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1. ABSTRACT 
 
Short linear motifs (SLiMs) in proteins can act as targets 
for proteolytic cleavage, sites of post-translational 
modification, determinants of sub-cellular localization, and 
mediators of protein-protein interactions. Computational 
discovery of SLiMs involves assembling a group of 
proteins postulated to share a potential motif, masking out 
residues less likely to contain such a motif, down-
weighting shared motifs arising through common 
evolutionary descent, and calculation of statistical 
probabilities allowing for the multiple testing of all possible 
motifs. Much of the challenge for motif discovery lies in 
the assembly and masking of datasets of proteins likely to 
share motifs, since the motifs are typically short (between 3 
and 10 amino acids in length), so that potential signals can 
be easily swamped by the noise of stochastically recurring 
motifs. Focusing on disordered regions of proteins, where 
SLiMs are predominantly found, and masking out non-
conserved residues can reduce the level of noise but more 
work is required to improve the quality of high-throughput 
experimental datasets (e.g. of physical protein interactions) 
as input for computational discovery. 
 
2. INTRODUCTION 
 

Short, linear motifs (SLiMs) are abundant and 
ubiquitous protein microdomains that play a central role in 
cell regulation (1). A defining feature of SLiMs is their 
length; which is generally between 2 and 10 residues (2), 
often only a subset of these residues mediate binding (70% 
of known instances have 4 defined positions or less). Many 
of the defined positions are degenerate, meaning that a 
functional residue does not need a specific amino acid at 
that position for functionality, rather one from a particular 
set of amino acids (this set is usually a grouping of 

physicochemically similar amino acids). By definition, 
SLiMs are also linear, in that residues are adjacent in the 
primary sequence of the protein as opposed to being in 
close proximity in the tertiary structure of the protein. 

 
SLiMs, also referred to as linear motifs or 

minimotifs, typically act as protein ligands and mediate a 
plethora of biological processes including cell signaling, 
post-translational modification (PTM) and trafficking target 
proteins to specific subcellular localizations (2). SLiMs can 
control gene expression; recruitment of the transcriptional 
co-repressor Groucho/transducin-like enhancer-of-split 
(TLE) family, for example, is mediated by the WRPW C-
terminal motif (3). (4)They are particularly important for 
intracellular signaling; examples include the tumor 
necrosis factor receptor (TNFR) superfamily, which 
signals by recruiting TNFR-associated factors (TRAFs) 
through a SLiM in their cytoplasmic tails (5), or the 
canonical regulatory signaling interactions of the SH3 
binding motif PxxP (6). SLiMs can also have important 
extracellular activity, such as the binding to integrins 
via the charged RGD motif (2). They can act as 
molecular switches, causing activation or deactivation 
of proteins through ubiquitination, phosphorylation or 
the addition of some other PTMs (4). Modified SLiMs, 
can direct tasks as diverse as binding proteins to the 
bilayer lipid membrane, through the addition of 
Palmitate group to S-palmitoylation sites (7), or 
assisting proper protein folding and tethering of adjacent 
cells, by acting as attachment sites for saccharide chains 
by glycosylation (8). Other important SLiM-mediated 
PTMs include cleavage sites, such as those for cleavage 
by Furin (9) and Taspase (10); many neuropeptides and 
peptide hormones are created through proteolytic 
cleavage of their protein precursors at SLiM cleavage 
sites (11).
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Figure 1. Comparison of the IUPred scores (33) for disorder (0 is highly globular and 1 is strongly disordered) of ELM and Non-
ELM residues for ELM containing proteins in the ELM database (2). 

