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1. ABSTRACT 
 

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) 
are a group of essential fatty acids that serve as energy 
substrates and integral membrane components, and therefore 
play crucial roles in the maintenance of normal neurological 
function. Recent studies show that n-3 PUFAs display 
neuroprotective properties and exert beneficial effects on the 
cognitive function with aging. The brain’s need of n-3 
PUFAs is predominantly met by the blood delivery due to 
their limited synthesis in the brain. The present review 
focuses on the metabolism of n-3 PUFAs in the brain, 
including their accumulation and turnover. We also highlight 
the current understanding of the neuroprotective effects of n-
3 PUFAs against cerebral ischemia and neurodegenerative 
disorders, such as Alzheimer’s disease and Parkinson’s 
disease. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Polyunsaturated fatty acids (PUFAs) are series of 
fatty acids with more than one carbon-carbon double bonds. 
Based on the localization of the first double-carbon bond 
from the methyl end of the chains, polyunsaturated fatty 
acids are mainly divided into two classes, omega-3 (n-3) and 
omega-6 (n-6). The n-3 fatty acid family is comprised of 
alpha-linolenic acid (ALA, C18:3 n-3), eicosapentaenoic 
acid (EPA, C20:5 n-3), docosapentaenoic acid (DPA, C22:5 
n-3) and docosahexaenoic acid (DHA, C22:6 n-3); while the 
n-6 PUFA includes linoleic acid (LA, C18:2 n-6), 
arachidonic acid (AA, C20:4 n-6) and docosapentaenoic acid 
(DPA, C22:5 n-6). ALA and LA are the so-called “parent” 
fatty acids for the PUFAs because most tissues can produce 
other n-3 and n-6 PUFA from them. For example, 20-carbon 
PUFAs (EPA and AA) and 22-carbon PUFAs (DHA and 
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Figure 1. Biosynthesis of long chain unsaturated fatty acids from 18-carbon precursors in mammals. Most of tissue could 
construct 20-carbon unsaturated fatty acids (like EPA and AA) and 22-carbon unsaturated fatty acids (like DHA and DPA) from the 
corresponding 18-carbon fatty acids precursors by elongation and desaturation. This process mainly occurs in the endoplasmic 
reticulum, followed by the final oxidation in the peroxisome. Fat-1 transgenic mice carry an n-3 fatty acid desaturase gene from 
Caenorhabditis elegans, which can synthesis n-3 PUFAs from n-6 PUFAs to increase the concentration of n-3 PUFAs in tissues, 
including brain. 

 
DPA) can be generated from the ALA or LA by elongation 
and desaturation in the endoplasmic reticulum, followed by 
final beta-oxidation in the peroxisome (Figure 1). 
 
              Mammals do not have necessary desaturases to 
construct ALA and LA; therefore, PUFAs cannot be 
synthesized de novo in vertebrate tissue and have to be 
obtained from dietary sources. ALA and LA are therefore 
called essential fatty acids. Recently, a transgenic mouse 
expressing the Caenorhabditis elegant-derived fat-1 gene 
was developed to evaluate the health effect of n-3 PUFAs (1, 
2). The fat-1 gene, which is absent in mammals, encodes an 
n-3 fatty acid desaturase that is able to add a double bond 
into n-6 fatty acids at the n-3 position to subsequently 

produce n-3 fatty acids. Fat-1 transgenic mice exhibits 
elevated amount of n-3 fatty acids and higher n-3/n-6 ratio 
compared with the non-transgenic counterparts (2, 3). 
Among all the tissues, liver is the primary site for lipid 
metabolism and PUFA production from their dietary 
precursors. Adipose tissue is the major site for PUFA storage, 
which can be released to plasma in case of intake 
deficiency.   
 
3. METABOLISM OF N-3 PUFA IN THE BRAIN 
 
3.1. Accumulation of n-3 PUFAs in the brain 

The brain is one of the organs mostly enriched 
with long-chain PUFAs, especially DHA (4-6). Despite of 
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their PUFAs abundance, neurons and glias could not perform 
the desaturation of fatty acids, which are necessary for the 
synthesis of DHA and other PUFAs from their precursors (7). 
Instead, microvascular endothelial cells in the brain provide 
a substantial amount of elongation/desaturation products of 
18-carbon precursors to neurons. They predominantly 
produce and supply 20-carbon AA (n-6) and EPA (n-3) from 
their corresponding precursors; and astrocytes complete their 
subsequent conversion into 22-carbon DPA (n-6) and DHA 
(n-3), respectively. A recent publication demonstrated that 
hippocampal neurons may possess the capability to convert 
low amount of precursor PUFAs into DHA and AA; however 
the neuron-generated DHA or AA may not be representative 
of neuronal function in the brain (8). Therefore, astrocytes 
are the major provider of DHA in the brain although 
endothelium and neurons are involved in converting 
parental PUFAs into DHA. The released DHA and AA 
from astrocytes are rapidly taken up by neurons and 
incorporated into phospholipids on plasma membranes (7, 
9, 10). However, the rate of in situ DHA and AA 
conversion is very low in the brain due to the prompt 
beta-oxidation of ALA and LA upon their entry into brain, 
and they are not the major source of PUFAs (11-13).  
 

