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1. ABSTRACT 
 
There have been numerous publications linking Ca2+ 
signaling and cancer, however, a clear explanation for this 
link has remained elusive. We recently identified the 
oncogenes/tumor suppressors Wilms Tumor Suppressor 1 
(WT1) and Early Growth Response 1 (EGR1) as regulators 
of the expression of STIM1, an essential regulator of Ca2+ 
entry in non-excitable cells. The current review focuses on 
the literature defining both differential Ca2+ signaling and 
WT1/EGR1 expression patterns in 5 specific cancer 
subtypes: Acute Myeloid Leukemia, Wilms Tumor, breast 
cancer, glioblastoma and prostate cancer. For each tumor-
type, we have assessed how specific changes in WT1 and 
EGR1 expression might contribute to aberrant Ca2+ 
homeostasis as well as the therapeutic potential of these 
observations. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The extensive relationship between modulation 
of intracellular Ca2+ content and the control of cell 
proliferation (1-3), differentiation (4, 5) and death (6) has 
led to much examination into the relationship between Ca2+ 

signaling pathways and the onset and progression of 
tumorigenesis. The earliest evidence of differential control 
of Ca2+ signaling in cancer cells came from failed attempts 
to inhibit the proliferation of transformed mouse fibroblasts 
by removing extracellular calcium (7-9). This fact was 
initially interpreted to mean that cancer cells function in a 
Ca2+-independent manner. However, the greater than 
20,000 papers that have been published on the subject of 
Ca2+ signaling and homeostasis in cancer cells reveal a 
considerably more complex relationship between Ca2+ 
signaling and cancer. This is, perhaps, not at all surprising 
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given both the complexity of the mechanisms in control of 
Ca2+ homeostasis and the variety of distinct diseases that 
the word “cancer” refers to. Therefore, this review will 
attempt to both summarize some of the key events leading 
to dysregulation of Ca2+ homeostasis in specific classes of 
cancer cells and define how this dysregulation could be 
used for therapeutic advantage. 
 
2.1. Bcl2-mediated control of ER Ca2+ content in cancer 
cells 

Loss of the ability to undergo apoptosis is one of 
the defining components of cancer. Perhaps the most 
critical family of proteins in control of apoptosis is the Bcl2 
family proteins. This family consists of both anti-apoptotic 
(eg. Bcl2, Bcl-XL, Mcl-1) and pro-apoptotic members (eg. 
Bax, Bak); during transformation, a shift in the expression 
patterns towards the anti-apoptotic members of this family 
are often observed (10-12). Intriguingly, this shift is known 
to have significant effects on ER Ca2+ content (13-20). 
Although early investigations seemed to support the 
conclusion that Bcl2 directly releases ER luminal Ca2+ (16, 
17), subsequent studies have tended to support a 
modulatory role for Bcl-2. Hence, the primary mediator of 
receptor-induced Ca2+ transients is the inositol 1,4,5-
triphosphate receptor (InsP3R), which responds to 
phospholipase C-dependent production of InsP3 by 
releasing Ca2+ into the cytoplasm from the ER. It has been 
shown that Bcl2, Bcl-XL and Mcl-1 directly bind to the 
InsP3R, resulting in spontaneous activity under basal 
conditions, thereby leading to decreases in ER Ca2+ content 
(13-15). Furthermore, the proapoptotic proteins BAK and 
BAX counter this effect, decreasing InsP3R activity and 
increasing ER Ca2+ content (20). Intriguingly, this 
relationship is reversed under agonist-stimulated 
conditions; in the presence of relatively high levels of 
InsP3, the effect of Bcl2-InsP3R interactions is inhibition of 
ER Ca2+ release (18, 19). The net effect of these 
modulations of InsP3R function may be to avoid large 
elevations in cytosolic Ca2+ concentration. Hence, the two 
distinct effects of Bcl2 modulations of InsP3R activity 
likely work in concert to limit the amount of Ca2+ that can 
be released under stimulated conditions. 