 
SLiMs also play important roles in disease, either 

by mutation of native motifs or through nefarious use by an 
external pathogen or predator. Viruses often mimic human 
SLiMs to hijack a host's cellular machinery, thereby adding 
functionality to their compact genomes without 
necessitating new virally encoded proteins (12): Src 
binding motif PxxP in HIV Nef protein modulates 
replication (13); WW domain binding PPxY mediates 
budding in Ebola virus (14); FMDV targets cells via RGD-
mediated integrin interactions (15), and a Dynein Light 
Chain binding motif in Rabies virus is vital for host 
infection (16). In the bacterial world, toxins from both 
Pseudomonas (17) and Cholera (18) are imported using 
KDEL-like signals. Similarly, several proteins involved in 
erythrocyte targeting by the malaria pathogen Plasmodium 
falciparum contain an import motif RxLxE/Q (19). Many 
Metazoan predators also use SLiMs to their advantage: the 
snake venom platelet aggregation activation inhibitors 
arastatin and albolabrin, contain the integrin binding RGD 
motif (20, 21). Finally, mutation to functional SLiM 
residues are implicated as the cause of many diseases 
including Noonan syndrome (22) and Liddle’s Syndrome 
(see (12) for review).   
 

Increased knowledge of SLiMs has increased 
interest in the therapeutic use of SLiMs as potential lead 
compounds. Encouraging studies have established the 
ability of small peptides to competitively bind proteins and 
the ability to target drugs to SLiM interactions (23, 24). In 
cancer therapeutics, the angiogenesis inhibitor Cilengitide 
(25), (an inhibitor of integrin-RGD motif interaction), and 
P53 reactivating Nutlin-3a (26, 27) (disruptor of MDM2-
mediated ubiquitination and destruction of P53 returning 
the ability of cancer cells to apoptose) have provided 
promising results (28). SLiMs can also be used to target 
oncolytic viruses, while leaving normal cells unharmed: 
Davydova et al. specifically targeted integrins frequently 
over-expressed in Oesophageal Adenocarcinoma by 
genetically modifying an integrin-binding RGD motif of 
adenoviral coat proteins to alter its specificity (29). 

2.1. Biological attributes of SLiMs 
Discovery of novel classes of shared SLiMs 

among proteins with a common function (e.g. sharing an 
interaction partner) is difficult, since the signal is very 
weak and occurs against a background of many potential 
false positives. For this reason, searches are more likely to 
be successful if the search space is reduced as much as 
possible. One approach to this is to concentrate on motifs 
that share features with previously discovered motifs. 
Knowledge of typical motif attributes gained from known 
motifs has been used to create rules to classify and discover 
novel motifs. 
 
2.1.1. Structural disorder 

SLiMs tend to occur in “intrinsically unfolded” 
or “natively disordered” segments of proteins (30); it is 
estimated ~85% of known functional motifs occur in these 
regions (31). This bias can be clearly seen as a shift in 
predicted disorder scores between SLiM and non-SLiM 
residues (Figure 1). Disordered regions/proteins lack a 
well-defined three dimensional structure and show distinct 
amino acid biases, tending to be enriched in P, E, K, S, G 
and Q, whilst being depleted in W, Y, F, C, I, L and V (32). 
Computational prediction of disorder does not rely alone on 
composition, however, since the interactions among 
residues (e.g. enrichment for residues of shared charge) 
contribute to disorder (33). Disordered regions of the 
proteome were originally thought to act solely as linkers 
between the "real" functional units of proteins (34). 
However, the discovery of functional modules, such as 
SLiMs, in these regions has increased awareness of their 
importance. 
 
Brown et al (35) studied 28 protein families with ordered 
and disordered regions, finding that disordered regions 
evolve significantly more rapidly than ordered regions. 
This rapid evolution means residues are less constrained 
and therefore more likely to convergently evolve a short 
linear motif (SLiM), which if advantageous to the protein 
may be retained by purifying selection. The lack of 
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Figure 2. Comparison of the relative local conservation (RLC) scores (38) of ELM (motif) and Non-ELM (all other) residues for 
ELM-containing proteins in the ELM database.   
 
structure also plays a major role in the enrichment of 
SLiMs in disordered regions by allowing the disorder-to-
order transition often necessary for ligand binding (1). 
Extensive tracts of disorder surrounding interacting SLiMs 
have been hypothesized to protect the proteins against 
unwanted aggregation (36), which is consistent with the 
observation that SLiM residues are often themselves less 
disorder-promoting than the flanking regions (30). 
 
