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1. ABSTRACT 
 
 Ligand-docking is an established computational 
technique universally applied in structure-based drug 
design. Since the first attempts carried out in the early ‘80s 
to predict the three-dimensional conformation of a protein-
ligand bound complex, this methodology has evolved 
constantly and it is presently implemented in many 
different ways. The present study aims at explaining the 
standard protein-ligand docking protocol, together with its 
main advantages and drawbacks. Milestone reports and 
future directions are reported and discussed as well.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Since the beginning of the 20th Century, 
recognition at the molecular level has been considered a 
fundamental step in all biologically relevant processes. 
Emil Fisher was the first to describe enzyme-substrate 
interactions using the ‘lock and key’ metaphor (1). A few 
years later, Paul Erhlich went further, stating that “corpora 
non agunt nisi fixata” (drugs will not work unless bound). 
Erhlich was the first to openly challenge the idea that 
“corpora non agunt nisi soluta” (drugs will not work 
unless in solution), which dated back to the Middle Ages 
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(2). Since then, the cornerstone of modern medicinal 
chemistry has been the assumption that complementarity 
between a small organic molecule and its biological 
counterpart could explain the potency and the specificity of 
a drug. However, for many years, knowledge of molecular 
interactions was limited, difficult to exploit, and played 
only a marginal role in the quest for new candidates. Drug 
discovery projects focused on lead compounds selected as 
result of random screenings or because of their striking 
resemblance to natural binders. Synthetic campaigns were 
carried out according to a simple protocol: i) a series of 
compounds was synthesized introducing a variety of 
substituents and decorations on a lead; ii) the obtained 
compounds were tested to estimate a measure of activity, 
iii) analyzing the experimental results, some simple 
structure-activity relationships could be gathered, and iv) 
used to guide the next round of synthesis. The cycle was 
iterated several times until a promising drug candidate was 
isolated or the entire project was dropped because of a lack 
of interesting results. This strategy, which relied largely on 
synthetic preferences and chemical intuition, was very 
inefficient and almost impossible to optimize further. A 
rational approach to drug design began in the 1970s, when: 
i) advances in molecular biology moved the focus of early 
experimental tests from cell lines and animals to purified 
proteins, ii) workstations of unprecedented computational 
power and storage capability came onto the market, and iii) 
an ever-increasing number of experimentally solved high 
resolution protein structures became publicly available (3). 
Since then, Computer-Assisted Drug Design (CADD) has 
become a key part of almost every drug discovery program. 
This is mainly because it is fairly accurate, constantly 
improving, and, at the same time, faster and much cheaper 
than in vitro experimental setups like combinatorial 
synthesis and high-throughput screening (4). CADD can be 
divided into two main branches, depending on whether the 
coordinates of the receptor are available or not (5). In the 
latter case, the so-called Ligand-Based Drug Design 
(LBDD) methods build predictive models by analyzing the 
chemical and pharmacological features of molecules of 
known activity. Putative drug candidates that, according to 
the model, fit the proposed profile of activity are retrieved 
by mining databases of compounds or synthesizing new 
molecules from scratch (6-7). When the receptor’s three-
dimensional (3D) structure is available and can be used to 
predict ligand-receptor interactions, a Structure-Based Drug 
Design (SBDD) approach becomes feasible. The general 
idea behind this approach is that all the information 
necessary for building a tightly interacting ligand is already 
contained in the 3D structure of the target. SBDD methods 
can be further classified into three different groups: manual 
structure matching, de novo design, and molecular docking. 
The first group is only interesting from a historical 
perspective: those early attempts were mostly based on 
interactive exercises carried out on graphical workstations. 
Despite a limited number of successful applications, they 
were considered too time-consuming and too dependent on 
the user’s instinct to be of truly practical use (8). De novo 
design methods are based on the assumption that novel 
highly potent molecules can be produced by growing them 
directly in the receptor binding site. Molecular fragments 
are first positioned independently and then joined to form 

bigger molecules according to the principle of local 
optimization. Implementations of this basic strategy differ 
in the way the building fragments are defined and linked, in 
the way the fitness of the created molecules is evaluated, 
and in the strategy adopted to efficiently browse the 
chemical space to avoid a combinatorial explosion. De 
novo design methods have been thoroughly discussed and 
compared in several recent reviews, to which the interested 
reader is referred for further details (9-10). The third SBDD 
approach is molecular docking, which attempts to predict 
the structure of the intermolecular complex of a given 
ligand at the receptor binding site by generating and 
evaluating several conformational variants. 

 
The first automatic docking algorithm was 

reported in 1982 by Kuntz and coworkers (11). In that 
pioneer implementation, the docking problem was simply 
addressed in terms of shape-matching between rigid bodies 
with no energy evaluation involved. Since then, many other 
docking programs have been published to provide more 
accurate predictions of the bound complexes. The 
representation of the molecules improved, taking full 
advantage of the ever-increasing computational power 
available. The typical docking protocol evolved from rigid 
bodies simulations to include full ligand flexibility and, 
more recently, partial receptor plasticity. Another 
fundamental advance was the introduction of scoring 
schemes that went beyond simple shape complementarity 
to rank the solutions. Some important milestones in the 
field are summarized in Table 1. 

 
It is important to note that the general definition 

of molecular docking covers a heterogeneous ensemble of 
approaches that vary significantly depending on the 
chemical and biochemical nature of the ligands and 
receptors. Researchers have used molecular docking 
methods to predict complexes formed between proteins 
(12-13), proteins and nucleic acids (14), nucleic acids and 
small molecules (15). In this chapter, I will only discuss 
docking protocols used to predict the binding mode of a 
drug-like compound at the binding site of a protein. This is 
because of their relevance in SBDD. The chapter is 
organized around the general outline of a typical docking 
exercise. A detailed description of several conformational-
searching approaches and scoring schemes used in well-
known docking programs will be provided, highlighting 
their strengths, weaknesses, and open issues. Finally, I will 
discuss the future directions of the technique together with 
applications reported in the literature. 

 
3. PROTEIN-LIGAND DOCKING FLOWCHART 
 

The basic idea of predicting the bound pose of a 
small organic ligand at the target binding site has been used 
in many different ways. However, we can sketch a common 
outline of the procedure (see Figure 1). In docking, several 
problems are addressed sequentially, with each step 
introducing a new layer of complexity (16-17). 