 
2.2. TRP cation channels function in cancer cells 

Due to their tremendous diversity and wide 
expression (21), numerous investigations have been 
directed at identifying differences in the expression and/or 
function of members of the transient receptor potential 
(TRP) superfamily of cationic channels in diverse tumor 
types. While there are numerous examples of these types of 
changes, this relationship exhibits considerable cell-type 
specificity. For example, examination of melanoma 
metastases revealed complete loss of TRPM1 expression 
when compared with normal melanocytes (22), yet TRPV6 
and TRPM8 are greatly upregulated in prostate cancer (23-
25) and TRPC6 is dramatically upregulated in hepatoma 
(26). The case for TRPC6 as a promoter of tumorigenesis 
in liver is further supported by the fact that TRPC6 
overexpression in Huh-7 (human hepatoma) cells causes an 
80% increase in the rate of proliferation, while TRPC6 
knockdown significantly decrease the rate of proliferation 
(26). Currently, the reasons why certain tumor types tend to 

regulate one TRP channel vs. another TRP channel remain 
a mystery. Nevertheless, these observations provide strong 
support for the idea that such a relationship does exist. 
 
2.3. Molecular Mechanisms of Store-operated Ca2+ 
entry 

The concept of store-operated Ca2+ entry (SOCe) 
was initially proposed in 1986 by Jim Putney (27), 
however, until recently the molecular mechanisms 
controlling SOCe were unknown. In 2005, 2 papers were 
published identifying STIM1 as a required component of 
this process (28, 29), followed in 2006 by 3 papers 
revealing a similar requirement for Orai1 (30-32). Over the 
last 4 years, considerable progress has been made defining 
how SOCe works (Figure 1) (33-38). Thus, both STIM1 
and its mammalian homologue STIM2 are type 1A 
transmembrane proteins containing low Ca2+ affinity 
luminal EF hands (39); when ER Ca2+ content is high, their 
EF hands are bound to Ca2+ and the proteins are inactive 
(28, 38, 40). Decreases in ER Ca2+ concentration cause 
dissociation of Ca2+ from the STIM EF hands, resulting in a 
conformational change (40-42) that leads to STIM 
aggregation in regions of the ER adjacent to the PM (43-
45), where they interact with and activate Orai1, the store-
operated Ca2+ channel (35, 43, 44, 46-52). Despite the 
similarities in both their domain structure and general 
physiological roles, we and others have observed extensive 
differences in the activation characteristics of STIM1 and 
STIM2 (42, 53-56). Thus, the Ca2+ affinity of the STIM2 
EF hand is at ~resting ER Ca2+ concentration, resulting in 
constitutive activation (35, 53, 54). However, sequences 
within the N-terminal tail of STIM2 control its rate of 
activation, thereby avoiding Ca2+ overload (56). There are 
also two mammalian homologues of Orai1 termed Orai2 
and Orai3 which function similarly to Orai1 when 
overexpressed (57, 58), although the roles of the 
endogenous proteins remain undefined. Thus, while many 
questions remain, recent studies have led to considerable 
progress in the characterization of the molecular 
mechanisms of SOCe. Less clear is how these proteins are 
regulated under both physiological and pathophysiological 
conditions. However, our recent investigations have 
provided an intriguing link between the expression of 
STIM1 and the oncogenes/tumor suppressors Early Growth 
Response 1 (EGR1) and Wilms Tumor Suppressor 1 (WT1) 
(59). Much of the current review focuses on describing the 
implications of these observations to cancer cell biology. 