2.1.2. Sequence conservation 

The short length (typically between three and ten 
amino acids in length) and degeneracy (positions are often 
flexible in terms of possible amino acids) of SLiMs impart 
an evolutionary plasticity which is unavailable to globular 
protein domains, meaning that de novo motifs can evolve 
convergently, appearing by point mutation to add new 
functionality to proteins (4). It has been hypothesized that 
such evolutionary transience contributes evolutionary 
flexibility to SLiM mediated pathways, allowing for 
species to quickly rewire pathways by removing or adding 
interactions through point mutation to a few key residues 
(4). Their discovery by conservation-based methods is 
difficult as their level of conservation is not as high as 
domains: many functional motifs are often not conserved 
beyond vertebrates (37). Despite this, SLiMs are more 
conserved than surrounding non-functional residues (Figure 
2), due to purifying selection (4). 

 
2.1.3. Specificity 

It has been observed that the defined residues of 
a SLiM alone are generally insufficient to interact with 
high specificity and that additional residues surrounding the 
core motif play an important role by either increasing the 
affinity of the interaction or hindering interaction with non-
specific targets (39). For example, Pbs2, using the 
canonical PxxP motif, binds only the SH3 domain of Sho1 
out of the 27 different SH3 domains known in yeast (40), 
suggesting highly constrained secondary information 

encoded in the context of the peptide not apparent in the 
core functional interacting Prolines. Further, the same 
analysis showed that the specificity of yeast Pbs2 peptides 
for SH3 domains in other species was not as high, 
suggesting that evolutionary pressures had tuned the 
specificity for Sho1 in the yeast proteome. 

 
2.1.4. Affinity 

One of the key differences between SLiM-
domain and domain-domain interactions is the affinity of 
binding. Domains, when they bind to each other, tend to do 
so with relatively strong affinities: low-nanomolar or even 
picomolar affinities are known. The short length of SLiMs 
means that they rarely have such strong affinities, usually 
ranging between 1 and 150 µM (1). For example, the 
affinity of the Cyclin-binding motif has been measured as 
0.19 µM (41) and the 14-3-3 binding motif at 0.15 µM 
(42).  This low affinity is ideal for transient interactions in 
signal transduction or for quickly responding to a stimulus. 
Co-operative binding can increase affinity and many 
examples exist of several short linear motifs in a disordered 
region binding to a target protein co-operatively, with 
affinities rivaling that of a single domain (43). 

 
2.1.5. Structure 

Although SLiMs are enriched in disordered 
regions they should not be considered unstructured, as binding 
often involves a mechanism known as induced fit where an 
unstructured/disordered region is induced to form a structure 
when binding a globular region (1). Information from SLiMs 
in their bound state is leading to a better understanding of the 
structural constraints placed on these disordered regions (39).  
An analysis of the known bound SLiM suggested that a third 
of known motifs form helical structures when bound, a third of 
interactions form by beta augmentation (adding an extra strand 
to a beta sheet in the interacting partner) (44) and the rest 
form various structures specific for a particular SLiM (1, 
45).
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Figure 3. The difference in the proportion of residues contained in known functional motifs, from the ELM database (2), 
compared to background amino acid frequencies from UNIPROT human (46).  Fixed refers to motif positions that are non-
ambiguous, ambiguous to motif positions that are ambiguous, and full to the combination of both fixed and ambiguous positions.  

 
 

2.1.6. Amino acid preference 
Certain residues are preferentially used by 

SLiMs (Figure 3). Alanine and Glycine are largely avoided, 
and there is an unusual (and unexplained) preference for 
Arginine over the chemically similar Lysine. The high 
likelihood of hydrophobic residues Isoleucine, Methionine 
and Valine being in an ambiguous position mirrors their 
chemical similarity and interchangeability in many known 
SLiMs. Proline, Tryptophan, Threonine and Cysteine are 
all highly enriched, reflecting their importance to many 
binding events (2). Weighted models could take advantage 
of this information to improve motif discovery tools. 

