TOF mass spectrometer (Bruker Daltonics) 
operated in positive ion linear (reflection) mode. Ionization 
was achieved by irradiation with a 50 Hz nitrogen laser. 
Spectra are the mean of 100 ionizations with a fixed laser 
power in linear geometry mode and mass maps were 
obtained in reflectron mode. The spectra were calibrated 
externally with a mixture of protein/peptide standards in the 
range of 1000 to 12000 Da (Bruker Daltonics). For 
databank analysis, all spectra were processed using 
automatic baseline subtraction, peak detection, 
recalibration, and peak area calculation according to 
predefined parameter settings. The criteria for peak 
detection were: Signal/Noise (S/N) ratio > 5, 2 Da peak 
width filter, and maximum peak number of 200. The 
intensities of the peaks of interest were normalized against 
the peak intensity of the ACTH internal standard. A +/-2 
Da mass accuracy for each spectrum was observed which 
may be a result of the geometry of varied sample positions 
on the AnchorChip. These mass shifts were corrected by 
the flexAnalysis™ software after alignment with the 2 
internal standards. 

 
3.5. Statistical methods, evaluation of diagnostic 
efficacy 

All MALDI-TOF-MS spectra were analyzed with 
flexAnalysis™ to detect the peak intensities of interest and 
CLINPROT™ software to compile the peaks across the 
spectra obtained from all samples (Bruker Daltonics 
Company). This analysis allowed for discrimination 
between the patient and control samples. We used a 
Supervised Neural Network (SNN) in CLINPROT 2.1 with 
the detected peaks from the discovery set to generate cross-
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Table 2. The M/Z of the reference selected peaks 
in standards 

Substance mass(M+H)+ Within-run CV (%) 
AngiotensinII 1047.18 0.29 
AngiotensinI 1297.48 0.05 
Substance P 1348.64 0.18 
Bombesin 1620.86 0.22 
ACTH clip 1-17 2094.42 0.12 
ACTH clip 18-39 2466.68 0.19 
Somatostatin 28 3149.57 0.12 
Ubiquitin 4283.45 0.09 
Insulin 5734.56 0.16 
Cytochrome c 6181.05 0.23 
Ubiquitin 8565.89 0.25 

 
validated classification models. These were used to 
measure the reliability of the calculated model and to 
predict how a model would behave in the future. A random 
20% of data points (taken over all classes) was selected and 
omitted from the model generation procedure. The model 
was constructed using the remaining 80% of data points 
and the previously omitted 20% set of data points was 
classified against the model. The obtained classification 
results were stored (10 CON cases, 14 DM cases, 14 DPN 
cases) and used for the blind test. 

 
3.6. Identification of protein markers 

Selected peptides were further purified using Nano 
Aquity UPLC C18 beads (Waters Corporation, Milford,USA) 
and serially eluted with 5% and 95% acetonitrile. These 
peptides were identified directly via LTQ Orbitrap XL 
(Michrom Bioresources, Auburn, USA) analysis in order to 
obtain the peptide sequences. For the Nano Ion Source, spray 
voltage was 1.8kV, MS scan time was 60min, and the scanning 
range was 400-2000m/z. Obitrap was used for the first scan 
(MS), with resolution of 100000 and LTQ was used for CID 
and the second scan (MS/MS). The 10 strongest ion intensities 
in the MS spectra were selected as the parent ion for the 
MS/MS (single charge exclusion, not as a parent ion). Peptide 
mass fingerprinting was performed with the International 
Protein Index (IPI human v3.45 fasta with 71983 entries) and a 
search of the National Center for Biotechnology Information 
(NCBI) protein-protein BLAST database 
(http://www.ncbi.nlm.nih.gov/BLAST/). 
 
4. RESULTS 
 
4.1. System stability and experimental reproducibility 
were ensured through the use of  standards and 
standard serum 

In this study, standard products and standard serum 
were used for quality control. The external standard 
calibration standards contained 11 peptides (Table 2), and 
almost all the CV were below 30% within each run. 
Average molecular weight deviation was less than 100ppm, 
and for every eight samples of data collection an external 
standard calibration was performed. Four standard serum 
samples were used to ensure quality control. Resultant 
mass spectrometry test results are shown in Figure 1. 
 