 
2.4. The zinc finger transcription factors WT1 and 
EGR1 

The EGR family of zinc finger transcription 
factors consists of 4 closely related members (EGR1-4) that 
are rapidly, but transiently upregulated by a wide variety of 
extracellular stimuli including activation, growth and 
differentiation signals, tissue injury and apoptotic signals 
(60, 61). While EGR-binding elements have been identified 
in a vast panel of gene promoters of multiple classes, our 
group is primarily interested in the remarkable number of 
EGR-dependent genes involved in control of Ca2+ 
homeostasis. Thus, while we have shown that STIM1 
transcription is directly regulated by EGR1 (59), others 
have shown that EGR1 negatively regulates the expression 
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Figure 1. Model depicting control of Ca2+ signaling and homeostasis in non-excitable cells. Activation of Phospholipase C 
(PLC)-coupled receptors initiates a signaling cascade wherein newly generated inositol 1,4,5-triphosphate (IP3) binds to and 
activates its receptor (IP3R) located on the endoplasmic reticulum (ER) membrane.  Once activated, the IP3R releases ER Ca2+ 
content into the cytoplasm. This resultant ER Ca2+ depletion is sensed by STIM proteins, which aggregate near the plasma 
membrane (PM) where it interacts with Orai1, causing store-operated Ca2+ entry. Ca2+/ATPases located on both the ER (SERCA, 
sarco/endoplasmic calcium ATPase) and PM (PMCA, plasma membrane calcium ATPase) rapidly remove cytosolic Ca2+, 
resulting in recovery of both ER and cytosolic Ca2+ concentration. 

 
of the Sodium/Ca2+ exchanger (62) and Calsequestrin (63). 
There is also evidence of EGR1-dependent control of 
SERCA2 expression (64-66), although we now believe this 
to be via an indirect mechanism (67). In contrast, the role 
of WT1, as a regulator of Ca2+ homeostasis was not 
investigated prior to our study revealing repression of 
STIM1 expression (59). Nevertheless, our observations are 
highly consistent with numerous investigations by other 
investigators revealing that WT1 represses EGR1-
dependent gene expression (68-70).  

 
Despite considerable structural similarity to 

EGR1, WT1 is not considered to be a member of the EGR 
family. This is primarily because, unlike EGR genes, WT1 
is not generally responsive to growth factor stimulation; it 
is predominantly a developmentally regulated gene. A key 
feature of WT1 is the existence at least 2 sites for 
alternative splicing, resulting in 4 major splice variants 
(71). The first and most significant alternative splice donor 
site results in the addition of the amino acids KTS (Lys-
Thr-Ser) between zinc fingers three and four (71). WT1 
variants A and B, which lack this KTS site are the forms 
best described as transcription factors; the functions served 
by WT1 variants C and D (KTS+) is a subject of ongoing 
controversy. Whereas these proteins have been thought to 

function post-transcriptionally as RNA splicing proteins 
(71), KTS+ forms of WT1 have been reported to regulate 
gene transcription, albeit with distinct binding 
characteristics (72). The other major alternative splice 
donor site results in the inclusion of 17 amino acids in the 
middle of the protein in WT1 B and D, which is thought to 
regulate interactions between WT1 and cofactors (73). 

 
3. WT1/EGR1 AS ONCOGENES/TUMOR 
SUPPRESSORS REGULATING Ca2+ HOMEOSTASIS 
 

In a recent investigation published in J Biol Chem 
(2010), we revealed that the expression of STIM1 was 
under the control of the transcription factors WT1 and 
EGR1 (59). Thus, either EGR1 knockdown or WT1 
overexpression resulted in both loss of STIM1 expression 
and decreased SOCe. We further established that this 
regulation was direct by pulling down regions of DNA 
within 500 base pairs of the STIM1 transcriptional start site 
using either EGR1 or WT1 antibodies, a technique referred 
to as chromatin immunoprecipitation (ChIP). Finally, we 
revealed that WT1+ primary Wilms Tumor cells 
(representative of ~85% of Wilms Tumors) exhibit 
significant loss of both STIM1 expression and SOCe. 
However, dysregulated expression of EGR1 and/or WT1 is 
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very common in multiple tumor types (74-85). Although a 
direct link between this dysregulation and Ca2+ homeostasis 
in these cell types has not been established, numerous clues 
exist in support of this concept, as outlined further below. 