Ultimately, cerebral concentration of long-chain 
PUFAs depends on their dietary supply and peripheral 
synthesis in the liver from precursor essential fatty acids. 
Dietary restriction of n-3 PUFAs significantly increases 
the transcriptional activity of enzymes related to the 
elongation of ALA to DHA in the liver (4, 14, 15). 
Despite of the elevated synthesis in the liver, the DHA 
level in the liver is still apparently lower than that in the 
brain tissue, suggesting that the DHA synthesized in the 
liver is transported to the brain to maintain the cerebral 
DHA levels (15-17). Long-term deprivation of n-3 
PUFAs decreases DHA concentration in the brain, 
particularly in oligodendrocytes, myelin, synapsomes and 
astrocytes; however, the DHA level in neurons is only 
slightly affected, indicating the preferential neuronal 
supply of PUFAs. Chronic dietary DHA deficiency also 
decreases n-3 PUFAs level in the liver and plasma; these 
decreases in the liver and plasma can be corrected by 
DHA supplements in 2 weeks, while cerebral DHA 
doesn’t return to normal until 8 weeks later, suggesting a 
slower accumulation and recovery of DHA in the brain 
(18). Thus, although the cerebral DHA contents tend to be 
preferentially preserved during short-term deprivation of n-3 
PUFAs, long-term dietary deprivation will result in ultimate 
loss of DHA in the brain, which takes relatively longer time 
to recover after n-3 PUFA replenishment. 

 
               As the n-3 and n-6 families share the same 
elongation/desaturation enzymes for their synthesis, the 
deprivation of long-chain n-3 PUFAs will promote the 
production of n-6 PUFAs. Their metabolic cascades are 
altered reciprocally by the change of dietary long-chain 
PUFAs (19). Hence, the decrease of brain DHA (C22:6 n-3) 
could be compensated by the increase of DPA (C22:5 n-6), 
with the loss of a double bond at n-3 carbon (20, 21). 
Compared with n-6 DPA, the n-3 DHA is more flexible 
because of the additional double-carbon bond, and 
isomerizes with shorter fatty acids. The incorporation of 

DHA into neuronal membrane decreases the total cholesterol 
fraction, leading to the elevated membrane fluidity and the 
affinity of receptors in the synapse. Whereas the loss of n-3 
double in DPA can lead to a more even distribution of chain 
densities along the normal bilayers, which could influence 
the activity and/or the distribution of integral membrane 
proteins (22).  
 

Considering the dietary dependence of the brain on 
long-chain PUFAs, efficient brain uptake of plasma-derived 
PUFAs plays an essential role in the accumulation and 
maintenance of PUFAs level in the brain  (23). Astrocytes 
and endothelial cells, two major components of the blood-
brain barrier, only play a minor role in the production of 
DHA or AA, however, they may be important in the 
transport of PUFAs into the brain tissue. Based on the 
extensive studies on the uptake of PUFAs, two possible 
mechanisms have been proposed: 1) passive diffusion and 2) 
saturable transport processes. The transportation of PUFAs is 
mediated by lipid transportation proteins, such as FAT/CD36, 
caveolin-1, fatty acid binding proteins (FABPs) and fatty 
acid transportation proteins (FATPs). Once liberated from 
the albumin and circulating lipoproteins, the PUFAs 
accumulate on the luminal surface of the endothelial 
membrains, with the help of membrane bounding protein 
FAT/CD36 and FABPpm. Following protonization, PUFAs 
integrate into the external phospholipid bilayers as 
uncharged molecules, and subsequently translocate to the 
inner leaflet of the phospholipid bilayers by flip-flop. At the 
inner surface of endothelial membranes, a small portion of 
these fatty acids is delivered into the subcellular 
compartments for further metabolism, while most of the fatty 
acids may diffuse into the cytosol with or without the aid of 
FABPs or caveolin-1. Subsequently, these fatty acids repeat 
the flip-flop process and go through the abluminal 
membrane of endothelia with the aid of transportation 
proteins (Figure 2) (24, 25). Among the molecules involved 
in the PUFAs transportation, fatty acid transport-related 
proteins play an important role, although the mechanism 
remains unclear and deserves further studies.  

 
3.2. Turnover of n-3 PUFAs in the brain 

As a component of glycophospholipids, DHA 
mainly takes the sn-2 position, especially in 
phosphotidylserine (PS), phosphotidylethanolamine (PE) 
and phosphatidylcholine (PC); while AA is also incorporated 
into the sn-2 position, majorly in phosphatidylinositol (PI) 
and phosphoatidylcholine (PC). Different from DHA and AA, 
ALA, LA and EPA have lower incorporation rate into the 
phopholipids, and are prone to be oxidized in the brain (11, 
12, 26). Upon hydrolysis by selective phospholipidase A2 
(PLA2), DHA and AA are rapidly released from the 
glycophopholipids and subsequently take part in the 
downstream signaling transduction or lipid recycle through 
Land’s pathway. Most of the released fatty acids (about 97% 
of AA and 90% of DHA) will be reesterfied into 
phospholipids to maintain the stability of the membrane. The 
remainder (5%) will be beta-oxidized or catalyzed by 
cytosolic enzymes, including lipoxygenase, cyclooxygenase 
and cytochrome P450. These enzymatic reactions can 
produce eicosanoids, such as prostaglandins, leukotrienes, 
thromboxanes, resolvins, docosatrienes, lipoxin from AA 
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Figure 2. Uptake and turnover of PUFAs in brain. FABPpm, FAT/CD36 and FATP facilitate the liberation of free fatty acids from 
albumin, and the subsequent integration of these fatty acids into external phospholipids bilayers. Fatty acids then translocate from 
outer leaflet into inner leaflet of phospholipids bilayers by flip-flop. Most of fatty acids repeat the flip-flop process or take 
advantage of the transportation related proteins to go across the endothelial transluminal membranes. Some of them is combined 
with caveolin-1 or FABPc and delivered to endoplasmic reticulum for acylation, or to nucleus to regulate the cell signaling 
transduction. Membrane incorporated PUFAs is rapidly catalyzed by phospholipase A2 (PLA2) and released into cytosol on 
stimulations. Most of free long-chain fatty acids are recycled through Land’s pathway, whereas less than 5% of them undergo 
downstream metabolism to produce eicosanoids and/ or docosanoids.  

