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1. ABSTRACT  
 

Despite remarkable advances in oncology 
medicine, the prognosis of lung cancer patients has not 
greatly improved over the past few decades. To 
overcome the current limit, new classes of agents that 
specifically target particular cascades have been 
developed. Gefitinib and erlotinib, which are tyrosine 
kinase inhibitors specific for the epidermal growth 
factor receptor (EGFR), have provided hope for better 
survival. The relationship between the sensitivity to 
gefitinib and the tumors’ EGFR mutations have allowed 
the selective and accelerated use of these therapies. 
However, their efficacy is still limited, predominantly 

 
 

 
 
 

due to side effects and drug resistance. Further 
development of rational clinical strategies will require 
greater clarification of the key signaling factors 
downstream of EGFR which are potential targets for 
cancer therapies. In this review, we describe the various 
observed abnormalities in EGFR, the mechanisms of 
activation of several critical signaling cascades in lung 
cancer. Summarizing the data gleaned from preclinical, 
and clinicopathological aspects, we discuss the 
molecular mechanisms that may underlie a possible 
successful response to the blockade of EGFR and/or its 
downstream signaling.  
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2. INTRODUCTION 
 

Lung cancer is the leading cause of cancer death, 
annually resulting in 1.1 million deaths (17.8% of all 
cancer deaths) worldwide (1). Five-year survival rates 
range from less than 20% (Stage IIIB and IV) to 67% 
(Stage IB and II) and the overall cure rate is less than 15% 
(2-5).  

 
Lung cancers are conventionally divided, 

initially, into two categories; small cell lung carcinoma 
(SCLC) and non-small cell lung carcinoma (NSCLC)(6). 
SCLC accounts for 15 - 25% of the total cases and exhibits 
neuroendocrine features, histologically (6). This group of 
carcinomas is conventionally treated by chemotherapy, 
except for peripherally localized Stage I tumors. NSCLC 
accounts for 75 - 85% of all, and is the most common cause 
of death in male and second next to breast cancer in female 
(7). NSCLC is further subdivided into three subtypes: 
squamous cell carcinoma (SCC, -28%), large-cell 
carcinoma (LCC, -24%) and adenocarcinoma (AC, -
48%)(6, 8). Although these types differ histologically, 
until recently, little clinical distinction was made among 
them (9). Treatment of NSCLC is guided by the disease 
stage. Surgery is the first-line treatment of choice for 
localized cancers of clinical stage I/II, whereas 
multimodality therapies are the norm for patients in 
advanced stage (7). About 40% of patients with NSCLC 
present at an advanced stage, with metastatic or locally 
advanced disease, which underscores the importance of 
identifying a therapeutic strategy. Therefore, treatment for 
advanced cancers is palliative with the hope of prolonging 
survival and prevent deterioration in the quality of life (10). 
Combination chemotherapy, usually platinum-based 
regimens, and doublet containing platinum with paclitaxel, 
gemcitabine, docetaxel or vinorelbine are currently the 
first-line therapy of choice (5, 7, 10, 11). 

 
  Along with the refinement of drug 

combinations, a great effort has been made in the oncology 
research for innovative therapeutic agents in NSCLC that 
are more effective than conventional agents (12, 13). Since 
it was found that many aberrant signaling cascades 
emanating from growth factor receptors function as 
oncogenic signaling pathways, they and their effector 
molecules have been investigated as possible drug targets. 
Eventually, this effort has spurred the development of more 
than 500 molecularly targeted pharmacological agents and 
ushered in the concept of tailored therapy, i.e, matching the 
appropriate patients with the appropriate therapies (7, 14). 
One such target is the epidermal growth factor receptor 
(EGFR)(3, 13). A large number of previous reports have 
demonstrated oncogenic alterations of EGFR in human 
cancers, including gene amplifications, deletions and 
mutations. Consequently, several EGFR-targeted agents 
have been developed and are in clinical use, including the 
anti-EGFR monoclonal antibody cetuximab, as well as the 
tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib (7, 
15). However, it has been repeatedly recognized in the 
history of medical oncology that only a subset, and not a 
majority of patients derive significant benefit from a 
particular anticancer agent, presumably, due to the 

complexity of the signaling pathways involved in each case 
(14). Indeed, the agents developed against EGFR, either 
monoclonal antibody or gefitinib, initially did not produce 
consistent results and a particular group of the patients had 
been noted to show remarkable response to gefitinib (16). 
However, one breakthrough discovery in the past decade 
has been the identification of specific genetic lesions in the 
tumors of a subset of treated patients who were seen to 
receive clinical benefit from these anticancer agents. 
Frequently, this genetic lesion is an activating mutation 
within the target kinase gene (7, 14). These discoveries 
have prompted efforts to stratify patients before treatment 
or after the operation at the time of relapse, and to apply 
kinase inhibitors based on the specific genomic character of 
the cancer. 

 
In lung cancers, the discovery of the relation 

between TKI sensitivity and somatic mutations in the 
tyrosine kinase domain of EGFR represents a dramatic step 
in the development of treatment strategies (16). These 
mutations are typically gain-of-function, transforming 
mutations that act to enhance EGFR activation, and thus, in 
most of the cases, markedly increase the sensitivity to 
EGFR inhibitors (7). However, even with TKI therapy for 
the patients harboring EGFR mutations, efficacy is not 
completely satisfactory and results are somewhat 
heterogeneous (13, 16). Furthermore, even though NSCLC 
patients with EGFR mutations show an initial dramatic 
response to EGFR-TKIs, a serious clinical problem is that 
almost all acquire resistance within 1 year (details in 
Chapter 6.2.) (16). Thus, therapy targeting EGFR must be 
further refined in the forthcoming age of lung cancer 
therapy. This should consist of the identification in 
advance, of the subpopulation of patients who respond to a 
particular (adjuvant) therapy so as to derive greater 
therapeutic benefit and simultaneously to avoid 
unnecessary treatment of patients who have little 
probability of benefiting. In parallel with this approach, 
new modes of combination therapy, including folate-
antagonist, pemetrexed or the anti-endothelial growth 
factor-antibody, bevacizumab have recently been 
introduced as the regimens for non-squamous cell 
carcinoma (17, 18). But, impediments similar to those seen 
with EGFR-TKIs will most likely emerge in clinical 
application, i.e., limitation of the applicants, drug resistance 
and side effects. 