4.2. Differentiation of peptides selected out between 
DM, DPN and CON groups 

All 113 patients from the DM, DPN and CON 
groups’ sera peptide profiles were analyzed using a new 

high-resolution MALDI-TOF MS coupled with bead 
fractionation. Samples were randomly distributed during 
processing and analysis. A total of 89 distinct m/z values 
were resolved in the 800–12000Da range. Differences in 
peak positions and intensities were observed and later used 
to statistically analyze the spectra. ClinprotTools ver 2.1 
(Bruker Daltonic) was used for peak detection. Those 
peptides which displayed significant statistical significance 
(P<0.05) according to a Mann-Whitney U-test between 
CON and DM, CON and DPN, DM and DPN groups 
respectively. These data are shown in Table 3. Typical 
WCX spectra for three groups are shown in Figure 2, and 
indicate very good reproducibility for each group.  
MALDI-TOF mass spectral overlays of selected peaks 
were derived from serum peptide profiling of each pair of 
groups. Spectra were obtained, aligned, and normalized as 
described in the Methods and were displayed using a mass 
spectra viewer. The top two significantly differently 
expressed proteins are shown in Figure 3. Each pair of 
peaks appears to have significant discriminatory potential.  

 
4.3. Establishment of Predicting Model 

A Supervised Neural Network (SNN) in CLINPROT 
was trained with the detected peaks from the discovery set 
to generate cross-validated classification models. The 
recognition capability between each pair of groups for the 
best predicting model, and MALDI-TOF peaks from the 
best classification model are shown in Table 4, with 20% of 
randomly selected data points omitted in the cross 
validation step. The accuracy of the models was verified 
with the validation set data, consisting of the 20% omitted 
samples. All the samples were correctly classified by the 
SNN model. 
 
4.4. Identification of markers 

With this bead-based proteomic technology, 
identification of potential markers at 6631Da could 
distinguish both the DM and DPN groups from the CON 
group, and with a relative high peak intensity which is 
beneficial for further purification and identification. With 
this in mind, this peptide could be a potential marker for 
further immunoassay trials. After fractionation by Nano 
Aquity UPLC (Waters Corporation, Milford, USA), the 
eluted plasma samples were further purified by C18 beads 
with 5µm and 3.5µm, then serially eluted with 5% and 95% 
acetonitrile. Samples were then subjected to LTQ Orbitrap 
XL MS/MS (Michrom Bioresources, Auburn, USA) 
analysis. Marker 6631Da was significantly enriched 
(Figure 4A). This acetonitrile eluate was further subjected 
to TOF MS/MS analysis. The MS fingerprint was subjected 
to International Protein Index (IPI human v3.45 fasta with 
71983 entries) searching for peptide sequence and further 
to NCBI database for protein identification. The sequence 
was identified as fragment of Apolipoprotein C-I precursor 
(Figure 4B and 4C). 
 
5. DISCUSSION 
 

In the search for clinically relevant biomarkers, the 
low mass range of the serum proteome, particularly 
peptides with a molecular mass below 3,000 Da, has not 
received the same attention as higher molecular weight 
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Figure 1. Self-Test for standard serum. 
 

peptides and proteins. Meanwhile, a crucial point of 
discussion in the evolving field of clinical proteomics is 
validation of classification (17, 18). Given the sample size 
achievable within the experiment, the use of a separate 
(possibly set-aside) validation set was precluded. The other 
problem is ‘‘predictive optimization’’. The controversy 
with regard to the use of protein profiles as a pattern 
diagnostic without analysis of the diagnostic biomarkers 
remains to be solved for clinical applications. Further, 
identification and functional analysis of these 
discriminating proteins/peptides might render new insights 
on disease development and environmental responsiveness, 
which could eventually be translated into new diagnostic 
and prognostic insights for the clinician. Unfortunately, 
little success has been obtained so far in the assignment of 
reproducible discriminating biomarkers (19, 20). At the 
same time, the identification of the individual differentially 
expressed proteins that comprise the diagnostic expression 
profile will essentially facilitate significant progress in the 
development of a robust accurate diagnostic platform. In 
addition, if the proteins are identified and specific high 
affinity antibodies are generated for them, more direct but 
less expensive methods for analysis can be developed. 
 

Results of this study demonstrate that, by using 
MALDI-TOF, the complexity of the human plasma 
proteome could be significantly reduced and allow for 
identification of potential protein biomarkers for disease 
studies by proteomic analysis. This approach is a 
moderately high throughput method suitable for biomarker 
discovery in clinical studies. By using spectral counting as 
a surrogate for peak area measurements, data can be 
quickly assessed to evaluate which proteins are 
differentially abundant and to determine which peak areas 
to measure manually across the different groups. 