 
3.1. WT1 as a negative regulator of STIM1 expression 
in Wilms Tumor 

Loss of WT1 expression due to deletion at 11p13 
is closely linked to the formation of Wilms tumor, the most 
common peritoneal pediatric tumor, occurring 1/10,000 
people (77, 79). However, this represents only a subset of 
Wilms Tumors, with approximately 80% of Wilms Tumors 
classified as “sporadic” and strongly expressing the 
transcriptional regulator (77, 79, 86). Due to the resistance 
that cells derived from bona fide Wilms Tumors exhibit to 
growth in vitro, many early investigations of Wilms Tumor 
function were performed in non-Wilms Tumor cell types 
that exhibited key similarities to specific Wilms Tumor 
characteristics. A particularly intriguing example of this is 
the WT1-null G401 cell line, which was derived from a 
human rhabdoid tumor of the kidney (87). In work 
performed prior to the discovery of its role in control of 
SOCe, STIM1 was defined as a tumor suppressor in G401 
cells and rhabdomyosarcoma (88, 89). While we cannot 
agree with the label of “tumor suppressor” for STIM1, we 
have now thoroughly examined Ca2+ homeostasis in G401 
cells (67), finding that loss of WT1 does indeed interfere 
with the ability of these cells to tolerate changes in either 
the expression or function of STIM1, STIM2 or Orai1. 

 
In an effort to examine bona fide Wilms Tumor 

cells, we recently obtained a series of human Wilms Tumor 
explants maintained subcutaneously in SCID mice from Dr. 
Peter Houghton (Nationwide Hospital; Ohio) (90). We have 
now examined SOCe in 9 of these tumor explants, of which 
8 were WT1+ and one was WT1-null. Consistent with our 
expectations, the level of SOCe was many-fold higher in 
the WT1-null Wilms Tumor explant (unpublished 
observations). Although we have yet to fully establish the 
therapeutic implications of these observations, it is 
interesting to note that dysregulated expression of a STIM-
independent Ca2+ channel (CaV2.3) is associated with 
Wilms Tumor relapse (91). Hence, current treatment 
regimens for Wilms tumor achieve 90% cure rates, but 
patients remain at high risk for tumor relapse at which point 
these tumors become much more difficult to treat (92).  The 
extent to which SOCe function may also contribute to 
Wilms Tumor relapse has not been established, however, it 
is interesting that links between EGR1 expression on 
responsiveness to chemotherapy have been investigated 
(93). Interestingly, EGR1 expression correlated well with a 
robust response to chemotherapy, while decreased EGR1 
levels were found in tumors with a limited response therapy 
(93). However, based on our examination of our panel of 
Wilms Tumors, all of the tumors exhibiting strong WT1 
expression had little or no STIM1 expression or SOCe 
irrespective of EGR1, which was highly variable 
(unpublished observations). This is presumably because, as 
shown in our recent paper (59), WT1 could outcompete 
EGR1 for binding to the STIM1 promoter. Therefore, as 
enticing as the possibility may be, we consider it unlikely 

that the relationship between Wilms Tumor relapse and 
EGR1 is due to differences in SOCe. 

 
3.2. WT1, EGR1 and STIM1 in breast cancer 

Breast cancer is one of the most common types of 
solid tumors, occurring in greater than 1 in 5 women. One 
of its defining features is a progression from estrogen 
receptor-positive (ER+) to ER- tumor cells, with the loss of 
ER expression strongly correlating with poor outcomes. 
Based on numerous recent investigations, it is now clear 
that this shift to estrogen-independence includes numerous 
changes in gene expression patterns, including WT1, EGR1 
and, perhaps, members of the STIM and Orai family. 
Hence, in ER+ breast cancer, loss of WT1 expression is 
required for dysregulated cell proliferation (83, 94); in this 
disease, WT1 functions as a tumor suppressor via 
interactions with ER-α leading to inhibition of insulin 
growth factor receptor expression (95). Since WT1 inhibits 
STIM1 expression, ER+ breast cancer cells would be 
predicted to have increased STIM1 expression, although 
the accuracy of this prediction has not been established. 
However, it has recently been shown that, unlike either 
normal epithelial or ER- breast cancer cells, the channels 
mediating SOCe in this subclass of cells are predominantly 
Orai3 and not Orai1 (96). Hence, the pathways regulating 
both STIM and Orai expression in this class of breast 
cancer cells exhibit significant novel features with 
potentially important therapeutic implications. 