 
 Another important issue is that, although we 

may be able to identify a subpopulation of patients for 
therapy by the presence of specific genomic aberrations, 
the larger population of the patients await more suitable 
and reasonable chemotherapeutics. There is a large body of 
work describing abnormalities in EGFR protein expression 
and in gene copy numbers (Chapter 3), however the 
majority of “abnormal EGFRs” which play a role in 
oncogenesis are of the apparent wild-type variety. These 
“abnormal wild-type EGFRs” function by activating 
myriad downstream effectors. Herein, the question arises as 
to whether targeting a specific single molecule is indeed 
hitting an “Achilles heel” or would effective treatments 
require targeting multiple points by single or multiple 
agents. In general, it is unlikely that any one signaling 
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Figure 1. A. Schematic presentation of signaling cascades downstream of EGFR. B. Akt/mTOR/S6K mediated pathway, 
which may play a critical role downstream of EGFR harboring mutation in tyrosine kinase domain.  Abbreviations: PI3-K, 
phosphatidylinositol 3-kinase; Stat, signal transducers and activators of transcription; Erk, the extracellular signal-regulated 
kinase 1/2; mTOR, mammalian target of rapamycin; 4E-BP1, eukaryotic initiation factor 4E-binding protein 1; rS6, S6 ribosomal 
protein.  

 
pathway drives the oncogenic behavior of tumors, 
rather, the process of malignant transformation and/or 
progression is driven by complex signaling cascades 
and accumulated multiple gene aberrations (12). 
Therefore, with respect to the therapeutic 
intervention, inhibiting EGFR alone may not be 
sufficient for substantial inhibition of tumor cell 
growth and/or proliferation depending on the cases, 
and multipoint intervention may be highlighted. In 
such cases, further precise and comprehensive 
analyses are required to identify molecules critical to 
individual cases and to develop the most effective 
drug combinations. This should include an analysis of 
the activation of each effector protein and functionally 
critical phosphoproteins involved. We and others have 
found that among the downstream signaling 
intermediates of EGFR, several critical factors exist 
and function as transmitters of the proliferation signal 
in tumors, depending on the EGFR status (19, 20). 
Those could be critical targets for modulating these 
pathways and thus novel targets.    

 
In this review, we describe the known 

abnormalities in the cascade from EGFR to its effector 
downstream molecules and discuss future potential 
therapeutic strategies. 
 
3.  EGFR ABNORMALITIES IN LUNG CANCER 
 

 The EGFR gene, located on chromosome 
7p12, encodes a 170 kD membrane glycoprotein. 
Upon binding of specific ligands, the receptor 
dimerizes, autophosphorylates and activates 
downstream effectors (Figure 1A). This results in 
changes in gene and protein expression crucial to 
tumor proliferation and/or progression (21). 
Traditionally, EGF or EGF-related growth factors, 

produced either by cancer cells themselves or by 
surrounding stromal cells, have been described as 
causing constitutive EGFR activation via autocrine or 
paracrine mechanisms (12). Progress in molecular 
biology and pathology and the development of 
multiple tools to investigate EGFR abnormalities, 
including immunohistochemistry (IHC), fluorescence 
in situ hybridization analysis (FISH) and sequencing 
techniques have clarified further the precise profiles 
of EGFR abnormalities (22).  

 
 We and others worked and have focused 

on, (i) the frequency of EGFR protein overexpression 
(Chapters 3.1., 3.2.), (ii) the frequency of EGFR gene 
amplification and mutations as well as predilection in 
various human cancers (Chapters 3.3, 3.4.), and (iii) 
the correlation between the status of the gene, protein 
and clinicopathological features (Chapter 3.5.). 
Accordingly, abnormalities in EGFR are introduced in 
the following sections in this order. 
 
3.1.  Overexpression of EGFR protein 

 EGFR overexpression is readily detectable 
in NSCLC, but the reported frequencies have varied 
ranging from 32%–80% (23-26). These significant 
variations in the prevalence of overexpression may 
result in part from the historical background of 
different scoring systems in IHC, in contrast to genes, 
such as HER-2, for which scoring has been standardized 
worldwide. However, results have been converging more 
closely in recent reports, ranging from 53.1–69.7% (Table 
1), probably due to the standardization of antibodies 
and criteria of evaluation in IHC (26-32). We 
evaluated EGFR expression by IHC using a 4-tier-
system (0, 1+, 2+ and 3+) following the criteria for 
HER-2 expression. We defined 2+ and 3+ staining as 
“overexpression”, since only those cases showing 2+ or 3+ 
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Table 1.  Abnormality of EGFR/Akt/mTOR cascade in human cancers 
  Prevalence in  lung cancer References Other tumors References 
EGFR overexpresion 53.1 - 69.7% 26-32 Glioma, breast, gastrointestinal tract, many others 21, 24, 33, 39 
EGFR activation 44% - 47% 32, 35 head & neck, breast, colon, many others 21, 24 
EGFR amplification 6 - 40% 26, 28, 30 Glioma, breast, gastrointestinal  tract, sarcoma 33, 39, 43, 44 
EGFR mutation 3 - 40% 30, 47-49, 51 biliary tract, sarcoma 33 
Akt activation 43 - 90% 64, 71, 74, 77 head & neck, breast, many others 70, 73, 74, 75 
mTOR activation 51 - 74% 71, 85, 86 Ovary, lymphoma, sarcoma, cancer-like syndrome, tuberous sclerosis, 79, 120, 124, 126 
S6K activation - 58% 35, 71 Breast,ovary,stomach,sarcoma,lymphoma 88, 89, 90 
rS6 activation 50 - 56% 35, 59, 71, 91 Ovary, sarcoma 60, 75, 83 
4E-BP1 activation - 25% 35 Breast, ovary, endometrium 58, 82, 83 

 
positivity in IHC were associated with gene amplification 
(26, 33). Although the frequency of EGFR overexpression 
was definitely rare in SCLC (- 7%), there was no 
significant difference in positive frequency among 
histological types in NSCLC, with slight predominance in 
SCC than in AC (26, 34, 35). Even in the carcinomas 
scored as positive for overexpression, heterogeneity of 
EGFR staining was observed within a single tumor nodule, 
suggesting that EGFR overexpression is not a clonal 
phenomenon in most of the cases (26). 
 
3.2.  Activation of EGFR protein 

  The activated EGFR is phosphorylated, and 
recently this phosphorylated form has become more 
amenable to efficient analysis by direct immunoblotting or 
even by IHC with anti-phospho-EGFR-specific antibodies. 
By these efficient methods, EGFR activation was observed 
in up to 47% of NSCLC cases by IHC and IB (Table 1) (32, 
35). Among the phosphorylated EGFR (p-EGFR)-positive 
NSCLC cases in our series, 80% were accompanied by 
EGFR overexpression. But, in the cases that scored as low 
level expression (1+ staining), 15% nevertheless showed 
EGFR activation. Therefore, overexpression is not 
prerequisite for activation and low level expression of 
activated EGFR exists. In contrast, only 7% of SCLC 
showed EGFR activation (35).  
 
3.3.  Amplification of EGFR gene 

 In gliomas, EGFR amplification is often 
accompanied by structural rearrangements that cause in-
frame deletions in the extracellular domain, the most 
frequent being the EGFRvIII variant (36). On the other 
hand, in NSCLC, amplification with rearrangement is 
extremely rare (37). The frequency of EGFR amplification 
in NSCLC was variously described in past literature, as 
ranging from 6% to 40%, and more frequent in SCC (Table 
1) (26, 28, 30). But higher frequencies (up to 50%) of 
EGFR amplification or polysomy with high copy number 
have been reported in patients with advanced NSCLC (2, 
34, 38).  

