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1. ABSTRACT 
 

Microparticles (MPs) are submicron vesicles 
released from stimulated or apoptotic cells after plasma 
membrane remodeling. In body fluids, they constitute 
relevant hallmarks of cell damage. Having long been 
considered inert debris reflecting cellular activation or 
damage, MPs are now considered as cellular effectors 
involved in cell–cell crosstalk. This review focuses on the 
pathophysiologic significance of MPs in the particular 
setting of solid graft and cellular transplantation. 
 
2. INTRODUCTION 
 

In the vessel microparticles (MPs), also referred 
to as microvesicles, are submicron fragments shed from the 
plasma membrane of stimulated or apoptotic cells (1-3). 
MPs constitute relevant hallmarks of cellular activation or 
damage (4). They also act as transcellular effectors in 
hemostasis, thrombosis, atherosclerosis, arterial wall 
vasomotricity, vascular remodeling, inflammation, cellular 
adhesion and angiogenesis (2, 5-10). MPs of various 
cellular origin (platelets, leukocytes, endothelial cells) are 
detectable in small amounts in the plasma of healthy ubjects 
that may increase in various pathophysiologic circumstances 
such as the evidence of cardiovascular risk factors (diabetes, 

 
 
 
 
 
 

 

hypertension, hyperglycemia), cardiovascular diseases (acute 
coronary syndrome, pulmonary embolism, pulmonary arterial 
hypertension, heart failure), stroke, kidney failure, 
hemodyalisis, cirrhosis, and cancer among the most 
investigated (Table 1).  

 
During the last sixty years, developments of 

allogeneic transplantation techniques and 
immunosuppressive therapies have improved survival of 
patients with severe organ failure generally associated with 
apoptosis and cell activation. Nowadays kidney, heart, 
liver, pulmonary, pancreatic islet, bone marrow and stem 
cells transplants are grafted and the vessel remains a central 
element connecting donor and host tissues. The monitoring 
of transplanted patients relies on the clinical and biological 
follow-up, and on biopsies to confirm complication and 
graft rejection. An earlier detection of graft rejection is one 
of the crucial goal for efficient patients’ caring and 
immunosupressive therapy management.  

 
The present review focuses on the 

pathophysiologic significance of MPs in solid graft and 
cellular transplantation. The incidence of 
immunosupressive therapy on MP level is discussed.



Microparticles in transplantation 

2500 

Table 1. Diseases presenting enhanced microparticle levels 
Diseases MP cellular origin  References 
Kidney diseases Chronic renal failure Endothelium, Platelets, Erythrocytes, Leukocytes, Granulocytes (72, 73, 76) 
 Hemodialysis Platelets, neutrophils (74, 75) 
Cardiovascular diseases Heart failure Platelets, Endothelium (90-92) 
 Acute coronary syndrome Platelets, Endothelium, Monocytes (129, 142-144) 
 Acute cardiac rejection Endothelium, Leukocytes (100) 
 Peripheral artery occlusive disease Platelets (145) 
 Stroke, dementia Platelets (146) 
 Pulmonary embolism Platelets (147) 
 Pulmonary artery hypertension Endothelium,  

Tissue factor bearing MPs 
(148-150) 

Cardiovascular risk factors Arterial Hypertension  Endothelium, Platelets, Monocytes (126, 136, 151) 
 Type 1 Diabetes mellitus Platelets, Endothelium (152) 
 Type 2 Diabetes mellitus Platelets, Leucocytes (153, 154) 
 Hyperlipidemia Monocytes (155) 
Liver diseases Hepatitis & alcoholic cirrhosis Platelets, Endothelium (101-103) 
Hematological diseases Sickle cell disease Endothelium, Monocytes (156, 157) 
Immunological  diseases Paroxysmal nocturnal hemoglobinuria Platelets (158, 159) 
 Antiphospholipid syndrome Platelets, Monocytes, Endothelium (160, 161) 
 Lupus anticoagulant Endothelium (160, 161) 
 Vasculitis Endothelium, Platelets (162) 
 Thrombotic thrombocytopenic purpura Platelets, Endothelium (163, 164) 
 Heparin induced thrombopenia Platelets (165) 
 Eptifibatide induced thrombopenia Platelets (133) 
 Multiple sclerosis Endothelium (166) 
Infectious diseases AIDS Lymphocytes (4) 
 Ebola Tissue factor bearing MPs (167) 
 Miningococcal sepsis Platelets, Granulocytes (48) 
Inflammatory diseases Crohn’s disease  Platelets, Leucocytes, Endothelium (168) 
Cancer Lung cancer Monocytes (169) 
 Gastric cancer Platelets (170) 