 
and protectins (neuroprotectins) from DHA (Figure 2). In 
response to inflammation, oxidative stress or ischemia, over-
activated PLA2 can release more DHA and AA, which 
subsequently disturb the stability of the membrane and 
enhance the production of downstream metabolites, 
including pro-inflammatory and anti-inflammtory factors. 

These factors can influence the fate of the cells.  
 
             PUFAs are essential in the central nervous system, 
particularly in neuronal cells, either as precursors for the 
synthesis of membrane lipids or as anti-oxidation mediators 
maintaining cellular homeostasis (27). In addition, PUFAs 
can influence the functions of membranes, enzymes, 
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receptors, ion channels and synapses (28-30). Also, it can 
regulate gene expressions via nuclear transcription factors, 
such as peroxisome proliferator-activated receptor 
(PPAR), retinoid X receptor (RXR) and nuclear factor kappa 
B (NF-kappaB) (31-33). Considering the significance of 
PUFAs in central nervous system, we will mainly focus on 
their roles in several neurological diseases in the following 
part.  
 
4. N-3 PUFA IN CEREBRAL ISCHEMIA 
 

Previous MRI study showed that modest 
consumption of fish with higher EPA and DHA content was 
associated with lower prevalence of subclinical infarcts and 
white matter abnormities (34). Recent studies confirmed the 
beneficial effect of n-3 PUFAs in the focal cerebral ischemia 
model with improved neurological and histological 
outcomes (35-37). As a major n-3 PUFAs in the body, DHA 
is predominantly esterified at the sn-2 position of membrane 
phospholipids. Various stimulations can trigger the rapid 
release of DHA from the plasma membrane as discussed 
above. In the following session, we will specify the 
biological function of DHA and its metabolites in stroke. 
 
             Cerebral ischemia-reperfusion triggers the activation 
of PLA2, leading to the disruption of cellular membrane 
stability and enhanced production of free long-chain PUFAs. 
The polyunsaturated diacyl molecular species, which can be 
degraded into PC and PE, are more rapidly degraded than 
other saturated and monounsaturated molecular species in 
the early phase of ischemia. In addition, PE, which is rich in 
AA, is degraded more rapidly than PC (38). Consequently, 
catabolism of phospholipids induced by transient cerebral 
ischemia results in marked biphasic accumulation of free 
fatty acids (FFA) in the brain. As in the permanent cerebral 
ischemia, AA is the main free fatty acid in the first phase 
accumulation, which began at 30 minutes and reached a peak 
at 1 hour; while DHA is the major free fatty acid in he 
second phase, which occurred at 24 hours following injury 
(39, 40). The acute breakdown of phospholipids results in 
the instability of plasma membrane. 
 
              In addition to the activation of PLA2, cerebral 
ischemia also induces the massive calcium influx and 
degradation of lysosomes, which can lead to the profound 
perturbation of biomembranes. The elevated intracellular 
calcium further activates the Ca2+-dependent enzymes, 
including cPLA2. This enzyme subsequently translocates 
from the cytosol into the nuclear, endoplasmic reticulum, 
and plasma membranes. Once being phosphorylated, cPLA2 
calcium-dependently moves to its membrane binding sites. 
Subsequently, PLA2 releases corresponding PUFAs from 
membranes, resulting in membrane degradation and 
accumulation of unesterified FFA and lysophospholipids in 
cytosol. It has been shown that Na(+)/Ca(2+) exchange 
inhibitors block the activation of PLA2 and sustain the 
stability of cell membranes, resulting in significant reduction 
of DHA and AA in the brain after ischemia-reperfusion 
injury (41).  
 
             Due to its rapid breakdown, FFA is greatly needed to 
preserve the bioactivity and stability of plasma membrane. 

Albumin administration leads to an increased level of 
systemic circulation FFA, which can leave the plasma as the 
blood crosses the brain and incorporates into the membrane 
phospholipids (42). This finding suggests that albumin 
treatment may contribute to the functional recovery by the 
mechanism of the replenishment of PUFA loss after cerebral 
ischemic insult (43). Sufficient membrane DHA exerts 
neuroprotective effect, at least in part, by preserving the 
membrane stability after ischemia, which is supported by the 
findings that inhibition of Ca2+-independent PLA2 protects 
against neurodegeneration, whereas inhibition of 
prostaglandin production is ineffective (44).  
 