 
 We found EGFR amplification in 23% of the 

NSCLC cases, consisting of high level amplification in 
10% and low level amplification in 13% (26). Among the 
tumors showing protein overexpression, the frequency of 
EGFR gene amplification was found to be 74%. Moreover, 
it is noteworthy that, 95% of 3+ cases and 60% of 2+ cases 
were associated with gene amplification. Nowadays, gene 
amplification has been recognized as a main cause of 
EGFR overexpression in a number of studies (12, 26, 39). 
In tumors exhibiting EGFR gene amplification, EGFR 
protein expression was found to be markedly enhanced, 
activated and moreover, its downstream signal transducer 

 
and activator of transcription protein-3 (Stat-3) was 
frequently activated (details in Chapter 4.)(20).  

 
With regards to the pathobiological significance 

of these aberrations, one of the in vitro studies 
demonstrated that amplification readily disappeared in 
response to chemotherapy (40), validating the use of 
chemotherapy against tumors with EGFR amplification. 
This treatment may cause downregulation of EGFR and 
subsequently abrogate the EGFR-mediated intracellular 
signal cascade. However, the number of human cancers 
fitting this particular model of “EGFR addiction” is not 
very large (41). 

 
Other mechanisms of EGFR overexpression 

include increased EGFR gene copy number by 
chromosome 7 polysomy in the absence of amplification, 
however, this accounts for only a minor proportion of cases 
(28, 33). EGFR protein overexpression is also caused by 
transcriptional or post-transcriptional activation without an 
increase in gene copy number, and various theories have 
been proposed to explain the mechanisms underlying this 
phenomenon: p53 directly activates EGFR expression at 
the transcriptional level (42), in addition, EGFR 
transcription is modulated by polymorphic CA repeats (43) 
and by a 140 bp enhancer region (44), both of which reside 
within intron 1.   
 
 3.4.   EGFR gene mutation spectrum and associated 
amplification 

Given the apparent clustering of EGFR 
mutations (45, 46), many groups screened mutations in the 
ATP-binding domain (exons 18 through 21), and revealed 
the presence of mutations in 3 to 40% of NSCLC and 13 to 
65% of AC, depending on the patients’ ethnicity (30, 47, 
48). The scientific consensus is that mutations are more 
frequent in adenocarcinomas (21% in average) compared to 
other histologies (SCC and LC, 2%), more frequent in 
females (20%) than males (9%), and in Asians (26%) 
compared to Caucasians (2%) (35, 47-49).  

 
The most frequently encountered mutation is a 

leucine to arginine substitution at amino acid position 858 
(L858R) of exon 21, found in 40 to 50% of the cases 
harboring mutations (45, 46, 50). Other common mutations 
include in-frame deletions within exon 19, removing a 
region of amino acids from 746 through 753, with or 
without the generation of a novel codon at the deletion 
breakpoint, in 40 to 45% of mutants. A glycine to 
serine/cysteine/glutamine substitution at codon 719 
(G719S/C/D) of exon 18 was found in up to 5% of the case, 
and half of these are TKI-sensitive (7). A threonine to 
methionine substitution at codon 790 (T790M) of exon 20, 
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which was found in 5 to 10%, causes resistance by 
sterically blocking binding of tyrosine kinase inhibitors 
(51). However, the precise underlying mechanism is 
unclear since it is still sensitive to structurally similar 
irreversible inhibitors (7). Other rare mutations include 
S695R (exon 18) in AC as well as Y727H (exon 18), V843I 
(exon 21) in SCC and G729R (exon 19) in 
“undifferentiated carcinoma” and several others (20, 49). 

 
  Among the cases exhibiting genetic mutation, 

an association with EGFR amplification was reported as 
15% to 100%, depending on the scoring system for FISH 
that was used (30, 34, 52). Our FISH analysis revealed that 
amplification was observed in 22% of NSCLC cases 
harboring mutation, and the increase of EGFR 
(amplification and polysomy) was in about 43% of the 
cases (35). Therefore, genetic mutations could be more or 
less associated with an increase in gene copy numbers, 
probably reflecting the instability of the EGFR gene in 
cancer cells. 
 
3.5.  Clinicopathological significance of EGFR 
abnormalities 

A large number of reports have analyzed the 
correlations between EGFR abnormalities and 
clinicopathological factors and patients’ survival, but these 
have often produced contradictory results. Again, these 
results could be partially due to the significant difference in 
the rates of overexpression and of amplification caused by 
the different scoring systems. 
 
3.5.1.  Overexpression 

  Although EGFR overexpression has been well 
recognized to be important in the development and 
progression of lung cancers, its prognostic significance is 
still unclear. Representative reports could be summarized 
as below.  

 
i) A correlation was found between EGFR 

expression and lymph node metastasis, tumor invasiveness 
as mediastinal involvement, the more advanced 
pathological Stage (p-Stage) (26), and thus, worse survival 
(53).  

 
However, contradictory results were also 

reported.  
 
ii) No significant difference in lymph node 

metastasis or overall survival was found in correlation with 
EGFR overexpression, not only by qualitative, but also 
quantitative analysis for expression of EGFR mRNA and/or 
protein (23, 54). 

 The latter seems credible since recent successive 
reports described similar results probably due to the 
standardization of technique and criteria for evaluation of 
“overexpression” (55).  
 
3.5.2.  Amplification 

A clinicopathological correlation with amplification 
has also been variously reported.  

i) The presence of high level amplification in AC 
was associated not only with nodal metastasis, but also with 

a higher histological grade, invasive growth and higher p-
Stage (26, 52). Consistently, amplification is rare in 
bronchioalveolar carcinoma or its precursor lesion, atypical 
adenomatous hyperplasia (52).  

 
ii) EGFR amplification correlated with a response 

to gefitinib, but not with overall survival when NSCLC 
were viewed as a whole (52, 56). Capuzzo et al. showed 
that 33% of FISH-positive cases (increase in EGFR gene 
copy number) had a higher response rate to gefitinib than 
the FISH negative cases (30). 
 
3.5.3.  Mutations 

 The broad consensus is that carcinomas harboring 
L858R in exon 21 or deletions in exon 19 predict 
responsiveness to TKIs (45, 46), whereas T790M predicts 
resistance (7, 51). Other mutations correlated to a minor 
extent with sensitivity or were not clarified. TKIs have 
been utilized for defined patients whose tumors were 
confirmed to exhibit EGFR mutation (approximately 15 to 
20% of the total). These patients show a remarkable 
response of about 50% (30), although the overall survival 
even in this particular group has still remained at a plateau 
(56). However, recent multi-institutional study in Japan 
reported the prolonged progression-free survival by the 
first-line gefitinib, instead of conventional regimens, for 
patients with advanced NSCLC harboring EGFR mutations 
(57). 

 
Collectively, there was no significant difference 

in survival rates between two groups (positive and 
negative) when divided with respect to protein 
overexpression, gene amplification or mutation.  
 