3. BIOGENESIS AND BIOLOGY OF 
MICROPARTICLES 

 
3.1. Microparticle generation 

Knowledge of the general molecular mechanisms 
leading to the MP release from the budding plasma 
membrane mainly comes from in vitro studies on platelets 
(3, 4, 11, 12) (Figure 1). MP shedding is the ultimate 
consequence of the membrane remodeling initiated by cell 
stimulation. Membrane response to stress is characterized 
by phosphatidylserine (PhtdSer) translocation from the 
inner to the outer leaflet under the control of specific 
transporters termed floppase and flippase that are believed 
to govern the aminophospholipid distribution across the 
bilayer (13-15). Calcium influx is another feature of cell 
activation or apoptosis enabling the cleavage of the 
cytoskeleton by calcium-dependent proteolysis. 
Cytoskeleton cleavage and reorganization, the latter being 
nder the dependence of ROCK-I, a Rho-kinase acting by 
myosine light chain phosphorylation that induces cell 
membrane contraction, promote membrane blebbing and 
MP release into the extracellular fluid (Figure 1) (16, 17).  
 
3.2. Composition of microparticles and functionnal 
characteristics  

MPs bear or contain functional membrane 
glycoproteins (selectins, adhesion molecules, CDs…), 
bioactive phospholipids, cytoplasmic components (caspase-

3, DNA, RNA, …), and various antigens characteristic of 
the cells they are derived from (Figure 1). MP protein 
composition may also vary with the cell type and applied 
stimulus (apoptosis or stimulation) (3, 4, 18-20). When 
harboring appropriate membrane ligands, MPs can behave 
as vectors of transcellular exchanges of biological 
information or of procoagulant potential, addressing their 
“ message “ to target cells expressing the corresponding 
counter-receptors (12).  

 
MPs are considered procoagulant, because they 

constitute an additional procoagulant phospholipid surface 
for the assembly of the clotting enzyme complexes 
promoting thrombin generation. Indeed membrane 
remodeling and MP shedding in plasma provide accessible 
PhtdSer, a procoagulant anionic aminophospholipid (21). 
This ubiquitous MP property is reinforced when cells 
express tissue factor (TF), the major cellular initiator of 
coagulation, up-regulated in stimulated monocytes and 
endothelial cell (22). The detection of proteins inhibiting 
coagulation that are either harbored or present in MP 
membrane such as tissue factor pathway inhibitor, protein 
C or thrombomodulin has raised the question of an eventual 
MP contribution to anticoagulant pathways, (23-26). 
Furthermore, anionic phospholipids promote the assembly 
of the protein C anticoagulant complexe, at concentrations 
10-fold higher than those required for procoagulant 
activity. At the MP surface, it is reasonable to assume that
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Figure 1. Membrane remodeling and MP generation. In resting cells, constitutive aminophospholipids, phosphatidylserine 
(PhtdSer) with its net negative charge, and globally neutral phosphatidylethanolamine, are mostly sequestered in the inner 
(cytoplasmic) leaflet of the plasma membrane, whereas sphingomyelin and phosphatidylcholine constitute the majority of the 
outer (exoplasmic) leaflet phospholipids. This asymmetric distribution is under the control of an inward aminophospholipid 
translocase (flippase), floppase and scramblase. When subjected to procoagulant, pro-inflammatory or apoptogenic stimulation, a 
sudden increase in cytosolic calcium, calpain activation and cytoskeleton proteolysis are observed leading to the loss of 
membrane asymmetry. ROCK-I activation leads to myosin light chain phosphorylation and cytoskeleton contraction. The swift 
egress of aminophospholipids to the exoplasmic leaflet is not compensated rapidly enough by other phospholipid inward 
redistibution, resulting in a transient overload of the outer leaflet at the expense of the inner one, explaining bleb formation and 
MP shedding. 
 
the anticoagulant potential of activated protein C is 
probably overwhelmed when TF is also harbored (25).  
 
3.3. Cellular origin of membrane microparticles and 
pathophysiologic background 

Most MPs have been characterized from body 
fluids (27). Because they survive longer the activated cells 
they are stemming from, probably owing to their smaller 
size and greater ability to diffuse and transiently escape 
phagocytosis, MPs constitute relevant hallmarks of cell 
damage (4). With the exception of the artherosclorotic 
plaque, data from the literature mostly concern circulating 
MPs that can be considered a specific storage pool (6, 22). 
In the blood flow, MPs are mainly of platelet origin. 
Depending on the pathophysiologic context, endothelial 
cells, leukocytes, monocytes, erythrocytes, smooth muscle 
cells and macrophages represent other possible contributors 
to this circulating pool (3). Antigens specifically expressed 

during cell activation could prove useful in discriminating 
underlying pathologies and associated damages.  
 

Recent advances suggest that MPs could reflect 
the pathways tuning their biogenesis and release. Of 
particular relevance in cardiovascular disorders, endothelial 
antigens CD31 and CD62E borne by circulating MPs were 
reported to discriminate apoptotisis or cytokine stimulation 
(18, 20, 28). Additional complexity was recently suggested 
as circulating MPs may bear antigens from different 
cellular origins, pointing to multiple transcellular MP-
mediated exchanges (29, 30). 
 