             The addition of DHA increases the concentration of 
phosphatidylserine (PS) on the membrane, which facilitates the 
activation of PI3-K/Akt pathway to protect neurons against 
staurosporine-induced apoptosis (45, 46). Similarly, EPA, 
precursor of DHA, was also demonstrated to confer 
neuroprotective effect via increasing the phosphorylation of Akt 
and suppressing the activity of caspase-3 (47). This result is 
confirmed by our research on neuroprotection of PUFA in 
neonatal hypoxic-ischemic brain damage.  Sufficient supply of 
n-3 PUFAs is critical to maintain the fluidity of biomembranes 
to protect neurons against ischemic-like injury (fig3). Physically, 
FFA is uptake from the cerebral blood flow, and subsequently 
esterified and incorporated into the cell membrane. This process, 
which is probably more active in the collaterally perfused 
cortical region than in the core of the ischemic insult, contributes 
to the restoration of the membrane phospholipids loss after 
ischemic brain damage (39). 
 
             Inflammatory response after ischemic injury contributes 
to neuronal damage. PUFAs are able to influence immune 
system and modulate inflammatory responses. Interestingly, 
opposite actions of n-3 PUFAs and n-6 PUFAs on inflammation 
have been reported, with n-3 PUFAs being anti-inflammatory 
(48) and n-6 PUFAs being pro-inflammatory (49). Due to the 
activation of PLA2, the excessive production of AA results in 
the accumulation of n-6 PUFAs-derived prostaglandins, 
leukotrienes, and thromboxanes, which contribute to the 
inflammatory response after cerebral ischemia. In contrast, n-3 
PUFAs exert fundamental role on inhibition or modulation of 
eicosanoid pathways, which lead to alteration of inflammatory 
responses. The beneficial impact of n-3 PUFAs has been shown 
in many human inflammatory related diseases, such as 
inflammatory bowel disease (50), rheumatoid arthritis (51), 
cardiovascular disease (52, 53) and stroke (54). DHA inhibits 
the activation of LPS-induced nuclear factor kappa B (NF-
kappaB) and attenuates the synthesis of proinflammatory 
cytokines, such as IL-1beta and TNF-alpha in microglia (55). 
Our research further confirmed the anti-inflammatory functions 
of PUFAs in neonatal hypoxic-ischemic brain injury (31). This 
anti-inflammatory effect of DHA is, at least partially, related to 
the DHA integration into the injured membrane of microglia to 
affect the presentation of CD14 and toll-like receptor-4, and 
effectively inhibit the production of cytokines (56).  
 
             As one of the target of oxidative injury, DHA is prone to 
be oxidized under oxidative stress conditions in the cell. 
However, pre-administration of DHA promotes its anti-
oxidative effects, demonstrated by decreased malondialdehyde
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Figure 3. The role of n-3 PUFAs in cerebral ischemia. Membrane enriched n-3 PUFAs preserves the activation of PI3-K to 
promote the phosphporylation of PIP2 and the production of PIP3 on the inner membrane. PIP3 facilitates the phosphorylation of 
PDK1 and its downstream target protein Akt. Activated Akt prohibits the activation of apoptosis related proteins, such as caspase-3 
and caspase-9 as well as the nuclear translocation of transcription factor NF-kappaB. It also enhances the phosphorylation of GSK-
3β (inactivation of GSK-3beta), which eventually inhibits the expression of pro-inflammatory mediators. Meanwhile, cerebral 
ischemia-induced overload of calcium stimulates the activation of PLA2, which catalyze PUFAs from sn-2 position of 
phospholipids. Free docosahexnoic acid (DHA) and arachidonic acid (AA) produce resolvin D1, neuroprotectin D1 (NPD1) and 
prostaglandins (PGs), leukotrienes (LTs), thromboxane A2, respectively. AA-derived metabolites lead to the inflammatory reaction 
through upregulating the production of inflammatory factors. However, metabolites from DHA suppress the inflammation and 
oxidative stress induced by cerebral ischemia. DHA could also promote the expression of anti-apoptotic Bcl-2 family proteins Bcl-
2 and Bcl-xl, and suppress the expression of pro-apoptotic Bax and Bad to inhibit neuronal apoptosis. 
 
 (MDA) production, increased superoxide dismutase activity 
and glutathione level compared with DHA post-treatment 
(55). DHA is initially converted to 17S-hydroperoxy-DHA 
(HpDHA), then further enzymatically converted to resolvin 
D1 (RvD1) and protectin D1 (10,17S-docosatriene, 
NPD1/PD1) (57-59). Reslovin (resolution-phase interaction 
product) is first introduced to signify the new endogenous 
mediators that have potent anti-inflammatory and 
immunomodulatory activities (60). RvD1 is able to block 
TNF-alpha-induced IL-1beta transcription in microglia, and 
to limit PMN infiltration in animal models. Another resolvin, 
RvE1, derived from EPA, displays potent counter-regulatory 
actions that protect against leukocyte-mediated tissue injury 
and excessive pro-inflammatory gene expression in several 
animal models of inflammatory diseases (61, 62). Resolvins 
are generated in the ischemic cerebral tissue (63), but the 
studies on its role in cerebral ischemia are still at the early 
stage of research. 