4. SIGNALING CACCADE OF EGFR 
 

As mentioned in the earlier chapters, EGFR 
status per se can not predict a definitive therapeutic 
response and clinical course in NSCLC, except for the 
presence of mutations. One reason for this is that there is 
not a completely direct or linear correlation among 
abnormality of the EGFR gene, protein 
overexpression/activation, and downstream activation (20, 
58). Therefore, the functional profile for activation of 
downstream effector proteins that indicates the critical 
biochemical effectors in individual cases need to be better 
clarified in order to obtain the most efficient therapeutic 
effect.  

   
A number of downstream signaling intermediates 

of EGFR have been implicated as transmitters of the 
oncogenic proliferation signal (19, 20). There are 
three main pathways activated through EGFR; the 
Stat (signal transducers and activators of 
transcription), the extracellular signal-regulated 
kinase 1/2 (Erk1/2) and the phosphatidylinositol 3-
kinase (PI3K)–Akt pathways (Figure 1A) (12, 36). A 
significant body of evidence has already shown that these 
three downstream cascades are actively involved in the 
survival, proliferation and/or progression of tumors in 
association with activation not only of EGFR, but also of 
other growth factor receptors (12, 19, 36).
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Figure 2.  Immunohistochemical staining for proteins of the Akt/mTOR pathway in a case of lung adenocarcinoma.  A. 
phosphorylated-Akt (p-Akt) was observed in the nuclei and the cytoplasm.  B-D. Activation of mTOR (B), S6K (C) and rS6 (D) 
was observed as the positive staining in the cytoplasm of cancer cells forming acinar structure.  Asterisk in (B) showed non-
neoplastic bronchial mucosa. Original magnification, x200. 

 
4.1.  Stats  

   Activation of Stat-3, Erk1/2 and Akt can be 
detected immunohistochemically using phosphoprotein-
specific antibodies which have become commercially 
available and validated by recent studies (20, 59-61). 
Therefore, the topographical localization of the 
phosphorylated forms of these effector proteins within the 
tumor and their involvement in various kinds of human 
cancers have been described successively (58, 62-64). 

  
 Stats are transcriptional factors that can be 

activated by interaction with phosphorylated receptors, 
including the phosphotyrosine residues of EGFR, leading to 
the modulation of cell proliferation and differentiation (61). 
Activated Stat leads its translocation to the nucleus, where 
it binds DNA response elements (61). Constitutive 
activation of Stats, in particular Stat-3, is often found in 
human malignant tumors, including those of the head and 
neck (65), the breast (66), and the lungs (20, 62, 63). 
Histologically, phosphorylated Stat-3 (p-Stat-3) signal was 
confined to the nucleus, and was observed in 38 to 71 % of 
NSCLC (20, 62, 63). In particular, in tumors exhibiting 
EGFR gene amplification, Stat-3 was frequently activated 
(20).  
 
4.2.  Erk1/2 

  Erk1/2 was shown to be activated by a variety 
of mitogenic agents, and is a ubiquitous component of 
signal transduction pathways through ras/raf, regulating 
cell proliferation, survival and transformation (67). 
Constitutive activation of Erk1/2 was observed in both the 
nuclei and the cytoplasm, in up to 28 % of lung cancers 
(20, 68), but Erk1/2 activation did not correlate with any 
specific aberrations of EGFR (20). 

 
4.3.   Akt  

Akt is a serine/threonine kinase that acts 
downstream of many growth factor receptors, including 
EGFR, which itself is activated by phosphorylation at 
amino acids Thr308 and Ser473 through the PI3K pathway. 
Akt plays a critical role in various cellular actions, 
including glucose metabolism and anti-apoptotic signaling 
(69). Constitutive activation of Akt can oncogenically 
transform cells, and indeed, the PI3K/Akt pathway is 
frequently activated in a variety of human malignancies 
(Table 1)(64, 69, 70). In particular, in cases of NSCLC 
harboring mutations in EGFR, the level of EGFR 
phosphorylation was enhanced and hyperphosphorylated 
Akt was detected in 44~96% (Figure 1B)(35, 64, 69, 71). 
The importance of Akt activation has been further 
strengthened by the finding that gefitinib responsiveness 
could subsequently be predicted by Akt activation (3, 16, 
20, 72). Hence, the PI3K/Akt pathway plays a critical role 
downstream of EGFR, particularly in the population of 
NSCLC harboring EGFR mutations, and Akt is, at least, 
one of the determinants of gefitinib sensitivity.  

 
p-Akt was histologically observed in both the cytoplasm 
and the nucleus. However, intense nuclear p-Akt staining 
was often observed in carcinomas harboring EGFR 
mutation (Figure 2A). 
 
4.4.   Possible correlations between EGFR status and 
downstream activation 

The previous reports mentioned in Chapters 3. and 
4. can be summarized as below. 

 
i) Carcinomas harboring EGFR gene amplification 

revealed a higher level of EGFR 
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expression/phosphorylation compared with those harboring 
EGFR in disomy. In those cases, Stat-3 was often 
activated. This suggests that persistent Stat-3 activation 
may be a critical event downstream of EGFR that has 
been overexpressed due to gene amplification (20).  

 
ii) On the other hand, carcinomas harboring the 

EGFR mutation may persistently activate a cascade via 
Akt. In these cases, both EGFR expression and EGFR 
phosphorylation was enhanced, and Akt was activated at 
a high frequency (20). However, in one report using 
cultured cells transfected with mutant EGFR, both the 
PI3K-Akt and Stat pathways were activated by EGF 
stimulation (46). Thus, there may be a discrepancy 
between the experimental model and actual human 
specimens.  

 
iii) In those cases not showing gene 

amplification or mutation, specific correlation of EGFR 
overexpression/activation with activation of downstream 
molecules was not observed (20). 

 
The diversity of the activation patterns in 

these molecules may be the evidence of mechanism in 
the maintenance of homeostasis in established cancer 
cells, and the particular signaling cascade that is 
predominantly activated may differ depending on the 
genotype, the stage of the tumor and their environment. 
 
5. AKT-MEDIATED PATHWAY 
 
5.1. Akt, as a potential key molecule and its 
significance in human cancer 

Akt is a central node in a signaling pathway 
consisting of many components that have been 
implicated in tumorigenesis, such as upstream PI3K, 
PTEN (Phosphatase and Tensin homologue deleted on 
chromosome Ten) and downstream tuberous sclerosis 
gene product complex (TSC)(Figure 1B) (73). In human 
malignant tumors, constitutive Akt activation is noted in 
a wide variety of cancers; ovarian, lung, renal, breast 
carcinoma, lymphoma and sarcomas (73-75). Therefore, 
not only Akt, but also the components of this pathway 
have emerged as the focus of cancer research and 
therapy.  