 
3.1. Receptor structure selection 
 The predicting power of a docking procedure 
depends strongly on the quality of the receptor model 
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Table 1. Some relevant milestones in the development of ligand docking 
Year Event 
1894 Emil Fischer proposes the ‘Lock and Key’ paradigm. 
1935 Kirkwood publishes “Statistical Mechanics of Fluid Mixtures.” 
1937 At Iowa State, Atanasoff and Berry develop ABC, the first fully electronic digital computing machine. 
1953 Metropolis and colleagues publish ‘Equation of State Calculations by Fast Computing Machines’. The Metropolis Monte Carlo method is born. 
1958 Koshland’s ‘Induced Fit Theory’ is published. 
1959 Perutz and Kendrew solve the crystal structure of Whale Myoglobin. 
1971 At Brookheaven National Laboratory, the Protein Data Bank is created. 
1973 Xerox develops Alto™: the first workstation with GUI, mouse, and Ethernet connection. 
1975 Levinthal and colleagues report a theoretical model of the interactions map of hemoglobin units in sickle cells fibers. 
1977 McCammon, Gelin, and Karplus apply for the first time the principles of molecular dynamics to a macromolecule, the bovin pancreatic trypsin inhibitor. 
1981 Connolly provides his definition of a solvent-accessible surface. 

1982 Irwin D. Kuntz publishes DOCK, the first modern ligand docking software. The matching routine “runs to completion in a few hours” on a DEC PDP 
11/70. 

1985 Goodford’s GRID approach is reported. 
1986 DesJarlais introduces ligand flexibility in DOCK. 
1990 First version of AutoDock. 
1991 Jiang and Kim pioneer the idea of ‘Soft’ docking. 
1992 First version of LUDI. 
1994 Di Nola and colleagues apply Molecular Dynamics to the docking problem. 
 Leach treats receptor flexibility with the help of side chain rotamer libraries. 
 First version of ICM. 
1995 Gehlhaar and colleagues propose an evolutionary programming implementation in ligand docking. 
 AMBER force field is introduced. 
1996 Rejto and Freer challenge the Induced Fit model with the Conformational Funnel Theory. 
 First version of FlexX. 
 First version of GOLD. 
 HammerHead is reported. 
1997 Knegtel and colleagues describe an ensemble docking exercise. 
 First version of QXP. 
 First version of Chemscore. 
1998 AutoDock v.3.0 implements the Lamarckian genetic algorithm. 
1999 Charifson and colleagues describe the Consensus Scoring approach. 
2000 First version of DrugScore. 
2002 McCammon’s group devises the Relaxed Complex Scheme. 
2004 First version of GLIDE. 
2007 FITTED and FLIPDock, codes purposely developed for ensemble docking, are reported.  
 Hartshorn and colleagues compile the “Astex” high-quality test set. 
2008 Bottegoni and coworkers report the 4D docking approach. 

 
which, in turn, is affected by the accuracy of the atomic 
coordinates. Information about a protein’s 3D shape comes 
mainly from experimental structures solved by X-ray 
diffraction or NMR spectroscopy (18). Currently, over 
63,000 X-ray structures are publicly available in the Protein 
Data Bank (PDB) (19). Crystallographic coordinates within 
the threshold of 2.5 Å of nominal resolution are usually 
considered very faithful representations of protein 
conformations. However, this assumption is not entirely 
safe, since even high resolution structures can have specific 
regions where the atomic fit into the electron density map is 
rather poor. For this reason, the choice of the receptor 
structure should not be based solely on the resolution but 
complemented with other metrics such as the Rfree, the 
diffraction-component precision index, and the B-factors 
(20-22). NMR spectroscopy returns low resolution 
structures and can only be applied to comparatively small 
proteins. However, NMR spectroscopy, working in 
solution, can provide a more natural model of the receptor’s 
native state. In some specific cases, NMR conformers can 
be used as an intuitive representation of protein flexibility 
(23-24). When an experimentally solved structure is not 
available, the receptor can be obtained by comparative 
modeling if sufficient sequence similarity exists (25-26). 
Successful docking experiments on homology models have 
been carried out on many different proteins including, but 
not limited to, protein kinases, hormone receptors, and G-
protein coupled receptors (27-29). 

 
3.2. Binding pocket representation 

There are three different ways to translate atomic 
coordinates into a representation of the receptor (30). The 
most intuitive approach is to express the system in a fully 
atomistic fashion that explicitly accounts for all the atoms 
of the ligand and the exposed atoms of the receptor. This 
approach strongly relies on molecular mechanics force 
fields to describe atomic radii and charges. Despite being 
very accurate, an all-atom system is very computationally 
demanding. This is because the number of interactions to 
be calculated scales as O(N2), where N is the total number 
of atoms. At present, all-atom representations are only used 
during the final rescoring steps to increase the overall 
accuracy of the procedure. Thanks to the work of Lee, 
Richards, and Connolly (31-32), a system can also be 
represented in terms of interacting molecular surfaces. The 
solvent-excluded surface is obtained by rolling a spherical 
probe, which represents a water molecule, on the exposed 
atoms and then merging the regions of the van der Waals 
spheres that come in contact with the probe. When 
flexibility is involved, surface-matching approaches are 
considered quite impractical and they have been almost 
completely abandoned except in rigid protein-protein 
docking. For a detailed description of Connolly surface 
implementation in ligand docking, see the review by 
Halperin and colleagues (33). The method most commonly 
used to describe the receptor is through a set of pre-
computed potential grids, according to the methodology
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Figure 1. A hypothetical re-docking exercise of 
flurbiprofen at the binding site COX-2 (PDBid: 3PGH, 
light green ribbons in the figure) is reported to provide a 
pictorial representation of four fundamental steps in a 
protein ligand docking protocol. A) Binding pocket 
identification (white transparent envelope) and 
characterization (yellow grid). Some relevant side chains 
atoms are reported in ball and stick representation. B) 
Sampling step: different possible binding modes of 
flurbiprofen are collected. Carbon atoms of each pose are 
reported in a different color. C) Scoring: for each pose, the 
contributions of hydrophobic-surfaces-matching (yellow 
transparent envelope), hydrogen-bonding (dotted lines), 
and ligand internal strain (green circles) to the binding 
energy are calculated. D) Ideally, the best scoring pose 
(green carbon atoms) reproduces faithfully the binding 
geometry of the native pose (grey carbon atoms) within a 
threshold of 2 Å (displayed distance 0.5 Å). All pictures 
were generated with ICM3.6 (Molsoft L.L.C.).  

 

outlined by Goodford in 1985 (34). Storing pre-calculated 
potential energies arising from interactions between a 
chemical probe and the receptor, these regularly spaced 3D 
lattices allow a rapid evaluation of ligand-bound 
conformations. A basic receptor description can be 
obtained with just two lattices accounting for van der 
Waals and electrostatic potentials. However, depending on 
the specific implementation, contributions from other 
probes can be mapped as well. Three examples of receptor 
representations are reported in Figure 2. 