             NPD1, another DHA-derived peroxidation product, is 
extensively studied in ischemic brain damage in the past 
decades. NPD1 attenuates oxidative-stress-induced apoptosis 
and DNA fragmentation in vitro by stimulating anti-apoptotic 
Bcl-2 protein expression (58). In experimental stroke, 
endogenous NPD1 synthesis is found to be upregulated, which 
coincides with the release of DHA from the membrane. Extra 
supply of DHA enhances the accumulation of NPD1 in the 
ipsilateral hemisphere (42, 64). DHA perfusion promotes 
neuroprotection through inhibiting leukocyte infiltration, NF-
kappaB activation, and cyclooxygenase-2 induction in 
experimental stroke, which may be related to the elevated 
production of NPD1 (64). NPD1 can directly suppress the IL-
1beta-stimulated expression of COX-2, and upregulate the anti-
apoptotic Bcl-2 family proteins, such as Bcl-2 and Bcl-xl. It also 
suppresses the expression of pro-apoptotic Bax and Bad (Figure 
3) (58). Overall, the production of NPD1 attributes to the DHA-
mediated neuroprotection in cerebral ischemia. 
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             Released free DHA can bind fatty acid binding 
proteins (FABP) in the cytosol and avoid oxidation. This 
binding also facilitates the translocation of DHA from the 
cytosol into the nucleus and regulates signal transduction 
and protein expression of the cell (65). PUFAs and their 
oxidation derivatives have already been recognized as 
ligands of several nuclear transcription factors, such as 
PPAR-gamma and RXR-alpha. There are plenty of evidences 
suggest that n-3 PUFAs regulate the expression of proteins, 
including inflammatory factors in a PPAR-dependent way 
(32, 33). Until now, four PPAR isoforms have been reported: 
alpha, beta, delta and gamma, each have different functions 
and complicated interrelations. In cardiomyocytes, dietary 
supplementation of n-3 PUFAs leads to its accumulation in 
the nucleus, which further promotes the expression of PPAR 
and enhances the binding of PPAR-beta/delta to DNA (66, 
67). Similarly, n-3 PUFAs stimulate the transcriptional 
activity of PPAR-alpha, PPAR-gamma and RXR-alpha, as 
well as suppress the expression of inflammatory genes of 
diverse functions (68). Nevertheless, the activation of PPAR 
exerts different physiological functions depending on cell 
types. For example, n-3 PUFAs activates PPAR-gamma to 
abrogate the neovescularization and retinal angiogenic 
activation in proliferative retinopathy (69), whereas the 
selective stimulation of PPAR-alpha and PPAR-gamma 
promotes the angiogenesis in a VEGF-dependent mechanism 
in type 2 diabetes (70). In central nervous system, previous 
researches have demonstrated that the activation of PPAR-
gamma confers functional neuroprotection against ischemia-
induced brain injury via inhibiting excessive production of 
inflammatory mediators and suppressing over-activation of 
oxidative stress pathways (71, 72). Specific ablation of 
PPAR-gamma in neurons increases their susceptibility to 
ischemic injuries (73). Whether the neuroprotective effect of 
PUFAs against cerebral ischemia could be ascribed to its 
activation of nuclear receptor PPARs is under further 
investigation.  
 
5. N-3 PUFA IN NEURODEGENERATIVE DISEASES 
 
5.1. n-3 PUFAs in Alzheimer's disease 

Alzheimer's disease (AD) is characterized with 
the formation of senile plaques (SPs). SPs in AD brains are 
predominantly composed of the beta-amyloid protein (Abeta) 
and neurofibrillary tangles (NFT) (74). The level of SPs 
correlates with the degree of neuronal damage, cognitive 
impairment and memory loss in AD patients. In western 
countries, around 10% of people older than 65 years old 
suffer from AD, and this number is still increasing with 
general aging of the population. Although the cause and 
progression of AD are not well understood so far, 
epidemiological studies have shown that low serum levels of 
DHA and dietary intake of n-6 PUFAs-rich foods are 
associated with increased risk of dementia and AD (75-78), 
while routine consumption of fish may reduce the risk of AD 
(79-81). The critical role of n-3 PUFAs was further 
supported by the decreased DHA concentration in AD 
patients compared with age-matched healthy control (82), 
and the increased formation of oxidative product F4-
isoprostanes, which is caused by the deficiency of DHA in 
brain (83). Lipid analysis revealed that aging has no effect 
on the fatty acid compositions, while the pronounced 

decrease of phosphatidylethanolamine (PE)-derived and 
phosphatidylinositol (PI)-derived PUFAs is detected in the 
hippocampus of AD subjects, suggesting that the relative 
abundance of certain fatty acids may involve in AD (84, 85). 
 
             Abeta is derived from proteolysis of the beta-
amyloid precursor proteins (APP) by the beta- and gamma-
secretases. The excessive production of hydrophobic Abeta1-
40 and Abeta1-42 enhances the formation of amyloid 
plaques, leading to the progression of AD (86). DHA 
suppresses the amyloidgenic pathway, leading to reduced 
extracellular and intracellular Abeta levels and concomitant 
increase of membrane full-length APP to counteract the 
amyloid burden (87, 88). However, another research on 
3xTg-AD animals indicates that DHA had no effect on 
alpha- or beta-amyloid precursor protein processing. The 
reduced production of soluble Abeta is more correlated with 
decreased stability of presenilin1 (PS1) in DHA treated 
transgenic mice (89).  
 