 
2.2. Potential for novel SLiM discovery 

It has been estimated that only a small proportion 
of functional motifs have been discovered to date and 
several observations allude to the immense potential for 
novel discovery. SLiMs are enriched in regions of disorder 
(with approximately 85% of instances adhering to this rule 
(2)) and with 17% of proteins predicted to be totally 
disordered and 20-50% to contain at least some disorder 
(31) there is large potential for convergent evolution of 
functional sites. Secondly, the inequality between the 
number of known domains types (~10,000) and SLiMs 
types (~200 (2, 47)) advocates research in the area, 
especially as a recent study suggested only 3-19% of 
known interactions can be explained in terms of domain-
domain interactions (48). Although this number will 
undoubtedly grow as further complex structures are 
analyzed experimentally, it still leaves a large scope for 
SLiM mediated interactions. Finally, it has been estimated 

that 15-40% of protein-protein interactions are mediated by 
SLiMs (4), yet only 5% of interactions contained in HPRD 
are SLiM-mediated and with as few as 1% for human 
yeast-two hybrid interaction analyses (49).  

 
2.3. Sources of SLiM information 

Several projects have been attempting to collate 
information about known SLiMs through extensive 
literature-based curation, experimental discovery and high-
throughput computational analyses. There are many 
sources of SLiM data available. ELM (2) and MnM (47) 
have curated classical SLiMs with an emphasis on ligand 
binding motifs. Phospho.ELM (50) and Phosphosite (10) 
have focused on curating phosphorylation sites, dbPTM 
(51) is a general repository for functional group 
modification, and MEROPS (52) and CutDb (53) are 
general repositories of cleavage sites. These sources have 
allowed the deduction of many of the attributes of SLiMs, 
such as the propensity of SLiMs to occur in disordered 
regions, and are being used increasingly by 
bioinformaticians creating SLiM discovery tools. Much of 
the filtering and masking techniques discussed in this paper 
were created, trained and tested based on observations from 
these data repositories.  

 
2.3.1. Classical motifs 

ELM (2) and MnM (47) are manually curated 
databases of all manner of SLiMs, including ligands, 
targeting motifs and PTMs (including cleavage), and are 
currently the most complete sources of non-modification 
SLiMs. ELM contains 132 motif types, each with a regular 
expression definition, and approximately 900 instances 
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with high quality annotation including gene ontology data 
for cellular component and biological process, data on the 
source of the curation and structural data when possible. 
Whereas ELM is explicitly restricted to eukaryotes, MnM 
2.0 (47) is a repository of 858 motif “consensus sequences” 
and 4,229 instances across taxa, including cellular 
localization information. It is not curated to the level of 
ELM but does offer links to the source of the data. 
PROSITE (54) still contains many SLiMs, however the 
focus of their curation has moved to large domain 
descriptors in recent years diminishing its use as a source 
for SLiMs. 

 
2.3.2. Modification motifs 

The most studied PTM is phosphorylation and 
this is reflected in the amount of phosphorylation data and 
resources available. Phospho.ELM (50) annotates 4,110 
metazoan (predominantly human and mouse) substrate 
proteins with 2,103 tyrosine, 12,435 serine and 2,503 
Threonine phosphorylation sites. Phosphosite (55) contains 
information for 49,016 phosphorylation sites in 8,327 
proteins. Phosphosite also curates several other modification 
sites including acetylation, di-methylation, sumoylation and 
ubiquitination. Other PTMs databases are available, including 
OGlycBase (56) (242 glycoproteins, 2,413 verified O-glyc 
sites and 49 verified C-glyc sites (release 6.0)) and Ubiprot 
(57) (417 proteins modified ubiquitin attachment and 165 
ubiquitinated sites). MEROPS and CutDb are two sources of 
cleavage sites for proteases. CutDb (53) contains 6293 
cleavages sites for 549 proteases acting on 2246 substrates and 
MEROPS (52) is a highly annotated database of 100,807 
peptidases (including orthologue information) grouped into 
2627 families for which more than 7000 cleavages sites have 
been defined. UniProt (46) also has a large amount of 
modification data including 106,570 experimentally validated 
and predicted modification sites in 37,828 proteins (release 
56). The dbPTM (51) database is a general repository for both 
experimental (~36,000) and predicted (2,860,047) PTM sites, 
collecting data from several other modification databases 
together along with various other sources of protein 
information such as solvent accessibility, orthologous protein 
clusters and secondary structure. 