3.4. Clearance of microparticles 

Little is known about MP clearance, of major 
importance in the deciphering of MP effects. MP levels 
reflect the balance between production and clearance, a 
crucial element for their assessment in body fluids. The 
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major determinant of MP clearance is related to PhtdSer 
membrane exposure (31-34).  The specific receptor of 
PhtdSer, expressed by macrophages, fibroblasts and 
epithelial cells, contributes to apoptotic cells and bodies 
recognition and phagocytosis. Other cellular actors in MP 
clearance have been described, including annexin-I, CD14, 
CD36, LOX-1, β2-glycoprotein 1, lactadherin, vitronectin 
receptor, Mer tyrosine kinase, and apolipoprotein E (35-
38). MP clearance may also involve plasma phospholipase 
A2 (39). In the assessment of circulating MPs, misleading 
quantification or phenotypes could result from accelerated 
degradation by secretory phospholipase A2 (39, 40), 
interactions with the vascular wall (41), or trapping in cell–
cell aggregates or within the thrombus (42). 
 
3.5. Detection and measurement of microparticles 

MPs are highly heterogeneous in size (0.1 - 1 
µm) and composition, depending on the stimulus and cells 
at their origin. In these respects, MPs have to be 
discriminated from exosomes, another form of cellular 
vesicles released from large multivesicular bodies. Of 
smaller size and more homogeneous composition, they act 
as conveyors of immune responses and expose little if any 
PhtdSer (43). 

 
Because the conditions of isolation, mainly 

depending on centrifugation steps, are crucial for MP 
characterization, there is no consensus on their size 
distribution. Therefore, values yielded by the different 
methods of determination proposed so far may vary on a 
wide range (44), according to physical and/or biological 
parameters they are relying on (45). Nine methods have 
been described including flow cytometry (44, 46), solid 
phase capture with functional read out (4, 47), thrombin 
generation tests (48), ELISA (49), impedance-based flow 
cytometry, atomic force microscopy (50), dynamic light 
scattering (51), fluorescent single particle tracking, and 
proteomics, lipidomics analysis (52, 53). Flow cytometry is 
widely used for phenotyping MP. The discrepancy between 
its theorical size limitation determined by laser wavelengh 
(460 to 700 nm) and microparticle size raises the question 
of MP phenotype distribution as a function of size range. 
Nethertheless, variations in the tiny visible part of the MP 
« iceberg » detected by flow cytometry might remain 
statistically significant in clinical and biological studies (45). 

 
Global assessment of MPs is performed through 

annexin A5, a highly specific probe for PhtdSer. Specific 
antibodies are used to determine MP cellular origin. For 
instance, CD41 (GPIIb) or CD42 (GPIb) reveal a platelet 
origin, whilst CD62E (E-selectin), CD144 (VE-cadherin), 
CD146 (s-endo), CD105 (endoglin), CD54 (ICAM-1), 
CD51 (αV integrin) are common markers of endothelial MPs. 
CD31 (PECAM) is present on platelets and endothelial cells. 
However, considering its low representation on platelets, it 
remains a reliable endothelial marker, as proven by the 
discrepancy between platelet and endothelial MP levels in 
plasma, the latter being far more scarce. 
 
3.6. Paradoxical cytoprotective effects of microparticles 

Due to their association with thrombotic, 
inflammatory and degenerative diseases, the deleterious 

effects of MPs have been extensively investigated, primarly 
as procoagulant entities (2, 3, 5, 54). Nevertheless, their 
participation in anticoagulation has been shown (25), and 
their cytoprotective properties recently suggested (1, 55, 
56). 

 
Scarce data on the absence of MP-mediated 

apoptosis or on their direct cytoprotective abilities can be 
noticed in the litterature. HUVEC, dermal or synovial 
fibroblasts treated by leukocyte-derived MPs show no 
increased apoptosis (57, 58). Suspensions containing a 
proportion of mesenchymal stem cell-derived MPs  were 
found cytoprotective on kidney tubular cells through CD44 
and ß1 integrin-dependent binding, as they promoted cell 
proliferation and accelerated functionnal recovery after acute 
kidney tubular injury (59). Cytoprotection by modification of 
gene profiling in target cells is illustrated by the action of 
activated protein C (APC) recruited by EPCR on MPs, that 
appeared to tune endothelial cell apoptosis through Bax down-
regulation and the up-regulation of Bcl-X, inflammatory genes 
being controlled as well (23, 56, 60). Indeed, besides its anti- 
coagulant function, APC shows anti-inflammatory and anti-
apoptotic properties, modulates TNF-α-induced NF-κB 
pathway and downstream expression of ICAM, VCAM, E-
selectin and fractalkine (61). The anti-apoptotic effects of APC 
were suggested to be dependent on protease-activated receptor-
1 (PAR-1) and to alter the expression of Bcl-2 homologue and 
inhibitors of apoptosis (IAPs) proteins. In addition, proteolysis 
of cytotoxic extracellular histones by APC could also be 
beneficial (62).  