 
3.3. Binding pocket composition 

A standard docking procedure does not attempt to 
consider the whole receptor molecule but rather focuses on 
a very specific region, the so-called ligand-binding pocket. 
The binding region has to be defined in terms of both shape 
and composition. The most straightforward way to define 
the pocket shape is to select the region immediately 
surrounding a known ligand co-crystallized in complex 
with the receptor. Several algorithms have been reported 
that attempt to predict the pocket location if no holo structure 
is available, or if the aim of the study is to explore new (e.g. 
allosteric) spots. The predictive approaches are based on one of 
the following methods (or a combination of several): analysis 
of the protein surface and structure, energy profiling, prior 
knowledge of the substrate, or evolutionary conservation and 
sequence analysis (35). On average, the predictions are fairly 
accurate and they all agree that the largest detectable cavity 
usually corresponds to the binding site. The pocket definition 
greatly affects the quality of the docking results. If the pocket 
is too small or shifted from the real location, the accuracy of 
the docking prediction will be rather poor. If the pocket is too 
large, the success rate decreases according to its size (21-36). 
Once the boundaries of the pocket are established, it is 
important to define the binding site’s composition. Usually, in 
protein crystal structures, the coordinates of hydrogen atoms 
cannot be solved. They are added to receptor models by 
purposely developed routines; the polar hydrogen atoms’ 
orientation and the hystidines’ tautomerization states should be 
optimized to reflect the best hydrogen-bonding pattern. 
Furthermore, other elements should undergo energy 
optimization, including amidic groups of glutamine and 
asparagine side chains whose exact orientation is quite hard to 
gather from diffraction data, side chains from regions that 
poorly fit into the electron density map, and atoms with high 
B-factors. Cofactors and metal ions are considered to be part of 
the receptor cavity and should be included in the definition of 
the pocket. The role of water molecules is more controversial: 
some authors suggest that there is no real need for explicit 
water molecules since their presence can be approximated by 
cavities in a high distance-dependent dielectric constant 
(37). Other authors recently reported significant 
improvements in the quality of results if explicit water 
molecules are included in the binding site (38-39). A good 
rule of thumb is to include in the site definition only water 
molecules that bridge the receptor and a co-crystallized 
ligand, establishing specific interactions with two non-
water molecules. 
 
3.4. Ligand conformational search 
 During the ligand conformational step, a 
searching algorithm generates a set of conformational
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Figure 2. Receptor pocket representations. The bound 
conformation of thymidine at the thymidine kinase binding 
site is used as example (PDBid: 1KIM) A) Receptor and 
ligand atoms are all explicitly accounted for within a given 
cut-off range (the rest of the protein is reported in 
transparent ribbons). B) Surface representation: receptor 
and ligand coordinates are translated in solvent accessible 
surfaces. The receptor surface is solid blue while the ligand 
surface is transparent yellow. Ligand atoms are reported in 
ball and stick representation for clarity. C) Grid-based 
representation: several features of the receptor atoms can be 
approximated on regularly spaced points on a grid. The red 
lattice represents the van der Waals profile of the carbon 
atoms. Ligand atoms are reported in ball and stick 
representation. 
 
variants of the ligand at the receptor-binding site. The 
earliest implementations considered the ligand as a rigid 
body and only sampled its roto-translational degrees of 
freedom (8). This approach had a limited application 
because the conformation that a ligand adopts when bound 
at the binding site, despite being generally quite close to it, 
does not always correspond to any energy minima sampled 
in the solvent (40). However, if ligand flexibility is 
considered, an accurate sampling of the conformational 

space quickly becomes too computationally demanding 
(41). This is because the number of possible conformations 
scales to the power of the number of rotatable bonds. For 
this reason, flexible ligand docking protocols adopt 
different strategies to reduce the exponential dependency of 
the computational time on the size of the system. Sampling 
techniques are usually grouped into three main categories: 
deterministic, stochastic, and simulative methods (16-30-
42). Herein follows a detailed discussion of a selection of 
historically and educationally relevant algorithms. The 
reader interested in a comprehensive list of reported 
docking protocols is referred to the meticulous research of 
Moitessier and colleagues (43). 
 
3.4.1. Deterministic algorithms 

In a deterministic approach, the conformational 
sampling follows a series of steps that will always lead to 
identical results, if starting from the same state of the 
system. An exhaustive systematic search is the most basic 
and intuitive form of deterministic algorithm but, as 
previously explained, it faces the problem of a 
combinatorial explosion even when dealing with systems of 
relatively small size. Deterministic algorithms use 
heuristics and termination criteria to reduce the size of the 
conformational space. For example, in the incremental 
construction algorithm, a ligand is docked at the receptor-
binding site in three steps: i) the ligand is divided into a 
rigid core and flexible fragments, ii) the rigid core is 
docked at the binding site, and iii) the reconstruction is 
completed sequentially by adding flexible parts. A well-
known incremental construction method is the ‘anchor and 
grow’ searching strategy used in DOCK since version 4.0 
(44). The ligand is split into fragments concentrically 
arranged in layers around a rigid anchor; each fragment 
corresponds to the atoms affected by the torsion of a 
rotatable bond. First, the anchor is docked using a 
geometric matching approach. Then, a layer of 
fragments is added, exploring the associated torsions, 
optimizing the generated partial poses, and pruning the less 
energetically favorable conformations. The reconstruction 
iterates expansion, optimization, and pruning steps for 
every layer. In order to escape local minima, the pruning 
strategy is tuned to preserve the diversity of the poses. This 
strategy is reported to be both accurate and computationally 
efficient. FlexX  uses another incremental construction 
protocol (45). The rigid core, called the base fragment, is 
placed at the binding site, evaluating chemical interactions 
such as hydrogen bonds, salt bridges, and, partly, 
hydrophobic contributions. The flexible parts of the ligand 
are added, exploring several preferential values for each 
torsional angle. Structures that present internal clashes 
or overlaps with the receptor are eliminated while the 
remaining poses are subjected to a complete linkage 
hierarchical-clustering process to eliminate redundancy. 
The best solutions from each cluster are used to iterate the 
procedure. In Hammerhead (41). ligand fragments are 
docked into the binding site and those achieving the highest 
scores are used as ‘heads’ to guide the positioning of the 
rest of the molecule (the ‘tail’). Newly generated poses are 
optimized by energy minimization. Recently, the original 
strategy used in Hammerhead has been revised, expanded, 
and included in Surflex (46-47). 
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3.4.2. Stochastic algorithms  
Stochastic algorithms address the ligand 

conformational sampling as an optimization problem, 
introducing probabilistic elements like random 
perturbations on selected parameters (48). Stochastic 
algorithms for docking can be divided into two groups: 
genetic algorithms and Monte Carlo implementations. 
 