 
In ER- breast cancer, the effect of WT1 

expression seems to shift from growth inhibitory to growth 
promoting; not only is WT1 upregulated (97), but this 
upregulation is correlated with poor prognosis (84). 
Further, introduction of WT1 antisense oligos results in 
growth inhibition (82). Considered collectively with reports 
of genetic deletion of EGR1 associated with ER- breast 
cancer cells (98), we would predict these cells to exhibit 
significant loss of STIM1 expression. However, that does 
not appear to be the case. To the contrary, STIM1 and 
Orai1 are required for the migration and metastasis of the 
highly aggressive ER- breast cancer cells, as demonstrated 
using both in vitro and in vivo models (99). Precisely how 
this class of tumor cell escapes WT1-mediated inhibition of 
STIM1 expression is unclear, however, it is interesting to 
note that the relative patterns of WT1 splice variant 
expression has been shown to shift such that exon 5 and 
KTS inserts are less efficiently spliced out of WT1 in these 
cells (83); an important consideration since only the 
shortest form of WT1 inhibits STIM1 expression (59). 
Nevertheless, we also recognize that induction of STIM1 
expression in ER- breast cancer cells may also be under the 
control of other EGR family members and/or as yet to be 
identified transcription factors. 

 
In accordance with the notion that SOCe plays a 

pivotal role in breast cancer tumorigenesis, Yang and 
colleagues have shown that SOCe is crucial for the 
migration and metastasis of a highly aggressive breast 
cancer cell line in vitro and in vivo (99).  Furthermore, the 
authors established that SOCe signaling regulates focal 
adhesion turnover and thus, by blocking Ca2+ influx, cell 
adhesions mediated by the interaction of integrin proteins 
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with the extracellular matrix are lost (99).  Accordingly, 
this study underscores the great potential that targeting 
SOCe may have as a therapeutic target for the treatment of 
cancer. 

 
3.3. WT1, EGR1 and Ca2+ signaling in acute myeloid 
leukemia 

Acute Myeloid Leukemia (AML) is a highly 
heterogeneous and devastating disease; most patients 
diagnosed with this disease die within 2 years (100). 
Interestingly, WT1 has been found to be upregulated in 73 
to 93% of primary AML samples (78). This is, perhaps, not 
surprising given that AML is characterized by a 
developmental block during hematopoiesis; WT1 is 
strongly expressed in CD34+ progenitor cells but is 
normally lost as they differentiate into mature leukocytes. 
EGR1, by contrast, promotes terminal myeloid 
differentiation (101, 102) thereby functioning as a tumor 
suppressor, although this role is highly dependent on the 
transforming oncogene (74). A direct examination of the 
relationships between WT1, EGR1 and STIM1 expression 
and function in AML has not been performed. However, in 
a prior study performed collaboratively with Dr. Stuart 
Berger (University Health Network, Toronto, CA), we 
examined SOCe in several AML cell lines (103). 
Interestingly, consistent with what might be expected for 
cells expressing WT1, but not EGR1, only minimal SOCe 
was observed in 3 out 5 AML cell lines examined. 
Although 3 out 5 might seem to be a somewhat weak 
correlation, this improves based on the fact that, murine 
32D leukemia cells (which we showed had high SOCe) 
have been confirmed to lack WT1 expression (104). 
Further, amongst the cell lines exhibiting low SOCe, not 
only do HL60 cells express WT1, but vitamin D3-induced 
differentiation into monocytes leads to SOCe recovery 
(105), loss of WT1 expression (106) and EGR1 induction 
(107). Precisely how these differential Ca2+ signals impact 
development, progression or treatment of AML has not 
been established. However, inactivating WT1 mutations, 
observed in 10-12% of patients, are a negative prognostic 
indicator for AML (78). Further, all of the WT1+ cell lines 
and primary cell types examined in our prior study could be 
virtually eliminated (~99.99% loss of clonogenicity) by the 
SOCe inhibitor econazole at concentrations that did not 
interfere with bone marrow reconstitution (103). Given our 
new insight into the identities of the molecular mediators of 
SOCe and the roles of WT1 and EGR1 as regulators of 
STIM1 expression, we are currently in the process of 
revisiting these studies to assess the contribution of Ca2+ 
signals towards the progression and/or treatment of this 
disease. 