 
Cytoprotection may also result from two other 

complementary mechanisms: the MP-mediated sorting out 
of deleterious molecules such as caspase-3 from challenged 
parental cells (63) or the delivery of apoptosis modulators 
embedded within MPs with eventual cytoprotective effects 
on proximal target cells. The latter hypothesis relies on 
proteomic analysis showing that MP proteins vary with the 
stimulus and that a proportion of anti-apoptotic proteins is 
detectable in apoptotic lymphocyte-derived MPs (52, 53, 
64). 

Taken together, these data are in favor of a role 
of MPs in the cellular tuning between survival or death. 
 
3.7. Other beneficial effects of microparticles in the 
maintenance of vascular integrity and function 

Although MPs were mainly considered 
deleterious effectors leading to vascular dysfunction, 
several MP types were shown able to limit vascular 
damage, favor vascular repair and promote angiogenesis, 
raising the question of their contribution to vascular 
homeostasis and potential role in graft survival. Indeed, 
platelet-derived MPs also favor the endothelial homing 
through the delivery of platelet adhesion receptors to 
hematopoietic stem cells promoting chemotaxis, cell 
adhesion, proliferation and survival. In rats, locally injected 
platelet-derived MPs improved revascularization of the 
ischemic myocardium in a growth factor-dependent 
mechanism (65, 66).  

 
Furthermore, MPs contribute to various storage 

pools. In aterosclerosis, sequestered  MP-driven 
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neovascularization might thus be counterbeneficial by 
promoting intraplaque hemorrhage and consecutive 
vulnerability. Indeed, MPs from atheromatous plaques were 
demonstrated to up-regulate VEGF in endothelial cells, and 
promote endothelial proliferation and neovessel formation 
in a CD40L dependent process (67). Conversely, in a 
mouse model of post-natal vasculogenesis, endothelial MPs 
from the ischemic muscle appeared deteminant for 
progenitor cell differentiation (68). 

 
In septic shock, hyporeactivity together with 

tissue hypoperfusion and hypoxia account for severe 
hypotension. Beneficial effects of MPs in patients with 
septic shock were recently suggested by Soriano et al. (69). 
In their study, lower levels of endothelial-, platelet- and 
leukocyte-derived microparticles were associated with 
higher mortality rates and organ dysfunction. The 
cytoprotective effect of MPs was suggested to rely on their 
ability to maintain a tonic vasopressor response. This 
challenging hypothesis was supported by the demonstration 
that MPs from patients with septic shock prevent vascular 
hyporeactivity in LPS-treated mice through thromboxane 
A2 delivery, accounting for enhanced aortic contraction 
(70). 
 
4. MICROPARTICLES IN TRANSPLANTATION 
 
4.1. Kidney transplantation 

Apart from the excretion of waste products, 
kidney functions include the maintenance of fluid, hydro-
electrolyte and salt balances, hormone secretion, and blood 
pressure control. The worsened evolution of severe chronic 
renal failure (CRF) toward end-stage renal disease is of 
poor prognosis in the absence of dialysis, and often 
associated with cardiovascular events, accounting for more 
than 50% of all deaths (71). Indicative of major vascular 
damage, CRF patients display endothelial dysfunction and 
accelerated atherosclerosis. Diabetes mellitus, one of the 
main causes of CRF, is another disease commonly 
associated with endothelial dysfunction, dialysis and 
transplantation remaining ultimate treatments.  

 
Elevated levels of circulating MPs characterize 

the chronic vascular damage observed in severe renal 
diseases. Elevated endothelial-, platelet-, erythrocyte-, 
leukocyte- and neutrophil-derived MPs have been 
described in CRF and hemodialysed patients (72-76). In 
CRF patients, endothelial MP levels were tightly associated 
with arterial dysfunction characterized by the loss of flow-
mediated dilation, increased aortic pulse wave velocity and 
common carotid artery index. Underlying mechanisms 
involved impairement of endothelium-dependent relaxation 
and cyclic guanosine monophosphate generation (73).  

 
 In CRF patients, circulating endothelial MPs 

may also reflect the deleterious effects of uremic toxins like 
p-cresol and indoxyl sulfate reported to increase MP 
generation from treated endothelial cells (76).  

 
CRF is the consequence of intricated processes 

leading to the progressive decline of renal function 
associated with increased inflammation and accelerated 

atherosclerosis (77). Aside from endothelial MPs typical of 
vascular damage in CRF patients, elevated MPs of 
leukocytic, neutrophil and platelet origin suggest additional 
contribution of inflammation, atherosclerosis and 
thrombosis to the progression of the disease (78, 79). 
Because of the frequent association between renal failure 
and cardiovascular diseases with similar confounding risk 
factors predisposing to both diseases, like smoking, 
hypertension, diabetes mellitus, caution should be taken 
when interpreting MP levels. Furthermore, the question of 
possible underscored MP levels by flow cytometry due to 
the presence of neutrophil- and platelet-derived MPs 
aggregates has been evoked in CRF and hemodialysed 
patients since each multi-MPs aggregate could be recorded 
as a single event (78). In cardiovascular issues circulating 
multi-MP aggregates combining platelets, MPs of platelet, 
endothelial or monocyte origin have been reported. (42, 
80). In addition, a proportion of hybrid MPs cumulating 
markers of different cell lineages could also contribute to 
the underestimation of a specific MP phenotype (30).  