Genetic algorithms (GA) attempt to find the 
ligand pose that best fits at the receptor binding site by 
borrowing strategies (and vocabulary) from evolutionary 
biology and population dynamics. An initial population of 
conformations is created randomly, encoding the variables 
representing each degree of freedom in data structures 
called chromosomes. Each individual is evaluated 
according to its fitness for an objective function: a larger 
fitness corresponds to a greater chance of transmitting its 
genetic inheritance to the next generation. The better fitting 
offspring replace the least fit members of the previous 
generation. To avoid a premature convergence that might 
trap the system in a local minimum, variations at the 
chromosome level are introduced randomly in the 
population by genetic operators such as mutation and 
crossing-over (49). The Lamarckian GA used in AutoDock 
is a global evolutionary optimizer equipped with two-point 
crossing-over and point mutation operators along with a 
local search feature (50). Before reproduction, each 
individual undergoes an energy minimization step. Changes 
introduced locally by minimization are coded back into the 
chromosome and transmitted to the next generations. This 
GA was nicknamed ‘Lamarckian’ after the French biologist 
Jean Baptiste de Lamarck who introduced the idea (now 
replaced by Mendelian genetics) that inheritance of 
acquired traits improves the adaptation of a species to its 
habitat. GOLD is another docking software whose 
sampling engine relies on a GA (51). In this case, the 
evolutionary process does not take place in a single large 
population. GOLD simulates a distributed environment 
where multiple subpopulations are handled simultaneously. 
This scheme, known as the ‘Islands model’, assumes that 
each population breeds and evolves separately. However, 
individual exchanges from one island to another do happen. 
Migration, a third genetic operator that complements 
mutation and crossing-over, controls the exchange rate. 
Population diversity is also preserved by the concept of 
‘nicheing’: two or more individuals share the same niche if 
the distances between their chromosomes lie within a given 
threshold. When new individuals join a population, either 
by breeding or by migration, they replace the least fit 
individual in their niche rather than in the entire population. 
The success rate of GAs strongly depends on the quality of 
the fitting function and the fine-tuning of several 
parameters (the size of the initial population, crossing-over 
and mutation rates, number of generations, etc.). If the 
overall setup creates an adequate evolutionary pressure, 
successive generations will likely provide at least one 
individual which represents an optimal bound 
conformation. 

  
Monte Carlo (MC) implementations apply to the 

docking problem the general idea of importance sampling, 
namely the Monte–Carlo-based algorithm conceived by 

Metropolis and colleagues (52). A random conformation of 
the ligand is docked at the binding site and, after 
minimization, the energy score is evaluated. Then, a 
random change in one or more variables is introduced. The 
new conformation is minimized and scored again. If the 
estimated energy is lower than the previous one, the new 
pose is automatically accepted. If the energy is higher, the 
Metropolis criterion, a probabilistic test based on a 
temperature-dependent exponential Boltzmann function, is 
applied:  

 
Eq.1  
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where ∆E is the energy difference, κB is the Boltzmann 
constant, and T is the temperature of the system. If a 
randomly generated number between 0 and 1 is lower than 
the Boltzmann factor, the test is passed and the new 
conformation is accepted. Otherwise, the new conformation 
is rejected. This process is iterated until the requested 
number of cycles is performed. The Internal Coordinates 
Mechanics (ICM) (53-54) adopts a biased probability 
stochastic optimizer as a docking engine. The Cartesian 
coordinates of the system are translated in internal 
coordinates. Roto-translational variables are sampled, 
simulating a pseudo-Brownian motion. The sampling of the 
torsional degrees of freedom is biased toward high 
probability regions according to a Gaussian distribution. A 
history term keeps track of the visited regions of the 
conformational space to help the system escape minima 
already explored, driving it toward new ones. Before 
acceptance or rejection according to the Metropolis 
criterion, a Coniugate-gradient minimization is applied to 
the generated poses. Glide (Grid-based LIgand Docking 
with Energetics)(55) is based on a funnel-shaped docking 
strategy that combines elements from database filtering, 
systematic search and incremental construction. The rigid 
core of a ligand is docked at the receptor binding site where 
the pre-calculated conformations of each rotatable group 
are evaluated. After a grid-based energy evaluation, MC 
plays an important role in further optimizing the top 
scoring conformations to properly orient the more flexible 
parts. Other docking tools that use MC searches include 
ProDock (56) and MCDock (57). 
 
3.4.3. Simulation methods  

Molecular Dynamics (MD) simulations have 
been used as docking tools to only a limited extent. In the 
docking framework, the main limitations of MD are the 
inability to cross high energy barriers and the amount of 
calculation time required to perform the simulations (30). 
Moreover, the final quality of the results is strongly 
affected by the initial conformation of the system (58). 
Different solutions have been proposed to more accurately 
and efficiently explore the energy surface. In MD Docking, 
receptor, ligand, and solvent are treated at different 
temperatures, coupling separate regions of the system with 
different thermal baths (59). Other authors have tried 
multicanonical MD simulations where the sampling is 
performed in an artificially flat energy distribution (60). 



Protein-ligand docking 

2295 

 
 

Figure 3. The importance of protein flexibility in cross docking experiments is exemplified by the plasticity of the progesterone-
receptor-binding pocket. The modulator asoprisnil cannot be correctly positioned when the conformation from the co-crystal with 
progesterone is used (white ribbon, PDBid: 1A28), due to a severe steric clash with the side chain of Met909. Asoprisnil is 
reported in ball and stick representation (green carbon atoms), Met909 side chain atoms are reported explicitly in ball and stick 
representation and also, to highlight the clash, in transparent CPK. Progesterone (grey ball and stick) and the conformation of the 
receptor in complex with asoprisnil (green transparent ribbons, PDBid: 2OVH) are reported to facilitate the comparison. 

 
Enhanced sampling methods have also been applied to the 
docking problem. For example, the protocol proposed by 
Gervasio et al., the so-called metadynamics protocol, 
explores the properties of multidimensional free energy 
surfaces of complex many-body systems using coarse-
grained non-Markovian dynamics in the space defined by a 
few collective coordinates (61). A history-dependent 
potential term fills the minima in the free energy surfaces, 
allowing the efficient exploration and accurate 
determination of the FES as a function of the collective 
coordinates. Metadynamics is able not only to reproduce a 
docked pose but also to mimic a ligand exiting or entering a 
target active site (62). 
 