 
In addition to an association between activated 

Akt pathway and gefitinib sensitivity in NSCLC (72), 
numerous reports have described correlations between 
Akt activity and clinicopathologic parameters in human 
cancers. In ovarian carcinomas, elevated Akt activity 
has been shown to be particularly prevalent in high 
grade, late stage and/or metastatic tumors, and linked to 
reduced patient survival (73). In NSCLC, alterations in 
Akt have been variously described.  

 
i) Akt expression correlated with worse 

clinical profiles; lymph node metastasis, resistance 
against chemotherapy and radiation (20, 69). As one of 
the possible underlying mechanisms in the lymph node 
metastasis, Akt is known to reduce E-cadherin 
expression in the cultured cell lines (76).  

ii) Phosphorylation of Akt was a poor prognostic 
factor for NSCLC patients with lymph node involvement 
(77). 

 
iii) Conversely, Akt activation was associated 

with a better prognosis (64).  
 
iv) The remaining reports show that elevated Akt 

activity did not correlate with tumor stage, grade or 
survival rate (20, 35, 71, 73, 74).  
 
5.2.  Akt/mTOR cascade  

Signaling through Akt is transduced to a myriad 
variety of molecules one of which is mammalian target of 
rapamycin (mTOR). mTOR is a 289 kD serine/threonine 

protein kinase and a member of the PI3-K-related kinase 
(PIKK) family. The mTOR pathway is highly conserved 
and mediates signals from nutrients and oxygen, as well as 
from growth factor receptors (78, 79). mTOR activation 
positively regulates cell proliferation by promoting entry 
into the G1 phase of the cell cycle, via phosphorylation of 
substrates that cooperate in ribosomal biogenesis and 
translational initiation (Figure 1B) (79, 80). The current 
model of Akt signaling to mTOR involves direct activation 
of mTOR through phosphorylation of the Ser2448 residue 
and indirect activation as well (81). Indirect activation 
involves Akt phosphorylation of a complex formed by the 
tumor suppressor proteins TSC 1 and 2 (TSC1/2), also 
known as hamartin and tuberin, which normally suppress 
mTOR activity (80). mTOR phosphorylates its downstream 
targets p70S6-kinase (S6K) and eukaryotic initiation factor 
4E (eIF4E) binding proteins 1, 2, and 3 (4E-BPs 1-3)(58, 
80, 82). The former, S6K phosphorylates the ribosomal 
protein S6 (rS6) to increase translation of mRNAs with 5'-
terminal oligopolypyrimidine (5'TOP) tracts (80). The 
latter, 4E-BP1, dimerizes with the initiation factor eIF4E 
and blocks cap-dependent translation (58). Phosphorylation 
of 4E-BP1 releases eIF4E to promote translation (80). 
Involvement of mTOR, p-S6K as well as p-4E-BP1 in 
cancer have been suggested by their activation in ovarian, 
endometrial and breast carcinomas and also by the 
correlation with poor prognosis (58, 82, 83).  

 
In NSCLC harboring mutant EGFR, the Akt-

mediated pathway was constitutively and frequently 
activated although no significant correlation was observed 
between EGFR mutations and Akt activation in several 
studies (35, 84). This notion has added further weight to the 
idea that this kinase-driven pathway leading to activation of 
Akt/mTOR and its downstream effectors constitute another 
critical mechanism underlying the pathology of a subset of 
NSCLC.  
 
5.3.  Involvement of mTOR in cancer  

  Since it is evident that mTOR plays a role in 
lung cancers, its activation profiles in NSCLC has recently 
been examined by IHC. We observed that, in non-
neoplastic tissue, activated mTOR staining was weakly 
observed in the cytoplasm of bronchial epithelial cells 
(Figure 2B). In lung carcinomas, intense p-mTOR signal 
has been observed in 51 to 74% (Table 1)(71, 85, 86). 
However, the activation patterns of mTOR vary among 
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histological types. In AC, approximately 90% of the tumors 
revealed mTOR activation, but this incidence was only 
40% in SCC and much less in SCLC (10.0%)(35, 71). In 
AC, the frequency of p-mTOR staining correlated with 
the degree of morphological differentiation, i.e., p-
mTOR staining was observed predominantly in the 
cytoplasm of the tumor cells in the well-formed acinar 
structure (Figure 2B). This suggests that mTOR has a 
dual function in human lung carcinomas: mTOR may 
not only promote the proliferation of tumor cells as an 
effector molecule downstream of growth factor 
receptors, but also may function in the differentiation 
and, possibly, acinar morphogenesis of AC. S6K and 
rS6 are likely to participate downstream in acinar 
morphogenesis in AC, since they were also activated 
more frequently in AC. Studies in the literature report 
that enhanced p-rS6 signal has been observed 
throughout the lung epithelium after birth, but not in the 
interstitial tissue. This specific localization of p-rS6 in 
the epithelium may imply that the S6K-rS6 cascade has 
an essential function in the morphogenesis and/or acinar 
differentiation of lung epithelial structure (87). Along 
the same lines, elevated signaling of the mTOR-S6K-S6 
axis may be an evidence of their involvement critical in 
the morphogenesis of well differentiated AC. 

 
 However, this histology-dependent mTOR 

activation was observed only in vivo, and not in cultured 
cells, i.e., SCLC or SCC-derived cultured cells also exhibit 
an equivalent level of mTOR phosphorylation as AC-
derived cells (our unpublished data). 

 
In our study, we found that among NSCLC cases 

exhibiting Akt activation, 63% revealed mTOR activation 
(Figure 3)(35). On the other hand, among p-mTOR positive 
cancers, 66% were associated with Akt activation. mTOR 
activation that appeared to be EGFR-Akt pathway-
dependent (i.e., positive for p-EGFR, p-Akt and p-mTOR) 
comprised 18% of total NSCLC cases (Figure 3). Hence, 
although not the principal effector, mTOR is one of the 
critical downstream modulators in the EGFR-Akt cascade.  
 
5.4.   Downstream of mTOR and specific correlations 
between intermediate effectors 

The idea of targeting signaling through the 
Akt/mTOR pathway [Akt, mTOR, S6K, rS6 and 4E-BP1] 
downstream of EGFR in lung carcinomas is a tantalizing 
one. The involvement of downstream effectors of mTOR 
signaling, S6K-rS6 proteins as well as 4E-BP1, have been 
studied in parallel with mTOR in cancer.  

 
In the literature, S6K was reported to be 

activated in B-cell lymphoma, breast, ovary, gastric cancers 
and sarcomas (88-90). Positive signal of p-S6K in non-
neoplastic tissue was seen in the smooth muscle cells of 
vascular walls and more weakly in the bronchial epithelial 
cells. In NSCLC, S6K activation has been observed in up to 
58%, but up to 73% in AC (35, 71) (Table 1 and Figure 
2C). Approximately, 50% of those positive cases showed 
nuclear staining, suggesting that S6K shuttles between the 
cytoplasm and the nucleus.  