 
3.4. EGR1 and STIM1 expression in Glioblastoma. 

Virtually all brain cancers result from 
transformation of glial cells, the non-neuronal support cell 
found throughout the central nervous system. Glioblastoma 
multiforme is the most common and aggressive type of 
glioma in humans, accounting for 52% of all primary brain 
tumor cases and 20% of all intracranial tumors. Due to its 
aggressive nature and resistance to most conventional 
therapeutic strategies, the median survival time is 18 
months. As such, there is a great need for new insight into 

both glioblastoma biology and alternative therapeutic 
strategies. Over the last 15 years, there have been a number 
of tantalizing clues that both EGR1 and Ca2+ homeostasis 
may represent novel and untapped targets in this cell type. 
Thus, glioblastoma cells are highly dependent on SOCe for 
extracellular Ca2+ influx (108), which is significantly 
enhanced compared with normal astrocytes (109). Further, 
this Ca2+ influx has been shown to affect cell cycle 
progression in this model (110, 111). In addition, Ca2+-
dependent activation of CaM Kinase III leads to high levels 
of autophagy, which enhanced resistance to nutrient 
deprivation-induced apoptosis (112). However, more 
recently, it has been shown that glioblastoma cell survival 
is enhanced by decreasing ER Ca2+ release via Akt-
mediated inhibition of InsP3R function via phosphorylation 
(113). Further, glioblastoma cells exhibit relatively high 
susceptibility to induction of ER stress via ER Ca2+ release 
(114). Considered collectively, these observations suggest 
that while Ca2+ entry supports the survival and growth of 
glioblastoma, they are highly sensitive to differences in ER 
Ca2+ levels. 

 
Recent analyses of the gene expression profiles of 

primary glioblastoma and normal brain tissue revealed that 
the levels of both STIM1 (115) and STIM2 (116) were 
significantly higher in glioblastoma. However, the extent to 
which this upregulation of STIM1 and STIM2 is related to 
EGR1 expression is not known. Indeed, exactly what 
happens to EGR1 in glioblastoma remains somewhat 
controversial. Hence, hyperactivity of EGR1 due to 
upregulation of the EGF and PDGFα receptors has been 
reported in several glioblastoma cell lines (117), potentially 
accounting for upregulated STIM expression (115, 116) 
and Ca2+ influx (108). Further, this EGR1 upregulation was 
associated with enhanced cell motility and metastasis 
through transactivation of the fibronectin gene (117). 
However, EGR1 was originally identified as a tumor 
suppressor in glioblastoma, where it was thought to be both 
downregulated and growth inhibitory (118). This principle 
was further supported with the report that NMDA-mediated 
induction of EGR1 expression was abrogated in primary 
glioblastoma, an abrogation that was associated with 
decreased patient survival (119). Like most tumor types, 
not only are there multiple initiating events for 
glioblastoma, but the disease has several stages of 
progression during which signaling pathways become 
increasingly dysregulated.  Towards this end, there are also 
instances where WT1 expression is increased in 
glioblastoma; a characteristic which increases 
tumorigenicity (120-124) and decreases the radiosensitivity 
of the tumor in vitro and in vivo (121).  Hence, determining 
the precise characteristics of the cells in which EGR1 
performs these mutually opposing roles is undoubtedly the 
critical first step in understanding how this gene contributes 
to glioblastoma cell biology (120-123). 