            Amyloidogenic APP processing primarily takes place 
in the lipid rafts of the synaptic membrane where the key 
proteins in Abeta formation are also localized (90). 
Cholesterol, one of major component of lipid raft, may 
contribute to the pathogenesis of AD by suppressing the 
production of Abeta and regulating the intracellular signal 
transduction (91-94). Previous researches show that reduced 
cholesterol promotes the nonamyloidogenic alpha-secretase 
pathway to produce neuroprotective soluble APP (95). 
Cholesterol depletion disrupted APP, beta-secretase and PS1 
compartmentalization within lipid rafts, resulting in the 
decrease of Abeta (92, 93, 96). Aberrant low level of n-3 
PUFAs in lipid rafts of AD brain suggests the importance of 
n-3 PUFAs in modulating lipid rafts (97, 98). DHA results in 
the decreased affinity of cholesterol for phospholipid and in 
turn facilitates its transfer from cholesterol-rich regions 
(such as the plasma membrane) to cholesterol-poor regions 
(such as the endoplasmic reticulum) (99). Finally, DHA 
reduces cholesterol concentration in the detergent-insoluble 
membrane fractions and downregulates the proteolytic 
processing of APP (100), indicating a potential role of DHA 
in the decreased production of Abeta (88, 101). Lipid rafts 
also facilitate the deposition of neurotoxic Abeta (102), 
which could also be attenuated by DHA through the 
downregulation of cholesterol on plasma membrane (103). 
In the case of n-6 PUFAs, AA is adopted to produce DPA 
and compensate the deficiency of DHA (104). The loss of a 
single double bond in DPA results in decreased flexibility of 
membrane and more ordered packing of hydrocarbon chains. 
This change of bilayer properties may alter the lateral 
movement of detergent-insoluble lipid rafts. It also affects 
activities of proteins as well as ion channels (22) (Figure 4).  
 
            Preformed Abeta monomer rapidly aggregated to 
form multimeric complex from low molecular weight 
dimmers, trimers to protofibrils and fibrils (105, 106). 
Abeta1-40 is the major Abeta found in the cerebrospinal 
fluid of AD patients, while Abeta1-42 is the minor 
component (107, 108). However, Abeta1-42 are the major 
components of senile plaques, more hydrophobic and more 
toxic than Abeta1-40. Abeta1-42 is more copious than 
Abeta1-40 in AD brains (109). The fibrillation kinetics of 
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Figure 4. The role of n-3 PUFAs in Alzheimer’s disease. DHA modulates the metabolism of APP by suppressing the 
amyloidgenic pathway and promoting non-amyloidgenic pathway, which is represented by the reduced extracellular and 
intracellular Abeta levels. DHA counteracts the high cholesterol-induced accumulation of Abeta by promoting the 
nonamyloidogenic α-secretase pathway and interrupting the deposition of formed Abeta. Two major tau kinases, GSK-3beta and 
JNK can be induced by Abeta and facilitate the phosphorylation of tau. JNK also leads to the phosphorylation of insulin receptor 
substrate-1 (IRS-1), which transmits insulin/insulin receptor-mediated intracellular signals by interacting with downstream SH2 
domain-containing molecules, triggering the phosphorylation of tau and promoting the formation of neurofibrillary tangels. DHA 
suppresses Abeta and AA-induced phosphorylation of tau via enhancing the activation of PI3-K/Akt pathway. DHA, together with 
one of its metabolite NPD1, also represents anti-inflammatory, anti-oxidation and anti-apoptosis effects in Alzheimer’s disease. 
Furthermore, DHA preserves the deficit of ACh synthesis and the loss of cholinergic neurons in AD brain with unclear mechanism. 
 
Abeta1-42 is also higher than Abeta1-40, indicating the 
critical role of Abeta1-42 in the progression of AD (110). 
DHA administration inhibited fibrillation of both Abeta1-40 
and Abeta1-42 by suppressing oligomerization and 
subsequent elongation into mature fibrils, and counteracted 
the neuronal toxicity of Abeta (103, 111).  
 
            Another AD pathological feature is the intracellular 
neurofibrillary tangle, resulted from the aggregation of 
hyperphosphorylated tau. Although the underlying 
mechanism of tau phosphorylation is not fully understood, 
evidence shows that Abeta may play a role in the enhanced 
phosphorylation of tau (112). Two major tau kinases, GSK-
3beta and JNK, could be activated by Abeta (113, 114).  JNK 
activation results in the phosphorylation of insulin receptor 
substrate-1 (IRS-1), which relays insulin/insulin receptor-
mediated intracelluar signals by interacting with downstream 
SH2 domain-containing molecules (115-117). Elevated 
phospho-IRS-1 was accompanied by the rapid degradation of 

IRS-1 and IRS-2, downregulation of insulin signaling, and 
the formation of neurofibrillary tangles in AD brains (118-
121). On the other hand, the activation of JNK induces age-
dependent amyloid deposition and loss of synaptophysin 
following tau phosphorylation in transgenic AD mouse 
models (122). Saturated fatty acids and n-6 PUFAs enhance 
the activation of JNK and the phosphorylation of IRS-1 and 
tau in 3xTg-AD transgenic mice. In contrast, n-3 PUFAs 
counteracts the activation of JNK and the related 
phosphorylation, and preserves the expression of IRS-1, 
which may contribute to the reduced phosphorylation and 
fragmentation of tau (89, 113, 114).  
 