 

p-rS6 was observed in 50 to 56%, but up to 67 to 
73% in AC, while the 32% in SCLC (35, 59, 71, 91) (Table 
1 and Figure 2D). Notably, NSCLC cases with EGFR 
mutations were associated with the higher levels of p-S6K 
and, p-rS6 proteins (up to 54% of all NSCLC cases and up 
to 90% of the cases harboring EGFR mutations) (35, 91). 
The positive p-rS6 signal was almost exclusively 
cytoplasmic (Figures 2D). Among p-rS6-positive NSCLC 
cases, 70% were p-S6K dependent and 26% were activated 
through the EGFR/Akt/mTOR/S6K cascade (35). 

 
4E-BP1 was activated in 25% of NSCLC without 

any particular prevalence among histological types in our 
series (Table 1) (35). The positive signal was almost 
exclusively cytoplasmic. Among p-4E-BP1-positive 
NSCLC cases, 14% were activated through the 
EGFR/Akt/mTOR cascade (35).  
 
5.5   Constitutive activation of the EGFR-Akt-mTOR 
cascade  

Next, we examined clinical cases of lung 
carcinomas to dissect the mode of signal transduction 
from the EGFR/Akt/mTOR cascade to S6K-rS6/4E-BP1. 
This involved immunohistochemical staining for all of 
these proteins simultaneously in each case and 
evaluation of the activation pattern of effector molecules 
in a sample group. EGFR activation (p-EGFR positive) 
was observed in 45% of NSCLC, and 56% of these p-
EGFR positive cases (i.e 25% of all cases) revealed Akt 
activation (Figure 3). Although activation of the Akt 
pathway is not completely dependent on the EGFR axis, 
more than 50% of the cases with Akt-activation were 
EGFR-dependent.  

 
  Constitutive activation of all the intermediates 

between EGFR through rS6 was found in only 12% with a 
slight preponderance in AC (Figure 3). However, this 
does not necessarily imply the minimal involvement of this 
cascade in lung carcinoma since there remains the 
possibility that some of these proteins could be transiently 
activated, then dephosphorylated, and thus not all 
phosphorylated proteins may be visualized simultaneously 
by IHC. 

 
Among the tumors harboring EGFR gene 

mutations, constitutive activation of the entire cascade from 
EGFR through rS6 was found in approximately 50%. This 
correlation between EGFR mutation and activation of this 
cascade was observed even in SCC cases although the 
numbers of SCC cases with mutated EGFR were much 
smaller (35). 
   
5.6.  Clinicopathological analysis  

In previous IHC studies on NSCLC, no 
consistent conclusion could be drawn regarding the 
correlation between activation of effector proteins 
downstream of EGFR and clinicopathological features, 
which probably reflects large differences in IHC data. The 
positive correlations among the activation of mTOR 
cassette proteins and various clinicopathological factors 
and profiles are as follows.  
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Figure 3.  Prevalence of activation in EGFR and intermediate effectors in Akt/mTOR-mediated pathway evaluated by 
immunohistochemistry. The values indicate positive ratios in total cases of non-small cell carcinoma. Abbreviations: p-EGFR, 
phosphorylated EGFR; mTOR, mammalian target of rapamycin; S6K, p70S6 kinase; rS6, S6 ribosomal protein.   

 
i) There was the positive correlation between 

nodal metastasis and mTOR phosphorylation in SCC, but 
not in AC (71). 

 
ii) S6K and 4E-BP1 activation was a determinant 

of cisplatin resistance in NSCLC (92).  
 
iii) Elevated p-S6 is associated with lymph node 

metastasis in lung AC and exhibited significantly shorter 
time-to metastasis compared with p-rS6 negative tumors 
(59).  

 
iv) There was no predictive value for nodal 

metastasis or prognostic value for overall survival in p-4E-
BP1 or p-S6K in lung cancer (35, 71). 

 
Collectively, Akt/mTOR-mediated signaling 

confers clinical aggressiveness, and in particular, the signals 
which lead to S6 activation may be involved in nodal 
involvement in NSCLC.  
   
6. MOLUCULAR TARGETED THERAPY IN LUNG 
CANCER  
 
6.1.  Development of EGFR-targeted therapy  

The ultimate goal of current efforts in anticancer 
drug development is to selectively kill cancer cells using 
agents that are specific and toxic just for tumor cells with 
fewer side effects. The highly conserved ATP–binding site 
within the catalytic domain of most kinases was initially 

viewed as a suitable target for the development of selective 

and potent small-molecule kinase inhibitors. The clinical 

success of such kinase inhibitors as imatinib (Abl inhibitor) 
and gefitinib has validated this strategy and promoted a 
explosion in the identification of additional kinase 
inhibitors (13). So far, at least 30 distinct selective kinase 
inhibitors have been introduced, and many more are 
following as cancer genome projects continue (Table 2) 
(13, 14, 93). 

  
In lung carcinoma, EGFR has been most 

intensively pursued as a therapeutic target, and two major 
classes of EGFR therapeutics have been found: 
ectodomain-binding antibodies and small-molecule TKIs 
(Table 2) (7, 12, 14, 16). The former includes cetuximab 
(IMC-C225, ErbituxTM), a chimeric monoclonal antibody 
(IgG1 subtype) that competitively binds the extracellular 
domain of EGFR. Cetuximab was initially approved for the 
treatment of metastatic colorectal cancer and is now well 
established in various lines of treatment (94). A number of 
novel antibodies with different spectra of activity or 
mechanisms of receptor inhibition are currently in 
development. The representative one is panitumumab 
(Vectibix®), a fully human monoclonal antibody of the 
immunoglobulin subclass IgGκ2 (7). In preclinical 
experiments, it was shown that the antitumor effect of 
EGFR-targeted monoclonal antibodies was strengthened 
when combined with the DNA-crosslinking drug, cisplatin 
(95).  

 
The latter group is TKIs.  
 

i)  Gefitinib is the first small molecule TKI approved for 
NSCLC, and is an orally active, selective, and 
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Table 2. Molecularly targeted inhibitors 
Agent / Compound Trade Name Target Reference 
Antibody 

• cetuximab/IMC-C225 Erbitux® EGFR 16, 135 
• panitumumab Vectibix® EGFR 7, 16 

Tyrosine kinase Inhibitors   
Reversible inhibitors 

• gefitinib / ZD1839 Iressa®   EGFR          13, 14, 96 
• erlotiinib / OSI-774 Tarceva® EGFR         13, 14, 36, 97 
• lapatinib / GW572016 Tykerb® EGFR/HER-2 98, 99 
• vandetanib / ZD6474 ZACTIMATM EGFR/RET/VEGFR2 7, 16 
• AEE788   EGFR/HER2/VEGFR 101 
• BMS-690514   EGFR/HER4/VEGFR1-3/FIt-3 7 
• pazopanib / GW86034   VEGFR1-3/PDGFRα,β/c-kit 102 