 
3. SLiM DISCOVERY  
 
3.1. A priori motif discovery 

Several web-based methods to discover novel 
instances of known SLiMs are available such as ELM (2), 
MnM (58) and Quasimotifinder (59). Proteins can be 
searched using these methods to return putatively 
functional sites. The majority of known motifs are highly 
likely to occur in a protein by chance and a protein of 
average length will have several positions where amino 
acids match the regular expressions of known functional 
sites. To increase confidence in returned putatively 
functional sites these methods use various context- and 
attribute-based measures.  

 
3.1.1. Primary sequence  

The ELM server uses the ELM database to 
search for regular expression matches to known functional 
motifs. Returned motifs are filtered to exclude motifs 

occurring in globular regions of proteins using information 
from Pfam (60) and SMART (61) (though accessible region 
are also included if a structure is available for filtered 
globular regions). Results can also be filtered based on the 
species and localization of the protein. Curated SLiM 
instances, and motifs matching known functional motifs in 
the corresponding position of homologous proteins, are also 
identified. 

 
The Minimotif Miner (MnM) (47) searches an 

input protein for matches to the MnM dataset 2.0 (an 
extended version of the publicly accessible MnM 1.0 
dataset), scoring motifs based on their surface accessibility 
and fold enrichment (based on the ratio of observed motifs 
to expected motifs). Motifs are also scored by their 
conservation in homologues taken from the Homologene 
clusters of which the input protein has membership. 

 
Quasimotifinder (59) searches for conserved 

motifs that match signatures curated in the PROSITE 
database (54). The method uses physicochemical 
information to search for fuzzy matches. Motifs are scored 
using a Pythagorean-based function to consider both the 
physicochemical information and the conservation level of 
the motifs. The one major drawback of the method is the 
source of motifs searched, although PROSITE contains a 
high quality annotation, it is missing many of the motifs 
available to the other methods. 

 
SLiMSearch 
(http://www.southampton.ac.uk/~re1u06/software/slimsearch/) is 
another regular-expression motif search tool, suitable for 
local high-throughput analyses. The method takes as input 
a dataset of proteins and a set of motifs, which could be 
from known databases or defined by the user. SLiMSearch 
uses the same input masking as SLiMFinder (62) (including 
UniProt features, IUPred (33) based disorder prediction, 
low complexity regions, user-selected residues/motifs and 
relative local conservation-based masking (38)). Motif 
probabilities are calculated to assess motifs for statistical 
over-representation (or under-representation), adjusting for 
evolutionary relationships between the sequences, using the 
SLiMChance statistical framework employed by 
SLiMFinder (62). 

 
3.1.2. Structural information 

An interesting direction for novel instance 
discovery is the incorporation of structural information (63, 
64). These tools use information from bound SLiMs that 
look for variations of known peptides capable of binding to 
the peptide binding region specifically, avoiding peptides 
which have residues incompatible with binding. These 
techniques need to be trained on at least one bound 
structure and several peptides known to bind to the domain 
of interest; currently several SLiM/Domain pairs have 
sufficient information for such analyses. These techniques 
are powerful tools to discover novel instance of SLiMs as 
well as novel protein interactions. 