 
In CRF and relative to hemodialysis, kidney 

transplantation greatly improves survival by decreasing the 
worsening of cardiovascular diseases and mortality (81-83). 
Kidney transplantation was associated with decreased MP 
levels that remained stable at least one year, regardless of 
the cellular origin (leukocytes, platelets, erythrocytes, 
granulocytes). Nevertheless, procoagulant activity borne by 
MPs was still higher than in healthy controls, possibly 
reflecting hypercoagulability and cardiovascular 
background in CRF patients (Table 2) (72, 84). Indeed, the 
decrease of MP levels was more pronounced in patients 
without clinical history of cardiovascular diseases. Such 
observations, illustrate the importance of the recording of 
clinical background on the design of a clinical study. Indeed, 
variations in circulating MP levels may be consecutive to 
multiple amplification loops. Aside from cardiovascular 
background, dialysis arrest could per se contribute to the 
reduced MP levels reported in kidney-transplanted patients. 
Indeed, hemodialysis sessions favor the generation of platelet- 
and neutrophil-derived MPs owing to dialysis membrane-
induced complement activation and to extracorporeal dialysers 
with consequences on the inflammatory status varying with 
membrane type (celluloid vs. synthetic) (78, 85, 86). Taken 
together, decreased MP levels could be indicators in the 
follow-up of restored renal function after transplantation. 
Indeed, circulating MPs may be associated with acute rejection 
episodes leading to graft function loss, as suggested by 
immunohistochemical studies. Platelet-derived MPs, assessed 
by CD61, were detected in glomerular and peritubular 
capillaries of allograft nephrectomy with hyperacute humoral 
rejection and severe endothelial injury (87, 88). To decipher 
the role of MPs as pathogenic markers in acute humoral or 
cellular rejections, further studies aimed at the characterization 
of specific circulating MP profiles are needed. In this respect, 
advantage could be taken from the recent immunohistological 
BANF’H classification (89). 
 
4.2. Heart transplantation 

Heart transplantation is the ultimate treatment of 
severe congestive heart failure (CHF), mainly related to 
coronary artery diseases. The raise in endothelial and 
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platelet MPs is a characteristic feature of heart failure (28, 
90-92). CHF is also associated with elevated plasma C-C 
chemokines and pro-inflammatory cytokines, such as IL-1, 
IL-6 and TNF-α that cause endothelial cell dysfunction and 
apoptosis. On the basis of the direct or reactive oxygen 
species-mediated deleterious effects of such cytokines, a 
pathophysiologic link between the loss of normal 
endothelial function and congestive heart failure has been 
proposed (90). Interestingly, in CHF patients, anti-oxydant 
treatments by vitamin C and carvedilol promoted 
endothelial cytoprotection and decreased MP levels, 
suggesting that apoptosis contributes to the generation of 
the endothelial MP pool (90-92). The combined assessment 
of endothelial MP phenotype and plasma biomakers such as 
soluble selectins might bring new hints on the molecular 
mechanisms underlying endothelial damage in CHF. 
Indeed, In vitro studies have shown that the phenotypic 
profile of endothelial-derived MPs might characterize the 
parental cell stress. MPs with constitutive markers, such as 
CD31, are markedly increased in apoptosis, whereas those 
expressing inducible markers, such as CD54 and E-selectin 
(CD62E), are prominent after cell activation (20). In 
patients, the phenotypic assessment of endothelial cell 
surface components would thus provide information on the 
functional status of the endothelium. After heart 
transplantation a different pattern of endothelial MPs is 
observed, MPs bearing CD62-E are decreased, suggesting a 
diminished endothelial injury by comparison with CHF, 
and a lower ratio between E-selectin- and CD31-bearing 
MPs is detected, consistent with a higher contribution of 
apoptosis to the endothelial MP pool (Table 2) (28, 90-92). 

 
In heart transplant recipients, acute rejection 

remains the leading cause of death within the following 
year (93). Although immunologic or non-immunologic 
markers have been widely explored (94-97), diagnosis is 
still based on immunohistological analysis of 
endomyocardial biopsies (98). Endothelial cells contribute 
to the procoagulant vascular response during acute allograft 
rejection and are possible targets for the alloimmune 
reaction leading to apoptosis (99). In a prospective study, 
we observed a specific MP pattern in patients undergoing a 
first episode of acute cardiac rejection (100). A significant 
elevation of MPs bearing tissue factor (TF), Fas or E-
selectin could be associated with rejection and suggested 
endothelial cell activation and Fas-mediated apoptosis. 
Furthermore, E-selectin-bearing MPs appeared an 
independent marker of acute allograft rejection that was 
still informative after adjustment for graft characteristics 
(time elapsed from heart transplantation, cold ischemia 
time, TF- and Fas-bearing MP levels). All together, MP 
assessment could provide an early, accurate, and easy-to-
assess marker for the detection of acute rejection. 
Additional data from larger cohorts with different rejection 
grades will be helpful to decipher the mechanisms at the 
origin of endothelial MP release. Animal models will be 
needed to evaluate the incidence of endothelial apoptosis 
and activation in graft survival.  
 