            IRS-1 can phosphorylate phosphatidylinositol-3 
kinase (PI3-K) on its p85 regulatory subunit, which 
subsequently activates the glucose transport and Akt, help to 
preserve the membrane integrity and cell viability (123-125). 
Glycogen synthase kinase-3beta (GSK-3beta) is a substrate 
of PI3-K/Akt. It is also identified as a brain microtubule-
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associated tau kinase, whose activation leads to the 
phosphorylation of tau and the disruption of microtubule 
(126-129). GSK-3beta is implicated in APP processing and 
Abeta production; it is also associated with learning and 
memory functions (130, 131). Abeta-mediated neurotoxicity 
can be alleviated through the inhibition of GSK-3beta (132). 
Additionally, exposure of neurons to Abeta results in the 
inactivation of PI3-K and subsequent enhancement of GSK-
3beta activity, supporting a potential role of GSK-3beta in 
Abeta-induced phosphorylation of tau (133). DHA depletion 
causes AD-like increase of caspase activity and 
downregulation of PI3-K-mediated insulin signaling (134, 
135). DHA and EPA suppress the neurotrophic factor 
withdrawal-induced cell death and reversed the synaptic 
dysfunctions by enhancing the activation of PI3-K/Akt 
pathway (46, 47). Thus, it is not surprising that DHA 
administration inhibits the activation of GSK-3beta. Taken 
together, n-3 PUFAs not only suppresses the activation of 
JNK, but also facilitates the activation of PI3-K/Akt and 
subsequently inhibits the GSK-3beta activity, which 
ultimately limits the phosphorylation of tau in AD (fig4). 
 
             Following the deposition of senile plaques and 
neurofibrillary tangles, additional structural change and 
functional alterations ensue, such as synaptic dysfunction, 
inflammatory responses and oxidative stress (106). Synaptic 
function, particularly of the cholinergic system, is severely 
affected in the brains of AD patients (136, 137). Cholinergic 
neurons provide the major source of cholinergic innervations 
to the cerebral cortex, hippocampus, and amygdala, all of 
which are closely related to the memory. Dramatic loss of 
acetylcholine (ACh) due to the reduced chonline 
acetyltransferase (ChAT) was found in the cortex of AD 
brains (138). Abeta peptide (1-40) and tau-containing 
neurofibrillary tangles are both involved in the cholinergic 
neocortical pathway, which may enhance significant 
degeneration of cholinergic system. Among subcellular 
fractions of the brain, synaptosomal membranes, synaptic 
vesicles and growth cones contain the highest levels of DHA, 
suggesting its essential role in synaptic functions (17). 
Deficiency of n-3 PUFAs leads to impaired cholinergic 
neurotransmission in the brain, particularly in the 
hippocampus (139). DHA pre-administration preserves the 
activity of ChAT and prevents degeneration of cholinergic 
system challenged by beta-amyloid protein infusion, which 
eventually protects the brain against the loss of synapses 
(140, 141). ChAT is expressed in cortical neurons that are 
insulin and IGF-1 receptor-positive. However, their 
colocalization is reduced in the AD model, suggesting the 
possible relationship between insulin signaling pathway and 
the activity of acetyltransferase in the pathological progress 
of AD. As previously illustrated, DHA had regulatory effect 
on the activation of IGF-1 receptor; and ChAT expression 
was increased with the stimulation of insulin or IGF-1. 
However, whether DHA contributes to the preservation of 
ChAT activity through the insulin pathway is still unknown. 
 
             Increased production of reactive oxygen species, 
together with their following attack to DHA and other 
PUFAs, contributes to the pathophysiology of 
neurodegenerative diseases. Brain damage induced by 
oxidative stress is exacerbated by the decrease of DHA, one 

of the prime lipid peroxidation targets. The oxidation-
induced loss of DHA is further confirmed by the 
concomitantly accumulated peroxidation products in AD 
patients (83, 142, 143). The antioxidative effect of DHA has 
been demonstrated in Abeta-infused rats. The production of 
lipid peroxide and reactive oxygen species was suppressed in 
the cerebral cortex and hippocampus, which may contribute 
to improve spatial cognition learning ability of the Abeta-
infused rats (144).  
 
             Membrane DHA is liberated by a highly regulated 
PLA2 and is subsequently converted into 10, 17S-
docosatriene (Neuroprotectin D1) via a 15-lipoxygenase-like 
(15-LOX-like) enzyme. The sAPP (soluble APP), one of a 
neurotrophic peptide, strongly promotes the biosynthesis of 
NPD1, which further upregulates the expression of 
neuroprotective members of the Bcl-2 gene family, including 
Bcl-2, Bcl-xl and Bfl-1. NPD1 downregulates the expression 
of proapoptotic proteins like Bax and Bid (145, 146). In 
addition to its anti-apoptosis effect, nanomolar quantities of 
NPD1 have been shown as a potent inhibitor of pro-
inflammatory gene expression and as a repressor of COX-2, 
IL-1beta (147, 148). In AD brains, unesterified DHA, as well 
as its downstream product NPD1, is significantly decreased, 
partially resulting from the abnormal expression of PLA2 
and/or 15-LOX enzymes (145). AD patients treated with 
DHA enriched n-3 PUFAs supplementation were reported to 
have increased plasma concentrations of DHA (and EPA), 
which were associated with reduced release of IL-1beta, IL-6 
and granulocyte colony-stimulating factor from PBMCs 
(147).  
 