3.5 .Receptor flexibility 

The first model used to explain protein-ligand 
binding described the event as an interaction between two 
rigid bodies. The ‘lock and key’ idea was then replaced by 
the Induced Fit theory proposed by Koshland: after 
binding, the ligand modifies the binding pocket to increase 
its fitness (63). In other words, after binding, the receptor is 
forced to adopt a conformation which would not exist 
without the ligand. The Induced Fit paradigm was, in turn, 
recently superseded by the Conformational Ensemble 
model (64-65). In this view, proteins naturally exist as an 
ensemble of interconverting states. The native 
conformation of a protein is actually an average state 

resulting from a thermodynamic equilibrium of conformers. 
When a ligand preferentially binds and stabilizes a receptor 
variant far from the native state, it triggers a population 
shift. What is perceived as a local rearrangement of the 
binding pocket is actually a change in the thermodynamic 
equilibrium of the whole system. Until recently, almost 
every docking simulation froze the receptor conformation. 
Now, a greater understanding of protein-ligand-binding 
dynamics has led to a gradual introduction of the receptor 
degrees of freedom in standard docking procedures. The 
biased strategy used to validate docking protocols probably 
helped minimize the role of receptor flexibility: when a 
new tool was proposed, it was usually tested using a re-
docking exercise carried out on a set of co-crystals. In re-
docking, a ligand is extracted from a holo structure and 
docked back in the cognate binding pocket. Since the 
receptor structure is perfectly adapted to accommodate the 
ligand, the results were quite accurate but, in retrospect, 
definitely inflated. The importance of protein flexibility 
became clear when ligands were docked at non-native 
binding sites (cross docking). In this more realistic 
representation of a real life scenario, the accuracy of 
standard docking programs dropped from over 90% to less 
than 50% (36-66). Figure 3 reports an example of how 
receptor flexibility can affect a cross docking attempt. 
Ideally, since even small changes in the binding pocket can 
considerably affect the final results, receptor and ligand 
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should be sampled simultaneously in a global energy 
optimization attempt. This simulation has been described as 
‘solving the problem of protein folding by adding a ligand’. 
Because of the very high number of degrees of freedom 
involved, it would be exceedingly long and would deal with 
a free energy surface so rugged that convergent results 
would probably not be obtained (67). The pragmatic 
strategies adopted to study receptor plasticity can be 
divided into three main groups: indirect methods, local-
variants-based protocols, and multiple receptor 
conformations docking (MRC).  
 
3.5.1. Indirect methods  

Receptor flexibility is accounted for implicitly, 
allowing a partial overlap between receptor and ligand 
atoms, and smoothing the high energetic penalties thus 
generated. The idea of a ‘soft’ docking algorithm was first 
proposed by Jiang and Kim (68) and then exploited in 
several other accounts (69). Soft docking is a 
computationally efficient and straightforward way of 
implementing receptor plasticity if the rearrangements to be 
modelled are local and small. 
 
3.5.2. Local variants generation  

The second group includes those methods that, 
during ligand sampling, introduce a concurrent exploration 
of some local degrees of freedom of the receptor. These 
strategies usually deal with torsional angles, which are less 
likely to dramatically alter the energy profile of the 
receptor, rather than with planar geometry variables. The 
torsional search has been reported to be more efficient and 
prone to converge if carried out in internal coordinates 
rather than in Cartesian space (70). Local searches can be 
limited to hydrogen atoms and lone pairs (51) or extended 
to side chains (71). In the latter case, the side chain 
flexibility is not modelled continuously but by means of 
rotamer galleries where the most energetically stable 
conformers of each amino acid are collected. The discrete 
nature of these libraries is a good compromise between 
computational efficiency and accurate results. Several 
authors have used a two-stage setup where rotamer 
evaluation coupled with tabu search techniques are 
followed by a local energy optimization to allow torsional 
values not originally included in the libraries (72-73). 
Meiler and Baker adapted the ROSETTADOCK(74) 
protein–protein docking algorithm to ligand docking (75). 
Again, side chains are explicitly sampled during a Monte 
Carlo optimization of the ligand. The novelty here is that 
the collected rotamer libraries are affected by the 
conformation of the protein backbone.  
 
3.5.3. Multiple receptor conformations docking  

Domain motions, extended loop transitions, and 
all the rearrangements at the backbone level are far beyond 
the capabilities of methods that model the binding pocket 
flexibility on the fly. When direct modelling of local 
conformational variants is not enough, a multiple receptor 
conformations (MRC) docking strategy can be attempted. 
In its most basic form, MRC is just a standard docking 
approach systematically iterated over an ensemble of 
receptor conformations. Each conformation is used in an 
independent simulation and the results are merged together 

during an additional post-processing step. Members of the 
ensemble can be collected from experimental structures, 
generated by computational means, or both (18). 
Experimental holo structures can be considered reliable 
representations of those receptor conformational space 
regions that promote the binding event. Conversely, in-
silico-generated conformations can produce unprecedented 
rearrangements of the binding pocket and, therefore, 
enhance the possibility of discovering truly novel ligands. 
Barril and Morley’s groundbreaking study of MRC docking 
(76) suggests that, although using a limited ensemble of 
selected conformations generally improves the quality of 
results, an indiscriminate inclusion of a large number of 
receptor variants in the simulation does not improve the 
overall performance and may actually be deleterious. In 
this regard, several strategies have been recommended to 
select, in advance, a subset of conformations that will most 
likely provide the best results when combined in an MRC 
protocol. MRC calculations are time-consuming, since the 
calculation requirements scale linearly with the number of 
structures, and they entail a high level of user intervention 
during post-processing. In order to overcome these two 
main drawbacks, automatic MRC approaches have been 
reported, mainly as extensions and adaptations of standard 
docking engines. In 1997, Knegtel and coworkers (77) 
proposed an MRC protocol based on DOCK3.5 (78). 
Separate complements of grids, each one describing a 
single receptor conformation, were merged into an average 
model. Huang and Zou (79) describe another MRC 
approach developed by adapting DOCK (version 4.0) (80). 
The weighted average method was also applied to several 
customized versions of AutoDock (81). In particular, the 
idea of average grids was further improved by introducing 
Boltzmann weights based on energetic differences (66). In 
FlexE (82-83), which was developed starting from FlexX, a 
united protein description is provided: after 
superimposition, the regions of the receptor conformers that 
display structural variations are combinatorially merged to 
generate new states which, in turn, are later used alongside 
the original structures. MRC studies using Glide (84) and 
ICM (85-86) were also reported. In particular, the Four-
Dimensional docking algorithm considers multiple receptor 
conformers as an extra dimension of the ligand search 
space. The procedure combines the accuracy of an MRC 
implementation with the speed of a single conformer 
docking. Recently, several algorithms purposely devised 
for MRC calculations were reported. FITTED (87) is based 
on a genetic algorithm whose operators can describe 
receptor flexibility either jumping among different protein 
conformations from the set (semi-flexible run) or 
rearranging side chains and backbone variables 
independently. FLIPDock (88) simultaneously codes ligand 
and receptor motions in a high level data structure, the 
Flexibility Tree, originally developed to describe 
conformational subspaces of macromolecules and later 
adapted to the docking problem. One of the most 
interesting features of the Flexibility Tree is that 
experimental evidence and biological expertise can be 
included quite easily in the flowchart. In gapped models 
(36-89), an ensemble of receptor variants is generated by 
deleting different parts of the receptor, typically converting 
one or more binding pocket side chains into alanine. Empty 
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spaces allow an initial positioning of the ligand, avoiding 
severe steric clashes. The receptor is then returned to the 
ungapped state and the complex undergoes geometrical 
optimization before rescoring. Gapped models combine 
features from MRC and local variant optimization 
techniques. 