4.3. Liver transplantation 

Liver is the main provider of blood coagulation 
factors and plays a major role in metabolism and plasma 

detoxification. Serious liver diseases lead to cirrhosis, a 
disorganization of liver structure characterized by cell 
death and organ fibrosis, generally occurring as a 
consequence of chronic viral hepatitis, alcoholism, or 
biliary ducts diseases. Liver transplantation then appears 
the ultimate treatment.  

 
In alcoholic fatty liver, alcoholic liver cirrhosis 

or hepatitis-C liver cirrhosis with thrombocytopenia, the 
inverse correlation between platelet counts and elevated 
platelet-derived MPs plasma levels, reflects platelet 
activation (101, 102). In hepatitis-C liver cirrhosis patients, 
platelet activation assessed through platelet-derived MPs is 
correlated to liver fibrosis biological markers and 
associated with the fibrosis histological scoring, suggesting 
a relationship between platelet activation and liver fibrosis 
(101). Interestingly, in alcoholic liver cirrhosis, a ten days 
discontinuation of alcohol intake reduced platelet-derived 
MPs, suggesting its specific role in platelet activation 
(102). Compared to healthy control, hepatitis C patients 
with or without hepatocellular carcinoma, show elevated 
MPs, including endothelial- and hepatic- derived MPs 
(103). Within the first week after liver transplantation, a 
raise in circulating MPs was reported, values of total and 
endothelial MPs returning to the baseline observed in 
healthy controls after day 14 (Table 2) (103). Interestingly, 
this prospective study of a small cohort, showed a decrease 
in circulating MPs bearing hepatic markers that was less 
pronounced at D14. With respect to the other cell origins of 
MPs, it could be hypothetized that specific dynamics in the 
release of hepatic MPs occurs after transplantation that 
surgery could not account for. Indeed, hepatic MP levels in 
patients with partial hepatectomy remain at baseline values 
after surgery. In liver transplantation, dynamics of MP 
generation thus follows a general profile mainly 
characterized by a 2 week transient elevation. Despite a low 
rate of complications, it was observed that patients with 
poor clinical outcome after transplantation may escape this 
pattern, MP levels remaining elevated in sepsis and acute 
rejection (103).  

 
The interest of MPs as possible indicators of the 

liver function remains to be confirmed, especially with 
respect to known variations of other biological markers 
such as ASAT, ALAT or coagulation factor V.  For 
instance, one could expect that values of ASAT and ALAT 
reflecting cytolysis are correlated with circulating MPs 
released in blood flow owing to massive cellular loss. 
Similar comparison between MP values and biological 
markers of the hepatic function are needed to confirm the 
usefulness of MPs in the follow-up of the transplanted liver 
status and in the assessment of graft rejection. 
 
4.4. Pancreatic islet transplantation 

Islets of Langherans are highly vascularized and 
specialized units of the endocrine pancreas. Constitutive 
cell lineages of the islets are dedicated to the production of 
hormones such as insulin and glucagon. In type 1 diabetes, 
pancreatic islets are the target of autoimmune reactions 
leading to endocrine cell death and dysregulation of insulin 
secretion. Despite progress in clinical management (insulin 
therapy, diet), diabetes remains a chronic disease associated
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Table 2. Microparticle variations in  corresponding transplantation issues 
Transplantation issues MP variations following graft transplantation References 
Kidney Transplantation Decrease of MPs of Leukocyte, Platelet, Erythrocyte, granulocyte origin (72, 84) 
 Remaining elevated procoagulant activity (72) 
Hyperacute rejection Detection of platelet-derived MPs in glomerular & peritubular capillaries (88) 
Heart Transplantation Decrease of endothelial CD62E+-MPs (28) 
 Lower ratio CD62E+/CD31+ MPs  (28) 
Acute rejection Elevation of endothelial-, leukocyte-derived MPs  

(TF+-, CD62E+-, Fas+- MPs) 
(100) 

Liver Transplantation Raise of MP level within the first week (103) 
 Return to baseline for total and endothelial MPs at day 14 (103) 
 Decrease of MPs bearing hepatic markers (103) 
Acute rejection MP levels remaining elevated (103) 
Pancreatic islet Transplantation Baseline MP level in successful engraftment (115) 
Instant Blood-Mediated Inflammatory Response Detection of active TF bearing MPs  (111, 113) 
Rejection Peak of total MPs (115) 
 Restoration of baseline MP levels after new islet transplantation  (115) 
Hematopoietic stem cells transplantation _ _ 
Conditioning period Increase of platelet-derived MPs (117) 
 No difference in total or endothelial MPs (116) 
Rejection or 
Graft Versus Host Disease 