 Irreversible ihibitors  
• canertinib / CI-1033   Pan-ErbB 16, 104 
• neratinib / HKI272   Pan-ErbB 103 
• PF002998904   EGFR/HER2/HER4 16 
• BIBW-2992 Tovok® EGFR/HER2 105 
• foretinib/GSK136089, XL880   Met/VEGFR2 100 
• pemetrexed Alimta® Folate 17 
• beracizumab AvastinTM VEGF 18 
• PF2341066   Met/ALK 108 
• ARQ197   Met/Focal Adhesion Kinase 16 
• XL184   Met/VEGFR2 16 
• PI-103   PI3-K/mTOR 130 
• lactoquinomycin   Akt 109 
• pyranonaphthoquinones   Akt 109 
• KP372-1   Akt 111 
• perifosine   Akt/mTOR 129 
• sirolimus  Rapamune® mTOR 119, 122, 123, 124 
• temsirolimus /CCI-779 Torisel®      mTOR 124 
• everolimus /RAD-001 Afinitor® mTOR 60, 124 
• AP-23573   mTOR 124 
• cucurbitacin-I   Stat-3 112 
• tyrphostin AG490   Stat-3 123 

 
reversible EGFR-TKI that chemically belongs to the class 
of anilinoquinazolines (96). Although as a single agent in 
vitro, the effects of gefitinib were mainly cytostatic, 
cytotoxic effects have also been observed (96) as suggested 
by its proapoptotic effects involving Bcl-2 family members 
(96). Erlotinib (OSI-774) is the second TKI, clinically 
introduced for NSCLC, and is an EGFR-specific 
quinazoline derivative. An initial report showed that 
erlotinib induced apoptosis and growth inhibition in several 
tumor cell lines in vitro, which was, in part, associated with 
the blockade in the G1 phase of the cell cycle (16, 97). In 
tumor biopsy specimens, phosphorylated forms of EGFR, 
Akt, and ERK were significantly downregulated after 
treatment with erlotinib (36).  

 
ii) The second category includes a small molecule 

dual inhibitor of EGFR/HER2, lapatinib (Tykerb®)(7, 98). 
Lapatinib is currently approved in combination with 
capecitabine (Xeloda®) for the treatment of HER-2-
overexpressing chemorefractory breast cancer patients and 
is in clinical investigation for multiple solid tumors, 
including NSCLC (99).  Another example is foretinib 
(XL880/GSK1363089) targeting c-Met/VEGFR2 (vascular 
endothelial growth factor receptor 2) (100). 

 
iii) Inhibitors of triple or more TKs are 

vandetanib (ZACTIMATM, ZD6474) for 
EGFR/RET/VEGFR2 and AEE788 for 
EGFR/HFR2/VEGFR (101). BMS-690514 (Bristol-Myers 
Squibb) is an oral selective inhibitor of EGFR, HER-2, 
HER-4, VEGFR1-3 and Flt-3 (7) and pazopanib 
(GW786034) is an oral inhibitor of VEGFR1-3, 
PDGFRα, β and c-Kit (102). 

 

iv) The last category consists of the irreversible 
inhibitors, canertinib (pan-ErbB receptor tyrosine kinase 
inhibitor, CI-1033) and neratinib (HKI272, an irreversible 
pan ErbB inhibitor) (16, 103, 104). Moreover, the aniline–
quinazoline derivative BIBW-2992 (Tovok®), an oral 
irreversible dual TKI of the EGFR and HER-2 (105), has 
been currently in clinical trials for NSCLC with T790M 
mutation (7, 16). These exhibit potent irreversibility in 
target binding, and simultaneous inhibition of EGFR and 
other oncogenic pathways. 

 
Several of these agents exhibit activity in tumors 

refractory to gefitinib or erlotinib, and thus, vandetanib and 
neratinib have, in particular, undergone the extensive 
preclinical testing (7). 
 
6.2.  Resistance against TKIs  

One serious therapeutic obstacle to effective 
therapy is drug resistance, and this has supplied the impetus 
to continuously search for new therapies. A secondary 
point mutation in exon 20 of EGFR that substitutes 
methionine for threonine at amino acid position 790 
(T790M) was identified in at least half of the NSCLC 
patients who developed acquired resistance to gefitinib or 
erlotinib (51). Almost all patients acquire resistance to 
these drugs within 1 year, posing a serious clinical 
problem. Another 20% of the patients exhibited 
amplification of the MET gene, which causes activation of 
ERBB3 and subsequently of Akt. This results in the evasion 
of apoptosis and resistance against TKI (106, 107).  

 
New strategies to minimize the risk of acquired 

resistance to EGFR inhibition have been employed in the 
development of next-generation EGFR tyrosine kinase 
inhibitors. Within this class, irreversible EGFR-TKIs 
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(Chapter 6.1.4) are currently in clinical trials for NSCLC 
with TKI resistance. Given that NSCLC-derived cell lines 
harboring MET amplification demonstrate sensitivity to 
MET kinase inhibitors, regimens with an EGFR-TKI plus 
MET inhibitor (ARQ197, XL184, foretinib) are also under 
investigation (100, 107, 108). 

 
On the other hand, tumors having mutated EGFR 

were found to signal predominantly through Akt (Chapters 
3.4., 4.3.). Therefore, in these types of tumors, resistance 
against TKIs might be treated with an Akt antagonist 
(lactoquinomycin, pyranonaphthoquinones, perifosine and 
KP372-1)(109, 110) or PI3K inhibitors (LY294002, 
wortmannin), which may still be effective in suppressing 
Akt-mediated signaling (111). 
 
6.3.  Targeting cancers with wild type EGFR 

  Although clarification of the relation between 
EGFR mutation and TKI sensitivity has prompted clinicians 
to stratify patients to optimize clinical outcomes, this 
stratification excludes a majority of the patients (3, 13, 84). 
The serious issue here is that in more of the NSCLC cases, 
EGFR signaling functions through wild type EGFR. Thus, 
we may need to focus on targeting downstream effector 
molecules as an alternative strategy. 

 
First, since in tumors with amplification of the 

EGFR gene, the enhanced EGFR signal is frequently 
mediated by Stat-3 activation (Chapters 3.3., 4.1.), these 
tumors could be subjects for treatment with Stat-3 
inhibitors, e.g. tyrphostin AG490, cucurbitacin etc. In 
addition, cetuximab may contribute to efficacy as it 
inhibits the action of overexpressed EGFR protein (112) 
(113).  

 
Second, data from past studies have identified 

patients whose tumors did not harbor EGFR mutations, 
but who nonetheless benefited from gefitinib. This 
suggests that additional genetic or biochemical factors 
contribute to the gefitinib response (114). Although 
other possible genomic changes were variously described 
to be linked to TKI sensitivity, including HER2 

mutations, K-Ras mutation and PTEN disruption (115-
117), these correlations have not been established in lung 
cancer. Several studies have shown that EGFR 
amplification is associated with sensitivity to 
gefitinib/erlotinib and with better survival (Chapter 
3.5.2.) (7, 30, 34). In addition, high expression of the 
ErbB family members may result in the constitutive 
activation of Akt and subsequently sensitize cells to 
TKIs (114). This suggests that elevated Akt may solely 
be a predictive marker for TKI sensitivity. 