Recently performed experimental studies suggest a 
multifactorial pathogenesis of diabetic neuropathy. Most 
data have been generated in the diabetic rat model. Two 
approaches have contributed to the elucidation of the 
pathogenesis of diabetic neuropathy. The most common 
type of diabetic neuropathy is distal symmetric 
polyneuropathy, which may affect large and/or small fibers 
and may be either sensory or motor. The major 
neurotransmitter in small unmyelinated C fibers is 
substance P, and those of A fibers (such as glutamate) act 
on Na channels. Thus, capsaicin, which depletes substance 
P is usually effective for C fiber pain, whereas agents that 
correct Na channelopathy improve large fiber function (4). 
PDN is caused by the involvement of small nerve fibers, 
which may be affected without objective clinical findings, 
such as decreased peripheral reflexes or abnormalities on 
routine electrophysiological studies. Small fiber 
neuropathies may manifest as a number of different clinical 
symptoms, including allodynia, burning pain, defective 
warm thermal sensation, and defective autonomic function, 
e.g. decreased sweating, dry skin, and impaired vasomotor 
control. 
 

We found 77 distinguishable peaks in the 800 to 
12,000 m/z range, with 17 and 10 peaks having statistically 
significant differential expression between DM vs CON, 
DPN vs CON, respectively(P<0.005). Using the SNN 
analysis package in the CLINPROT software, 10 and 4 
particularly significant peaks were selected from the 
discovery set data and were used to generate a diagnostic 
model which was applied to data from the validation set. 
The veracity rate was 100% for all groups. Cross 
Validation was 74.47% for CON, 79.25% for DM and 100,  
for CON, and 100,  for the DPN set. Further, we found the 
peptide fragments with respective m/z value 6631 with high 
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Figure 2. Typical WCX spectra for three groups. A: CON; B: DM; C: DPN. Each plot (A to C) shows three lines which 
represents three different serum sample profiles.  

 
accuracy (AUC > 0.95) by ROC analysis (data not shown). 
These protein/peptide fragments with high specificity and 
sensitivity may be good serum biomarkers for DM and 
DPN. Later studies in a larger population group are 
necessary to confirm this finding. Further evaluation 
identified the 6631Da marker as fragment of 
Apolipoprotein CI by MS/MS. 
 
Apolipoprotein CI (ApoCI) is a 6.6 kDa protein, which 
influences many proteins involved in the remodeling of 
lipoproteins in plasma. It is an inhibitor of lipoprotein 
binding to the LDL receptor, LDL receptor-related protein, 

and the VLDL receptor. It also is the major plasma 
inhibitor of cholesteryl ester transfer protein, and appears to 
interfere directly with fatty acid uptake (21). ApoCI is 
associated with decreased particulate uptake of 
apolipoprotein B-containing lipoproteins, leading to 
increased levels of several potentially atherogenic species, 
including cholesterol-enriched VLDL, IDL, and LDL (22, 
23), which in turn lead to high blood pressure. Another 
study has been conducted to evaluate the effects of ApoCI  
overexpression on hepatic and peripheral insulin sensitivity 
in a mouse model, where obese mice with mild 
overexpression of ApoCI were generated and resulted in
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Figure 3. The first 2 significant peaks are marked with a star and short line along the average spectrums and the actual plot of the 
first 2 significant peaks in each two groups are displayed. A: CON vs DM; B: CON vs DPN; C: DM vs DPN. 
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Figure 4. Identification of 6631Da peak by MS/MS analysis. (A) Peak spectrum based chromatography (G2W-WCX); (B) single 
scan fragmentation spectrum state of sera acquired in the orbitrap at 100,000 resolution (1106.4331 (6+), 948.2277 (7+), 
829.8250 (7+), 737.7336(9+)); (C) MS/MS fragmentation spectrum analyzed in the orbitrap. 
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Table 3. Mass spectral characteristics of proteins/peptides with differential expression between patient and control subjects 
M/Z p Value 1 Ave  Ave  SD N SD T 
  CON DM CON DM 
7010 < 0.001 34.36 19.61 9.05 4.78 
8141 < 0.001 15.17 8.39 4.61 2.2 
7598 <0.001 9.45 5.57 2.58 1.16 
7646 <0.001 14.69 10.04 3.31 1.75 
3315 <0.001 31.44 51.1 8.94 14.73 
8863 <0.001 17.1 9.31 5.98 3.93 
7766 <0.001 115.29 58.89 47.08 29.24 
9062 <0.001 24.36 12.91 9.51 5.56 
7922 <0.001 16.19 11.15 4.34 2.47 
7833 <0.001 11.59 7.41 3.81 2.02 
6631 <0.001 85.84 232.41 51.23 188.43 
4644 <0.001 202.98 119.7 98.84 52.49 
9289 0.0016 960.32 592.91 365.62 294.18 
8565 0.0045 8.4 6.61 1.64 1.7 
3302 0.0053 9.7 12.94 3.31 2.92 
9430 0.0078 45.82 31.61 19.61 17.99 
1984 0.0419 20.01 23.92 5.07 4.7 
  CON DPN CON DPN 
8835 <0.001 9.83 6.56 2.26 2.11 
7598 <0.001 8.95 6.04 2.44 1.84 
8863 <0.001 20.81 12.95 6.71 4.69 
9021 0.00251 7.08 4.71 2.18 1.66 
7564 0.00625 9.78 7.5 2.02 1.98 
7010 0.00723 31.42 21.85 8.33 8.15 
9063 0.00728 24.5 15.56 9.55 7.65 
8677 0.00872 12.07 8.78 3.68 3.2 
6631 0.0268 86.27 169.81 51.53 118.23 
1944 0.0467 17.74 12.49 7.88 4.73 
  DM DPN DM DPN 
7766 0.029 58.65 109.05 29.13 56.21 
3315 0.0363 51.7 38.69 14.81 12.53 
3884 0.0363 17.82 24.24 4.76 8.07 
8142 0.0363 12.29 17.05 2.73 6.13 