 
The Relaxed Complex Method (RCM) developed 

by McCammon’s group is a good example of how an 
advanced MRC protocol can contribute to the success of 
rational drug design efforts (90). In RCM, MRC docking is 
complemented with other computational techniques in an 
advanced protocol that provides a reliable prediction of a 
ligand-binding mode. First, the receptor flexibility is 
explored in a fully atomistic fashion using long MD 
simulations. Plain MD or enhanced sampling strategies can 
be used to sample the receptor conformational space. 
Several snapshots are extracted from the trajectory and 
used as receptor conformers. In the first applications of 
RCS, snapshots were extracted at equal time intervals while 
later implementations strongly rely on advanced cluster 
analysis algorithms to eliminate conformational 
redundancy and to reduce the computational burden (91). 
The docking step is accomplished using AutoDock 
Lamarckian GA, which takes full advantage of the 
improved desolvation term introduced since version 4.0 
(92). The most promising poses are rescored with a 
customized implementation of MM-PBSA, an end-point 
free energy assessment approach (93-94). In standard MM-
PBSA, an MD simulation of the bound complex is 
performed to calculate, according to molecular mechanics 
(MM), the contribution of ligand receptor direct 
interactions. The solvation energy is decomposed in 
electrostatic and non-polar components: the electrostatic 
contribution is retrieved by solving the Poisson Boltzmann 
(PB) equation in a continuum solvent model, while the non-
polar effect is estimated according to the surface area (SA) 
accessible to the solvent (95). In RCS, MM-PBSA is 
modified to include the unfavorable entropic contribution 
to the binding event due to the loss of roto-translational and 
conformational entropy (96). The reference states for the 
unbound protein and ligand are extracted from the docked 
complex trajectory: what may appear as an 
oversimplification significantly reduces computational 
requests, decreases convergence issues, and introduces only 
negligible variations in the final outcome. RCS has 
successfully helped in the search for novel inhibitors of 
HIV Integrase (97), Kinetoplastid RNA Editing Ligase 1 
(KREL1) of T.brucei (91), AChBP (98), and MMP-2 (99). 

  
3.6. Scoring 

In the last stage of a docking protocol, the poses 
retrieved during sampling need to be evaluated in terms of 
interaction energy with the receptor. The quantitative 
estimate of the binding affinity is usually reported in terms 
of Gibbs free energy difference (∆Gbind) between receptor 
(R) and ligand (L) in their unbound state and the complex 
(RL) formed upon binding. From the statistical 
thermodynamics point of view, the theoretical frame for 
evaluating the free energy of binding is well established 
(100-101). Receptor ligand associations are usually 
regarded as an event that combines enthalpic and entropic 

effects. There is an electrostatic component that accounts 
for basic interactions, such as the H-bond formation and the 
Coulombic attraction/repulsion among charges, as well as 
for superior order contributions such as dipole-dipole 
interactions. Shape complementarity is also accounted for 
by van der Waals interactions. In physiological conditions, 
the binding event takes place in solvent and, for this reason, 
the contributions of hydrophobic surfaces solvation and 
desolvation must be considered too. When bound, receptor 
and ligand can only adopt a narrower range of 
conformations as compared to the unbound states, 
intuitively decreasing the entropy of the system. Finally, 
the ligand could adopt strained conformations, directly 
increasing the system’s potential energy. All these 
contributions are expressed by ∆Gbind which, in turn, is 
related to the equilibrium binding constant Keq according to 
the following equation: 

 
Eq.2  

 
 
where T is the temperature of the system. 
 

∆Gbind can be determined from first principles 
only for very simple systems (such as an ideal gas), which 
allow the solution of the system configuration integral. In 
real systems, the computational determination of ∆Gbind can 
be carried out at different levels of approximation, with 
more accurate methods also being more demanding in 
terms of CPU time. A simple classification can be 
attempted according to the number of states that the 
system considers for the calculation (102). In path 
methods, the free energy difference is calculated by 
considering the initial and the final states together with 
several unphysical intermediates. The path in the energy 
surface connecting the unbound to the bound state is 
exceedingly long to calculate and the simulation would 
hardly converge. However, if the overall path is split 
into smaller steps, as in the free energy perturbation 
(103) or  the thermodynamic integration (104) 
techniques, the local energy differences can be more 
practically calculated and total ∆Gbind can be obtained 
by summation. Other path methods currently used in 
binding free energy estimation are computational 
alchemy (105) and metadynamics (106). These methods 
are very accurate, providing ∆Gbind in the range of 
accuracy of the experimental error (1-2 kcal/mol), but 
their computational cost hampers their use in standard 
docking protocols. In the end-points methods, only the 
initial and the final states of the system are considered 
(93-107). The practical issue that has to be addressed 
here is that, in explicit solvent models, the free energy 
difference due to complex formation represents just a 
small fraction of the global energy difference between the 
two states, overwhelmed by solvent contributions. For this 
reason, many end-points methods resort to implicit solvent 
descriptions to highlight solute contributions to ∆Gbind. 
These strategies are much faster than path-based methods 
but still provide very accurate predictions. Several end-
points methods have been successfully applied in docking 
protocols and one example will be discussed in greater 
detail later in this chapter. 
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In the vast majority of docking approaches, ∆Gbind 
is estimated using a simple scoring function that only considers 
the bound state (108). It has been noted that, for strong binders, 
this assumption can still provide an adequate description of the 
system because the bound conformation provides the main 
contribution to the partition function. Scoring functions are not 
expected to provide an accurate estimate of the binding free 
energy, but to characterize those igand poses that more 
accurately resemble experimental binding modes. To date, 
over 35 different scoring functions have been reported (43). 
They introduce different approximations and linearly combine 
different terms (which are generally assumed to be 
independent terms) but they all share the main feature of being 
fast: they can provide an almost instantaneous, if somewhat 
rough, estimation of the binding free energy. Scoring functions 
are also used during the sampling step, whenever an energy 
evaluation is necessary (application of the Metropolis criterion, 
estimation of the fitness function in GA, comparative 
conformers evaluation in incremental construction, etc.). So, 
technically, the final scoring step should be more properly 
referred to as re-scoring, since contributions to the free 
energy of binding ignored during sampling for the sake of 
speed can be included at this stage or an altogether different 
scoring function can be used. Several authors have 
classified the scoring functions into three main categories: 
force-field-based, empirical, and knowledge-based 
(16,30,109). 