              EPA, another important n-3 PUFAs, tend to be 
oxidized once absorbed (26). Despite of its trace amount in 
the brain, EPA is able to abolish the IL-1beta-stimulated 
production of IL-6, partially via interacting with PPAR-
gamma, showing its anti-inflammatory effect (149). EPA 
helps to preserve the acetylcholine (Ach) release and the 
expression of NGF, which can alleviate the memory deficits 
induced by IL-1beta (150). Dietary pre-administration of 
EPA could ameliorate the impairment of spatial cognitive 
learning ability induced by intracerebroventricular injection 
of Abeta, possibly by modulating the synaptic plasticity and 
facilitating the activation of PI3-K/Akt pathway (Figure 4). 
Taken together, n-3 PUFAs preserve the synaptic and 
neuronal functions and slow down the progress of 
neurodegeneration in AD via multiple mechanisms, 
including reducing the production and extracellular 
aggregation of amyloid peptide plaques, inhibiting 
hyperphosphorylation of tau protein, normalizing the activity 
of choline acetyltransferase, as well as inhibiting cell death 
process induced by oxidative stress and inflammation (151).  
 
5.2. n-3 PUFAs in Parkinson's disease 

Parkinson's disease (PD) is a common 
neurodegenerative disease characterized by bradykinesia, 
rigidity, resting tremor and postural instability. It is 
pathologically featured by cell loss or dysfunction of 
dopaminergic neurons in the substantia nigra pars compacta 
(152). The neuropathologic hallmark of PD is the neuronal 
aggregation of Lewy bodies composed mostly of alpha-
synuclein and ubiquitin. Several recent observations reported 
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an association of high dietary consumption of saturated fatty 
acids, cholesterol and low intake of unsaturated fatty acids 
with high risk of PD (153-155). However, the literature 
regarding both n-3 PUFAs intake and PD risk is very limited. 
Some preclinical research provided evidence that DHA 
administration showed neuroprotective effects in animal 
models of PD (156, 157). However, other research 
emphasized the detrimental effect that DHA enhances 6-
OHDA-induced dopamine reduction in the mouse striatum, 
causing increased susceptibility to peroxidation (158). 
Furthermore, elevated DHA was observed in brain areas 
containing α-synuclein inclusions in PD and DLB (dementia 
with Lewy bodies) patients (159). It was also detected in the 
cerebral cortex prior to alpha-synuclein deposition in 
incidental Lewy body disease (160). The controversial 
reports imply the complicated roles of n-3 PUFAs in the 
pathogenisis of PD. For example, oxidative stress, evidenced 
by increased lipid hydroperoxides, is a major contributory 
factor in the pathogenesis of PD (161-163). Enrichment of 
PUFAs in the brain may contribute to the formation of the 
neurotoxic peroxidation products and thus be detrimental to 
the PD brain. On the other hand, the deficiency of DHA 
results in the instability of membrane, causing impaired 
related biological functions of the membrane, which, 
apparently, would also be harmful to the PD brain.  
 
             As a major component of Lewy bodies, alpha-
synuclein is predominantly expressed at presynaptic nerve 
terminals (164). It was suggested to be involved in synaptic 
plasticity and regulation of dopamine neurotransmission and 
act as a chaperone (165-167). Recently, PUFAs were found 
to interact with alpha-synuclein, promoting the formation of 
highly soluble oligomers. This precedes the formation of 
insoluble aggregates that are associated with 
neurodegeneration (159, 168). Researches on DHA further 
indicated that it rapidly triggers the α-helical conformation in 
both recombinant and native alpha-synuclein. Also, 
prolonged DHA exposure resulted in the assembly of alpha-
synuclein into amyloid-like fibrils (169). However, with the 
current knowledge on the interaction of PUFAs with alpha-
synuclein, it is hard to come to a conclusion how PUFAs 
regulate the pathogensis of PD. 
 
              Latest researches reported that lipid hypoperoxides, 
the primary peroxidative products, could react with 
dopamine and subsequently synthesize dopamine adducts, 
including succinyl dopamine (SUD), propanoyl dopamine 
(PRD), hexanoyl dopamine (HED) and glutaroyl dopamine 
(GLD). These dopamine adducts are derived from DHA and 
AA, respectively. Among them, HED, one of the AA-derived 
dopamine adduct, significantly induces a monoamine 
transporter-mediated ROS generation and apoptosis in the 
SH-SY5Y cells (170). The formation of dopamine adducts 
could not only contribute to the dopamine deficiency, but 
also exacerbate the oxidative stress in PD. Until now, little is 
known about the role of less toxic n-3 PUFAs-derived 
dopamine adducts in the brain. However, n-3 PUFAs 
supplementation is likely beneficial in PD by potentially 
counteracting the activity of AA and suppressing the 
production of AA-derived dopamine adduct (171).  
 
               In summary, research spanning decades supports 

the argument that n-3 PUFAs display multiple benefits in 
the prevention and treatment of cerebral ischemia and 
neurodegenerative diseases. The intriguing results should 
serve to spur much needed research on its neuroprotective 
mechanisms, which may, in turn, open new avenues for the 
therapeutic application of n-3 PUFAs. 
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