 
Thus, we should attempt to identify downstream 

molecules that are specifically activated in cases that do not 
exhibit obvious EGFR aberration. This kind of precise 
screening for the phenotypes could identify which patients 

may have a good response to targeting therapy and 
eventually determine the appropriate therapeutic strategy 
for each patient.  
6.4.  Rationale for targeting Akt/mTOR signaling in 
human cancers 

As mentioned in the Chapters 5.3. to 5.5., 
components of the kinase-driven pathway leading to 
activation of Akt/mTOR are reasonable targets for 
therapeutic intervention. Blocking this pathway could 
impede the proliferation of tumor cells by inducing 
apoptosis or sensitizing tumors to other cytotoxic agents 
(73, 118, 119). mTOR is one of the most appealing 
therapeutic target, considering that mTOR interacts via a 
number of circuitous routes with many signaling elements 
(78, 79, 120, 121) and it already has an identified inhibitor 
in clinical use, rapamycin. Rapamycin is a bacterial 
macrolide agent, and a well-known immunosuppressant, 
that functions as an allosteric inhibitor of mTOR (79, 122, 
123). In addition to rapamycin (sirolimus), its derivatives 
temsirolimus (CCI-779), everolimus (RAD-001) and AP-
23573 are being currently evaluated in clinical trials (124, 
125). Some of these exhibit potent activity even as a 
monotherapy, with minor toxicity against a wide panel of 
cancers, including renal cell carcinoma, SCLC, sarcoma, 
glioblastoma, and lymphoma (120), and everolimus has 
been approved for the treatment of renal cell carcinomas 
(119, 126). Recent promising experiments looking at the 
combined inhibition of EGFR, mTOR and PI3-K have 
shown to have an additive effect on suppressing cell growth 
and motility in cultured cancer cells (122). Furthermore, 
everolimus has been shown to enhance the effects of 
conventional platinum-based therapies in cultured NSCLC 
cells, by promoting apoptosis (123). Similarly, mitomycin-
C and etoposide cause the dephosphorylation of S6K and 
4E-BP1, resulting in synergy with rapamycin (73, 123, 
127). Therefore, it may be possible to superimpose 
inhibition of the entire Akt/mTOR/S6K/4E-BP1 axis by 
rapamycin with conventional regimens against NSCLC 
regardless of EGFR status. In this sense, rapamycin could 
play a central role in combination with diverse regimens. 

 
However, suppression of the mTOR signaling is 

not necessarily beneficial due to the presence of redundant 
negative feedback (119, 128). Constitutive activation of the 
Akt/mTOR pathway in cancer cells, in part, induces 
upstream feedback inhibition of signaling via EGFR. This 
feedback regulation has garnered significant interest over 
the past decade, since it had been noted that, despite the 
potent activity in experimental systems, inhibitors of 
mTOR clinically exhibit more modest antitumor activity 
(121, 128). The underlying mechanism is now interpreted, 
at least partially, as stemming from the fact that inhibition 
of mTOR abrogates this feedback inhibition of the pathway 
and causes activation of Akt as a result (128). As a 
countermeasure, it may be possible to utilize combined 
treatments involving conventional regimens, rapamycin and 
the Akt inhibitors (Chapter V-2), which may abrogate 
rapamycin-induced Akt kinase activity. One of the Akt 
inhibitors, perifosine, was found not only to remarkably 
reduce the levels of Akt, but also to inhibit the mTOR axis 
by two mechanisms. One is the inhibition of the assembly 
of both mTOR/raptor and mTOR/rictor complexes, and the 
other is downregulation of its major components, mTOR, 
raptor, rictor, S6K and 4E-BP1 by promoting their 
degradation through a GSK3/FBW7-dependent pathway 
(129). 
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Additionally, PI-103, a dual-kinase inhibitor of 
PI3K and mTOR, holds considerable promise in preclinical 
studies either as a monotherapy or in combination with 
targeted EGFR inhibitors (130).  
 
6.5.  Multitargeted therapies 

With the exception of rare cancers in which 
growth can depend upon a single factor, lung cancer, in 
general, is a heterogeneous disease with multiple gene 
aberrations (12). This implies that selective targeted agents 
may have limited activity. Furthermore, the efficacy of a 
single agent is often hindered by resistance. In addition to 
the T790M mutation and MET amplification, treatment 
with EGFR-tyrosine kinase inhibitor alone has been 
reported to increase the levels of EGFR/IGF-IR 
heterodimer expression, which activates its downstream 
signaling mediators, and stimulates mTOR–mediated de 
novo protein synthesis of EGFR in NSCLC cells (131). 
Another mechanism is the compensatory pathways to 
confer resistance as bypassing the effects of an EGFR-
directed TKI through activation of other ERBBs (132). 
Persistent activation of signaling cascade caused by 
aberrations downstream (ex. PI3-K, Akt, etc.) may also 
have a role in the resistance to EGFR-directed inhibitors 
(36, 133). These observations highlight the growing 
consensus that inhibition of multiple targets may be 
required for successful cancer therapy (12, 130, 134). Thus, 
multitargeted agents represent the next generation of 
targeted therapies. 

 
 One straightforward strategy towards this end is 

the development of drugs with a somewhat broader 
selectivity, such as the use of TKIs targeting many different 
ERBB receptors. Simultaneous targeted inhibition of 
multiple signaling pathways has been, indeed, more 
effective than inhibiting a single pathway specifically in 
NSCLC (12, 93, 135). In this line, dual and triple TKIs, 
including irreversible TKIs have been extensively 
investigated (Chapter 6.1.4.).  

 
Despite of the progress in pursuing in this 

strategy, for most patients with NSCLC, targeted therapies 
have not dramatically changed clinical outcome. The 
molecular complexity of lung cancer is at the root of these 
unsuccessful results and illustrates the need for optimizing 
treatment by applying a more tailored therapeutic approach 
in each case (7, 8, 14). 
   
7.  CONCLUSIONS AND PERSPECTIVE 
 

 Cancer research has pursued the development of 
rational clinical strategies based on the understanding of 
cancer biology. With recent advances in our understanding 
of the relationship between tumor genotypes and sensitivity 
to TKIs, together with improved technologies for 
genotyping and phenotyping tumor samples, the 
implementation of tailored treatments with new classes of 

inhibitors have become a reality. In the process of 
identifying targets for therapy, our knowledge about the 
molecular pathways involved in cancers has increased, and 
this knowledge has been translated into clinical trials of 
drugs that have clearly changed the treatment landscape. In 

addition, results of clinical trials of specific inhibitors that 
were developed from basic research using in vitro models, 
have provided valuable feedback to the laboratory for 
future development of better agents.  

 
  In the future, we need to further elucidate the 

factors that underlie the clinical response to molecularly-
targeted therapeutics by collaboration between basic 
research laboratories and the clinics. The continued 
translation of knowledge about lung cancers that emerges 
from the field of signal transduction, including 
EGFR/Akt/mTOR cascade, should contribute to the 
development of novel therapeutics, and their application to 
the patients in the clinic. 
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