 
3.6.1. Force-field-based scoring functions  

The bonded and non-bonded interactions among 
the atoms in the system are modeled according to the rules 
of molecular mechanics. A master equation provides the 
overall energy of the system, expressing different 
contributions with additive terms. The terms expressing the 
energy strain that the ligand displays in its bound 
conformation are described by a harmonic potential: the 
energy contribution of covalent bonds stretching, valence 
bonds bending, and torsions varies according to the 
deviation from a reference value. A Coulomb electrostatic 
potential describes the interactions between charges, while 
van der Waals attractive and repulsive energies are 
expressed by the Lennard-Jones potential. Equilibrium 
states for these terms are derived from force fields 
originally developed for molecular dynamics calculations. 
Since functional forms differ in just minor details among 
different force fields, only the equation of the AMBER 
(110) force field is reported as a general example: 
 
Eq.3 

 
 
Due to the nature of the resulting energy landscape, a 
minimization step is required before the final energy 
evaluation (109). The main limitation of force-field-based 
scoring functions is that contributions to binding such as 
desolvation effect and configurational entropy loss are 
either completely overlooked or introduced in the final 
score by heuristics. Several authors suggest that the 
accuracy of force-field-based scoring functions can be 
increased by tuning the Lennard Jones potential with 

different exponents (111). In fact, in its standard 6-12 
implementation, this term is extremely sensitive to even 
small deviations in atomic coordinates and can produce a 
large amount of noise in intermolecular energy 
calculations. Another way to improve accuracy is to work 
on the electrostatic potential. Force fields that explicitly 
account for polarization effects on the atomic charges as 
well as distant-dependent dielectric constants to model 
solvation have recently been adopted in docking protocols 
(112), D-Score (111), G-Score (111), and the scoring 
function used in AutoDock (92) are all examples of force-
field-based scoring functions. 
 
3.6.2. Empirical scoring functions  

Empirical scoring functions are apparently 
similar to force-field-based implementations as they are 
built on the idea that a binding score can be described 
through a linear summation of independent terms. 
Empirical terms may vary among scoring functions but 
they are usually simpler than their force field 
counterparts, can be calculated very easily, and are 
statistically weighted before summation. The weights 
are determined by regression analysis from a training set 
of known ligand receptor co-crystals whose binding free 
energy was experimentally calculated. What is not clearly 
established and is usually regarded as the main limitation of 
this kind of scoring method is the efficacy of their 
predictive power when confronted with putative ligand 
receptor complexes that are radically different from those 
used in the training set. Several empirical scoring functions 
have been reported, some developed and used in tight 
combination with a specific docking software (GlideScore 
in Glide (55), or the scoring functions used in ICM (113) 
and FlexX (45)), other provided as standalone routines, like 
ChemScore (114), HINT (115), and VALIDATE (116). 
A very appealing feature of empirical schemes is the 
possibility of devising customized weights in order to 
tailor the function toward a specific protein class. F-
Score (45), one of the scoring functions endowed in 
FlexX and largely based on the work of Böhm (117), 
represents a standard example of the empirical 
approach. The binding score is calculated by combining 
simple terms that account for hydrogen bonds (hbond), 
ionic interactions (ionic), the number of torsional angles 
(Nrot), and protein-ligand lipophilic contacts (lipo). 

 
Eq.4 

 

 
 

The functional form f(∆R,∆α) of each term discourages 
deviations from ideal geometries. With respect to the 
previous work (118), the main novelty introduced in F-
Score is the calculation of lipophilic interactions as a sum 
of all pairwise interatomic contacts. Moreover, the scheme 
introduces a specific term for aromatic contributions (aro). 
The K weights were calibrated by regression using a set of 
45 experimentally determined binding scores from protein-
ligand co-crystals.   
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3.6.3. Knowledge-based Scoring Functions  
A third strategy that can be adopted to provide a 

quantitative assessment of the binding energy is related to 
the idea of Potential of Mean Force (PMF) (119). The PMF 
formalism was originally developed for liquids statistical 
mechanics and later adapted to proteins in folding-related 
studies (104). In proteins, an analysis of the frequencies of 
interatomic contacts is carried out on a training set of 
crystal structures: the most favorable interactions should be 
located in the maxima of the frequencies’ distributions. The 
contribution to the binding free energy of each atom pair is 
calculated according to the collected statistics and the total 
binding score is generated through a summation over all the 
interactions. On average, knowledge-based scoring 
functions achieve satisfactory performances, they are very 
fast, and comparatively easy to implement. The results they 
provide are not greatly dependent on the nature of the 
training set, unlike the results of regression-based methods. 
However, knowledge-based scoring functions can lack 
physical rigor: in systems of equal particles in 
thermodynamic equilibrium, an n-particle correlation can 
be translated into a potential that gives an average force 
over all the configurations of the system. However, atoms 
in protein ligand complexes are not equal and a set of 
crystal structures cannot be considered a system in 
equilibrium. In 2000, Gohlke and colleagues developed and 
validated DrugScore, a knowledge-based scoring function 
that increased the accuracy of FlexX by up to 75% on a test 
set of over 150 proteins (120). DrugScore’s main equation 
relates two different kinds of contributions: distance-
dependent pair potentials between atoms of the ligand and 
atoms of the protein and a one-body potential term that 
accounts for the surfaces in the two molecules (SAS0) that 
become buried upon complex formation (SAS). The 
preference ∆W for a specific ligand pose is expressed as: 

 
Eq.5 

 

 
  

considering ki atoms of the ligand and lj atoms of the 
protein. 
The role of hydrogen atoms and the entropic contribution to 
the binding free energy are considered implicitly in this 
kind of calculation. Of several scoring functions that have 
been reported, SMoG2001 (121) and M-Score (122) are 
worth mentioning. 

 
3.6.4. Consensus scoring 

The consensus approach is a very straightforward 
attempt to overcome the limitations of the currently 
available scoring functions. Rather than a single method, 
scoring functions are combined to evaluate the generated 
poses (123-124). This approach is reported to significantly 
enhance the accuracy of the results. The consensus 
approach is unlikely to outperform the most accurate of the 
scoring functions used. However, in a real life scenario, it 
is not possible to know in advance which scoring scheme is 
going to perform better or worse than the others. By using 
several of them, the below-average performance of a 
particular scoring function is less likely to affect the overall 

quality of the results (125). Attempting a different strategy 
to address the scoring problem, we considered the poses’ 
ensemble as an actual collection of observed data to be 
dealt with using a statistical approach (126-127). The 
application of advanced clustering techniques significantly 
improved the accuracy of the docking results, establishing a 
significant correlation between cluster population and the 
presence of a near-native pose. 