 
3.5. WT1/EGR1-mediated control of SOCe in prostate 
cancer.  

Prostate cancer is one of the leading threats to 
men’s health. Similar to breast cancer, in its early stages, it 
is highly dependent on steroid production for growth, 
although, in this case androgens rather than estrogens are 
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the steroids responsible (125). Consequently, most 
therapies currently in use target either the androgen 
receptor or androgen production. As such, it is intriguing 
that androgen receptor expression can be downregulated 
due to increases in intracellular Ca2+ concentration (126). 
Even more intriguing, a series of studies performed in 
LNCaP cells reveal that when they are transformed to an 
androgen-independent phenotype (via Bcl2 overexpression, 
androgen withdrawal or pharmacological upregulation of 
cAMP), they exhibit decreases in both ER Ca2+ content and 
SOCe (127, 128). Given our recent findings (59), it is 
tempting to speculate that this change in Ca2+ homeostasis 
may reflect differences in the expression of WT1 and 
EGR1. Indeed, there is ample evidence of dysregulation of 
WT1 and EGR1 in prostate cancer. Thus, both the 
expression and function of EGR1 have been shown to be 
greatly enhanced in prostate cancer (129-131). Further, 
EGR1-knockout prostate cells exhibit impaired 
tumorigenesis (76), implying that upregulation of EGR1 
serves as a crucial promoter in the initiation of this disease. 
On the other hand, examination of the patterns of WT1 and 
EGR1 expression in several prostate cancer cell lines 
revealed the exact opposite profile; elevated WT1 
expression coinciding with low EGR1 expression (80). 
While the extent to which the expression patterns in these 
cell lines reflects WT1 and EGR1 expression in vivo is less 
than clear, it is conceivable that this high WT1, low EGR1 
expression pattern supports an androgen-independent 
phenotype via direct or indirect mechanisms. 

 
The intense interest in the role of Ca2+ in the 

development of prostate cancer led to a number of attempts 
to target Ca2+ homeostasis as a potential treatment for this 
disease, particularly the currently untreatable androgen-
independent variants. Indeed, it was shown over 15 years 
ago that androgen-independent prostate cancer cells can be 
induced to undergo apoptosis in the presence of the 
SERCA inhibitor thapsigargin (132). However, despite 
significant efforts to modify thapsigargin to selectively 
target prostate cancer cells (133, 134), the general toxicity 
of this compound has made it unsuitable as a therapeutic 
agent. By contrast, SOCe seems to be a far more viable 
target, since genetic mutations leading to loss of SOCe lead 
to relatively minor problems outside of Severe-Combined 
Immunodeficiency (SCID) (30, 135); temporary immune 
defects due to pharmacological inhibition of SOCe would 
be a highly acceptable trade-off if they were effective as a 
therapeutic for androgen-independent prostate cancer. 
While the pharmacological agents currently available that 
target SOCe exhibit questionable specificity, the 
identification of Orai1 as the pore forming unit of SOCe 
has undoubtedly sparked new efforts to design superior 
SOCE-targeting drugs. Should these efforts be successful, 
assessing their potential abilities to control this disease 
should be a high priority. 

 
3.6. WT1/EGR1 and Ovarian Carcinoma 

Ovarian carcinoma is the leading cause of death 
from gynecologic malignancies (136).  Ovarian carcinoma 
(in general) occurs due to the need for remodeling of the 
epithelium after repeated menstrual cycles. Hence, every 
time an oocyte is released from the ovary, the epithelium 

has to be broken and then reformed. During postovulatory 
repair, lack of contact inhibition can cause ovarian 
epithelial cells to transform into mesenchymal cells, a 
process termed epithelial-mesenchyme transition (EMT) 
(137). EMT imparts an advantage to the postovulatory 
repair of the ovarian epithelium by altering the motility and 
proliferative response and allows for proper remodeling of 
the ovarian surface epithelium (138). However, 
mesenchymal cells are prone to uncontrolled growth and 
transformation into cancer cells.  