Continuous increase in platelet-, monocyte-, endothelial-derived MPs during the first month (119, 120) 

 Elevated endothelial MPs in higher GVHD grade (122) 

 
with severe vascular complications and endothelial damage 
including micro and macroangiopathies in kidney (diabetic 
nephropathy), lower extremities (diabetic foot ulcers), eyes 
(diabetic retinopathy), coronary arteries, and brain. In 
patients with end-stage type 1 diabetes, the restoration of a 
physiological endocrine secretion by pancreatic islet 
transplantation is of prime interest. Recently, the success of 
the Edmonton approach to islet transplantation, through a 
steroid-free immunosuppression, gave rise to particular 
interest (104-110). Pancreatic islets, isolated from the 
donor organ after collagenase digestion and sequential 
purification steps, are transplanted in the liver by injection 
into the portal vein. Only a small fraction of the 
transplanted islets successfully engraft (111) explaining 
that the functional capacity of the transplanted islets only 
reaches ~20% of that observed in non diabetic subjects 
(112). Among the reasons for the incomplete success, 
difficulties in islet isolation, efficacy of 
immunosuppression to prevent local inflammation and 
immunoreactivity, activation of the coagulation cascade, 
absence of islet regeneration, immunosuppression side 
effects, poor engraftment, and the absence of beta cell mass 
markers should be mentioned (105-110).  Low engraftment 
efficacy may be related to the occurrence of local 
coagulation and to the rapid local inflammatory response 
termed IBMIR (instant blood-mediated inflammatory 
reaction) resulting from the contact between injected islets 
and blood. Beside allograft rejection, this local 
inflammatory reaction at the site of islet transplantation is 
often associated with negative clinical outcome and seems 
to be a major determinant of the partial loss of beta cell 
mass in a short time. IBMIR is characterized by the 
recruitment of platelets to the islet and by leukocyte 
infiltration leading to islet integrity disruption and loss. In 
isolated and in situ pancreatic islets, active TF borne by 
MPs has been reported in α and β endocrine cells whereas 
endothelial cells and exocrine cells from pancreatic 
sections do not express TF, indicating the absence of 

 
iflammatory signal-mediated TF up-regulation (Table 2) 
(111, 113, 114). IBMIR is prevented after TF blockade by 
active site-blocked factor. Hyperglycemia and plasma C 
peptide levels do not allow the early evaluation of the loss 
of beta cell mass and function. Easy-to access biological 
markers of early islet disruption are still lacking. Molecular 
detection of circulating beta-cells by RT-PCR of insulin 
mRNA has been proposed for the follow-up of islet 
transplantation (108). Recently we could evidence elevated 
levels of circulating MPs in patients that underwent islet 
loss. Interestingly, a peak in MPs appeared one month 
before the c-peptide drop and the raise in insulin needs. 
Furthermore, MP levels returned to baseline after a second 
transplantation that restored islet function and normal c-
peptide levels. Further investigations are indeed needed to 
confirm the prognosis value of MPs in islet transplantation 
and to characterize the damaged pancreatic cell lineages 
that might contribute to MP shedding (115). 
 
4.5. Hematopoietic stem cell transplantation 

The bone marrow is a tissue of great immune 
potency. Allogeneic hematopoietic stem cells 
transplantation (HSCT) into the bone marrow involves the 
transfer of a potent immune system. This kind of 
transplantation is mainly performed in severe genetic 
diseases with deep immunodeficiency or enzyme defects, in 
aplastic anemia, in blood cancer like leukemia, or in solid 
malignant tumors. Rejection or the development of a graft-
versus-host disease (GVHD) are threatening issues in stem 
cell transplantation. Prevention is usually achieved by a 
conditioning regimen preceding HSCT that includes 
different steps (chemotherapy, total body irradiation, 
treatment by anti-thymocyte globulin). HSCT is frequently 
associated with hypercoagulability, with an eventual role of 
the conditioning regimens that is still debated (116-119). In 
line with the increased thrombosis risk, elevated levels of 
circulating platelet-derived MPs were observed after the 
chemotherapy step (117). Other authors reported an 
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absence of significant difference in total or endothelial-
derived MPs during the conditioning period (116). Indeed, 
in patients undergoing HSCT and GVHD, a continuous 
increase in platelet-, monocyte- and endothelial-derived 
MPs, as well as soluble VCAM-1, E-selectin, and IL-2R, a 
GVHD marker, is observed during the first month (Table 2) 
(120). The raise in plasma endothelial markers and MPs 
may reflect endothelial injury which is a common feature 
of GVHD (118, 121). Endothelial MP levels could even 
be viewed as indicators of the severity of GVHD since 
they appear to discriminate higher grades (122). 
Interestingly, in the particular settings of HSCT, 
platelet-derived MPs that are able to bind and transfer 
adhesion receptors to hematopoietic cells, may prove 
beneficial in situ by promoting cell engraftment and 
accelerating bone marrow regeneration (66, 123-125).  
 