 
4. COMPARING Docking Protocols 
 

In 2010, over 70 docking engines are 
commercially or freely available to the scientific 
community, and new implementations are reported 
every month (43). Several groups (109,128,132) have 
attempted to compare the performances of different 
docking protocols, in terms of both sampling and 
scoring, to answer legitimate and compelling questions. 
Which docking tool works best? Do we really need so 
many implementations? Are new programs performing 
better than the old ones? Although no method appears to 
systematically outperform the others, researchers did 
identify combinations of sampling and scoring that 
perform better for a specific target or series of 
compounds. In this light, comparative reports can help 
select the docking approach most appropriate to the task 
at hand, and so interest in this kind of exercise remains 
high. However, setting up a truly fair comparison is far 
from simple for a number of reasons, discussed in two 
excellent reviews by Cole et al. (133) and, more 
recently, by Hawkins et al. (22). An indirect comparison 
based solely on the results obtained by each tool in the 
validation process would hardly provide robust 
conclusions: each tool was usually validated against a 
benchmark of specifically collected crystallographic 
complexes which only marginally and accidentally 
overlapped with those used for other programs. 
Furthermore, structures in each set were selected 
according to different criteria and the success rates were 
not estimated in a uniform way. In a direct comparison, 
different tools are tested against a purposely compiled 
set of co-crystals. Ideally, such a set should only include 
high quality structures to limit the chance of failure due 
to intrinsic biases of the crystals and not limitations of 
the docking approach. As mentioned, structures should 
also display a high level of diversity. Hartshorn and 
colleagues (21) reported specific guidelines for 
compiling a set of protein structures to validate and 
compare docking tools. According to these guidelines, 
they compiled a publicly available benchmark of 85 
structures of pharmaceutical relevance. A fair comparison 
should also consider the user’s knowledge of the docking 
protocols compared in the study as well as the user’s 
familiarity with the systems included in the test set. Several 
studies reported a consistent improvement of docking 
accuracies when protocols were purposely adapted to the 
system, often deviating quite significantly from the set of 
default or suggested parameters (134). Similarly, the 
outcomes improved when the setup exploited expert 
knowledge of the system biology, i.e. manually assigning 
hystidines’ tautomeric states or including crystallographic 
water molecules that greatly affect the binding event.  
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5. FUTURE PERSPECTIVES 
 

Modern drug discovery is evolving and new 
approaches such as fragment-based drug design (135-136) 
and polypharmacology (137) are steadily becoming more 
and more popular. Can currently available docking 
schemes, developed to predict the binding mode of a lead-
like molecule to the rigid binding site of a single target, 
efficiently assist these new paradigms? Preliminary 
evidence suggests that the available protocols will need 
significant updates and improvements but will not have to 
be rethought from scratch (138). 
 

For example, during validation and fine tuning, 
traditional assessments of accuracy could be complemented 
by figures of merit solely based on ligand-receptor 
interactions, such as interaction fingerprints (139), that 
better describe the behavior of fragments with respect to 
RMSD. Scoring functions will have to be recalibrated to 
accurately predict the binding mode of weak binders, since 
fragments tend to display experimental Ki values in the 
high micromolar range (140). Again, the entropic 
contributions to the binding energy will have to be 
calculated much more accurately since rough 
approximations proportional to the number of torsional 
degrees of freedom work acceptably for lead-like 
compounds but would dramatically fail in simulations 
involving low affinity fragments. 
 

Polypharmacology, namely the ability of a 
compound to modulate multiple targets at the same time, is 
emerging as the leading strategy for interacting with 
complex pathologies, overcoming back-up and redundant 
mechanisms in a disease network (141). A truly efficient 
and systematic implementation of docking in multi-target 
strategies will require a simultaneous treatment of different 
binding sites, most likely exploiting procedures usually 
used in pharmacophore search and ligand-based strategies 
(142-143). The preliminary results obtained by docking 
simulations in the field of multi-target ligand development 
suggest that this technique will be a valuable tool in future 
research. For example, Chronic Myelogenous Leukemia 
(CML) is an aggressive neoplasy characterized by an 
unregulated overgrowth of the myeloid cells in the bone 
marrow. It is a good example of a complex disease (144). 
CML is triggered by a reciprocal translocation in 
chromosomes 9 and 22, resulting in an aberrant 
chromosomic structure known as Philadelphia; the 
Philadelphia translocation creates Bcr-Abl, an oncogenic 
fusion gene translated into a constitutively active tyrosine 
kinase domain. The kinase activity deeply affects several 
cell cycle regulators, boosting myeloid cells’ proliferation 
rate. CML is currently treated with tyrosine kinase 
inhibitors such as Imatinib (145). However, the emergence 
of Imatinib-resistant tumor clones in patients treated with 
Bcr-Abl kinase inhibitors led to the development of novel 
molecules that could interact with several variants of Bcr-
Abl or with Bcr-Abl and other targets(144). Ligand 
docking has been used to identify dual inhibitors of Bcr-
Abl and Src, a member of a proto-oncogenic tyrosine 
kinase family that emerged as an ideal co-target, since it is 
overexpressed in leukemia cells and participates in CML 

development (146). Manetti et al. reported a lead discovery 
protocol built on a combination of molecular dynamics 
simulations and docking studies that led to the development of 
dual c-Src/Abl kinases inhibitors (147). The same enzyme 
combination was also targeted by a series of 
pyrazolopyrimidines designed using a consensus application of 
two different docking engines. 
  

Ligand docking applications in multi-target ligand 
identification is not limited to molecules used to treat CML: in 
combination with pharmacophore matching, it was also a key 
step in identifying three dual inhibitors that target human 
leukotriene A4 hydrolase (LTA4H-h) and the human 
nonpancreatic secretory phospholipase A2 (hnps-PLA2) (148). 
Both enzymes are involved in the arachidonic acid metabolism 
and a concurrent inhibition of the same pathway in two 
different spots is considered a promising strategy in treating 
inflammation. Jenwitheesuk and colleagues reported the use of 
docking in combination with other computational techniques 
to develop molecules active against HIV-1 retrovirus and, at 
the same time, other pathogens responsible for opportunistic 
infections (149). Although the multi-target profile is limited 
here to very closely related enzymes or mutants of the same 
target, the reported studies clearly show that ligand docking 
can beneficially assist in the discovery of multi-target ligands. 

 
6. CONCLUSIONS 
 
 Over the last 30 years, the reliability of docking 
protocols has improved constantly, to the point where the 
most recent implementations address quite efficiently some 
classic shortcomings of the technique. Several issues 
remain, primarily the accuracy of binding energy 
predictions. But important breakthroughs are expected 
thanks to the ever-increasing computational power of 
multicore CPUs (150). Presently, ligand docking plays an 
important role, especially in the hit-to-lead phase of drug 
discovery projects where it helps rationalize SAR data and 
design novel decorations (151). Moreover, thanks to the 
variety of docking software available, personalized 
protocols can be devised for specific targets or specific 
ligand-target combinations. In summary, ligand docking is 
now a valuable part of almost every structure-based drug 
design study carried out in both academia and industry.  
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