 
Whereas little has been documented to 

demonstrate a relationship between EGR1 and ovarian 
carcinoma, WT1 is known to regulate the 
mesenchymal/epithelial balance during development and 
several lines of evidence point to a role of WT1 in both 
EMT and mesenchyme to epithelial transition (MET) (139-
143). Thus, it is interesting to speculate that aberrant WT1 
expression in ovarian tumors causes cells to retain a 
mesenchymal phenotype in early ovarian tumorigenesis. 
This concept is supported by the fact that WT1 expression 
plays an important role in the progression of ovarian 
tumors and indicates a poorer prognosis of ovarian 
carcinoma (144-148). Still unknown is whether or not 
suppression of STIM1 expression and SOCe by WT1 has 
any impact on the epithelial/mesenchymal balance. 
However, it should be noted that mesenchyme to epithelial 
transitions are accompanied by profound changes in the 
expression and activity of plasma membrane chloride and 
potassium ion channels (149). Considered collectively with 
our observations regarding WT1-mediated SOCe inhibition 
(59), it seems reasonable to speculate that dysregulated 
Ca2+ homeostasis may also be an important stabilizing 
characteristic of mesenchymal cells. Indeed, E-cadherin, an 
epithelial cell adhesion molecule which can be regulated by 
Ca2+-dependent Ras activity (150, 151), is frequently 
absent or mutated in ovarian carcinoma (152) which 
promotes invasion and metastasis (153). Therefore, 
inhibition of Ca2+ entry by WT1 would tend to inhibit E-
cadherin-mediated cell-cell adhesion, ultimately supporting 
a similar dysregulated metastatic phenotype.  

 
4. SUMMARY AND PERSPECTIVE 
 

Aberrant Ca2+ signaling in cancer cells has been 
under investigation for several decades, yet there is still a 
great deal of confusion about how Ca2+ contributes to 
cancer cell biology. Cancer is predominantly a disease of 
disordered balance between proliferation, differentiation 
and apoptosis; calcium signals can contribute to all 3 
outcomes, however, precisely how depends on which other 
changes related to these outcomes coincide with 
dysregulated Ca2+ homeostasis. For example, increased 
Ca2+ influx could stimulate Ca2+-dependent proliferative 
and/or migratory pathways (eg. breast cancer, glioblastoma, 
prostate cancer), yet suppression of SOCe can inhibit 
differentiation, thereby trapping cells in a pluripotent, 
proliferative state (eg. Wilms tumor, AML, ovarian 
cancer). Determining how and why Ca2+ signals become 
dysregulated in specific classes of cancer cells is critical to 
designing therapeutic strategies targeting Ca2+ signals. Our 
observation that WT1 and EGR1 regulate STIM1 
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Figure 2. Regulation of STIM1 expression by WT1 and EGR1. Early Growth Response 1 (EGR1) activation is achieved through 
multiple receptor-dependent signal transduction pathways downstream of both the Ras oncogene (via the MAPK pathway) and 
Phospholipase C (PLC; via protein kinase C). Activated EGR1 rapidly enters the nucleus and binds to 2 response elements on the 
STIM1 gene sequences to induce its expression. However, Wilms Tumor Suppressor 1 (WT1) inhibits binding of EGR1 at the 
first response element, thereby repressing STIM1 expression. However, changes in STIM1 expression affect cytosolic Ca2+ 
concentration, thereby indirectly modulating EGR1 expression via protein kinase C (PKC)-, protein kinase A (PKA)- and 
calmodulin kinase (CamK)-dependent pathways. 

 
expression (59) has provided an important new tool to 
address this problem. Hence, as a developmentally 
regulated gene, WT1 is aberrantly expressed in a wide 
variety of cancer cells. Similarly, the shear variety of the 
signaling pathways in control of EGR1 expression (Figure 
2) makes it a very prominent oncogene/tumor suppressor. 
As such, WT1 and EGR1 have significant potential as 
biomarkers, offering crucial insight into how Ca2+ signaling 
is changed in specific cell types, potentially leading to 

novel new therapeutic strategies targeting loss of control 
over Ca2+ homeostasis in cancer cells. 
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