1 Mann-Whitney U-test adjusted by the Benjamini and Hochberg method 
 
Table 4. Specificity and sensitivity for the SNN model  

Group Recognition Capability Peaks for model  Veracity rate Cross Validation 
CON vs DM 100% 7010, 3315, 1867, 7597.7, 1466, 2863, 2281, 1944,  

661, 1692 
CON 100% 74.47% 

 
   DM 100% 79.25% 
CON vs DPN 100% 3192, 1062, 1618, 1944 CON 100% 100% 
   DPN 100% 100% 
DM vs DPN 100% 3315, 7766, 1865.91, 1331, 4964, 1692 DM 100% 68.09% 
   DPN 100% 60.38% 

 
hepatic steatosis and severe hepatic insulin resistance 
(24). The increase of ApoCI has been reported to 
reflect the levels of related apolipoproteins CIII and 
B, as well as insulin-like growth factor (IgF) binding 
protein. High plasma apoCI is also positively related 
to proinflammatory response in patients experiencing 
endotoxemia which is associated (P<0.05) with 
increased perioperative levels of TNF-alpha. 
 

DPN is a common cause of neuropathic 
syndrome and produces significant morbidity. 
Successful treatment can be difficult and relies on 
modification of the underlying disease with 
maintenance of euglycemia and normal body weight 
and lipid levels as well as a multitude of symptomatic 
therapies. Clinical data indicates that lipid metabolism 
disorders in patients with type 2 diabetes mellitus 
complicated with DPN are important risk factors., as 
lipid metabolic disorders may be involved in the 
process of occurrence and development of DPN. For 
DPN patients, serum total cholesterol (TC), 
triglyceride (TG) and low-density lipoprotein

 
cholesterol (LDL-C) were significantly higher (25). 
Apolipoproteins on the lipoprotein subclasses of all 
the major metabolic pathways have their own unique 
influence. The experimental results show that DM and 
DPN groups compared with healthy controls in 
patients with serum levels appeared significantly 
higher in ApoCI trends. This is consistent with 
previous findings, which may partially explain the 
developmental process of DPN. Advances in our 
understanding of the pathophysiology of PDN are 
providing potential new avenues for prevention and 
treatment targeted at neuronal transmission, fatty acid 
production, inflammation, antioxidants, the polyol 
pathway, protein kinase C, and others. Continuing research 
into the underlying pathophysiology of DPN will ultimately 
lead to more effective and better-tolerated therapies. 
Additional analysis of a larger set of individual samples in 
combination with more traditional immunoassays such as 
ELISA are required to further confirm whether high serum 
ApoCI levels increased odds ratios (ORs) of DPN in a 
nested case-control sample of type 2 diabetic 
individuals such as those observed in this study. 
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