4.6. Pharmalogical  and immunosuppressive treatments 

Several therapies known to be beneficial in 
cardiovascular disorders were reported to reduce the 
concentration of circulating procoagulant MPs (7). Indeed 
treatments with statins (simvastatin, pravastatin, 
fluvastatin) (126-128), anti-platelet therapies (ticlopidine, 
clopidogrel, aspirin, cilostazol, abxicimab) (92, 129-133), 
beta-blockers (carvedilol) (90), anti-oxidants (vitamine C) 
(91, 134), anti-hypertensive therapies (AT II receptor 
antagonists, calcium channel antagonists) (126, 135-139), 
or prostaglandins (140) were associated with a decrease in 
MP levels.  These observations support the hypothesis that 
part of the beneficial effect of treatments is linked to 
decreased MP pathogenicity, at quantitative or qualitative 
levels. Conversely, atrial fibrillation treament by digitalis 
glycosides was associated with increased MP levels. Their 
molecular mode of action would involve the inhibition of 
membrane Na+/K+ channels promoting the raise in sodium 
and calcium intracellular concentrations and consecutive 
MP shedding (141). 

 
Although immunosuppressive therapy is a key 

treatment in graft transplantation management, little is 
known about its eventual incidence on MP levels. One 
could expect that control of rejection would protect the 
graft from cell damage and therefore avoid the release of 
MPs associated with hypercoagulable states impairing the 
integrity of graft vessels. On the other hand, platelet MPs 
were proven to behave in situ as proangiogenic factors 
promoting neovascularization (65). In fact, variations in 
circulating MP levels after transplantation probably 
combine indications on the vascular host and graft status, 
and on the tissue remodelling or cell loss. Thus, caution 
should be taken in the assessment of the mechanisms at the 
origin of MP release with respect to each clinical 
background and immunosuppressive therapy. For instance, 
calcineurin inhibitors (cyclosporin, tacrolimus) may be 
cytotoxic. The immunosuppressive regimens, also 
including proliferation inhibitors (azathioprine, 
mycophenolate mofetil) and steroids, can cause, favor or 
worsen hyperlipidemia, hypertension, anemia, diabetes, 
infections, nephrotoxicity or cancer (81). Indeed, during the 
acute phase of GVHD in hematopoietic cells 
transplantation, a trend for higher endothelial MP levels has 
been reported after corticosteroid treatment (prednisolone) 

whereas no significant variation could be shown using 
mycophenolate mofetil or cyclosporin A (122). In the 
setting of kidney transplantation, Al-Massarani et al. 
compared the impact of two immunosuppressive regimens, 
cyclosporin/azathioprine or tacrolimus/mycophenolate 
mofetil, on vascular toxicity markers, among which 
endothelial MPs, circulating endothelial cells and sVCAM-
1 (84). After 1 year follow-up, MP levels showed a 
continuous decrease, but no significant variation could 
be observed with respect to the treatment regimen. The 
absence of endothelial MP or sVCAM-1 variations 
appears intriguing because the authors detected a 
significant difference in circulating endothelial cells that 
were elevated after tacrolimus/mycophenolate mofetil 
treatment, suggesting an underlying endothelial damage. 
Such data point at a possible limitation in the use of 
endothelial MPs for the monitoring of transplanted 
patients, partly because of the small proportion of 
circulating endothelial MPs and of the technical 
difficulty in the assessment of smaller MPs by 
conventional flow cytometry. In this interesting 
prospective study, the constant reduction in circulating 
endothelial cells observed in the 
cyclosporin/azathioprine subset was in favor of a 
diminished endothelial damage, even after ajustment for 
diabetes. These data point at circulating endothelial cells 
as reliable indicators of endothelial injury while MPs or 
sVCAM-1 appear more delicate to assess. 
 
5. CONCLUSION 
 

MPs are circulating indicators of cellular stress 
when parental cells are hardly accessible. In the particular 
settings of transplantation, their variations appear a 
challenging approach for the non invasive investigation of 
the graft status. Further studies are however needed to 
determine whether MP profiles are characteristic of cell 
activation or of cell loss at the onset of rejection and if they 
could be useful in the monitoring of patients. 
Transplantation is the ultimate treatment of severe 
chronical diseases often associated with intricated 
cardiovascular damages and heterogeneous treatments that 
may be confounding factors in the interpretation of MP 
levels. Interesting data point at the eventual role of MPs as 
cellular and tissular actors in the tuning of cell response. 
Distal or local MP-mediated effects remain to be ascertain 
in cellular crosstalk models and in small animal models of 
transplantation. Histological assessment and scoring remain 
to be correlated to MP levels, possibly indicative of the 
cellular orchestration of graft survival or death. 
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