 
D-MIST (63) is a method that uses information 

from domain bound SLiM complexes and interaction 
datasets to predict protein interactions and SLiMs by 
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learned binding profiles. The method calculates 
motifs/profiles with high specificity by searching for 
interactors of a known domain for motifs similar to known 
binding SLiMs from structural studies and peptide-based 
approaches. Interactors of the domain containing the 
protein are then searched for motifs resembling the known 
domain binding SLiM and matches are used to create a 
profile which can be used to search for proteins with a 
similar binding interface.  

 
iSPOT (64) uses known structures of bound 

SLiMs to a domain to create a matrix of probabilities that a 
residue in the domain forms a contact with a residue in the 
SLiM. This matrix can then be used to predict whether or 
not the SLiM has specificity for a particular domain and 
motifs can be scored for their predicted likelihood of 
binding to the domain. Although currently the method is 
more suited to classifying motif specificity, the application 
could be placed in a framework similar to D-MIST to 
discover novel motifs. 

 
3.1.3. Keyword searches 

SIRW (65) is a web-based system to retrieve 
proteins with a particular keyword or Gene Ontology (GO) 
term. The system allows the input of a motif that can be 
searched against those proteins. Significance of association 
of the motif with the keyword can then be assessed using 
Fisher’s exact test. Such analyses have proved successful in 
the past with new instances of EH1 transcriptional 
repressor motifs discovered through enrichment in 
transcriptional keywords (66) and new instances of KEN 
box APCC-binding Destruction motifs identified from cell 
cycle keywords (67). 

 
3.2. Post-translational modification prediction 

High throughput mass spectrometry analyses in 
recent years have enriched data for many PTMs (68). For 
example, many analyses have created kinase-specific 
phosphorylation data (69), defining a particular region of 
the phosphorylated protein modified. With limited residues 
possible for modification and the degenerate nature of these 
sites, specific modification site discovery tools provide a 
more successful method for their discovery than generic 
SLiM discovery tools (69). These numerous experimental 
data can be used to create profiles to discover novel 
instances, increasing specificity by using contextual 
information. This class of SLiM discovery will not be 
considered explicitly in this discussion, however many of 
the techniques described in this paper will have 
applications to such analyses. 

 
Many tools are available to predict functional 

group addition PTMs. Scansite (70) creates experimentally 
derived position-specific scoring matrices (PSSM) using 
oriented peptide library and phage display experiments for 
multiple kinases and several binding events of high interest 
such as PDZ, SH2, and 14-3-3 binding. Proteins can be 
searched for sites matching these PSSMs as well as user 
defined motifs and profiles. AutoMotif (71) predicts several 
classes of PTM sites in proteins using support vector 
machines (SVM). SVMs for each class of PTM are trained 
separately using positives, annotated in the Swiss-Prot 

database, as well as negatives sites. Many other predictors 
for various functional group addition PTMs are available, 
examples include C-mannosylation (72), N-terminal 
myristoylation (73) and sulfation (74). Several cleavage site 
predictors such as PeptideCutter (75), SignalP (76), ProP 
(77) are also available. PeptideCutter predicts sites for 
multiple proteases and chemicals; SignalP discovers 
cleavage sites for signal peptide; ProP also discovers signal 
peptides but focuses on Arginine and Lysine, in particular 
Furin cleavage sites. Recent methods for high-throughput 
discovery of cleavage site specificity (78) will no doubt 
further enhance the future ability of prediction methods to 
discover novel cleavage motifs. 

 
3.3. De novo motif discovery 

The concept of over-representation as an 
indicator of functionality is currently the most powerful and 
widely used approach for discovering de novo SLiMs 
computationally (62, 79). Any set of proteins where there is 
a strong hypothesis for a SLiM mediated functionality, 
such as targeting protein localization, mediating protein 
binding or acting as a recognition site for a post-
translational modification, can be analyzed for SLiMs. 
Under this hypothesis, the function-mediating SLiM would 
occur more often than expected by chance. Typically, such 
over-representation has arisen because of selection for the 
motif in the proteins. The hypothesis that functional motifs 
will be over represented due to purifying selection is simple 
yet powerful. For example, a motif matching a functional 
site will evolve convergently by point mutation adding 
functionality through binding, localization or modification. 
If this functionality is advantageous then the motif will be 
maintained under an evolutionary constraint. Secondly, if 
the motif is damaging (e.g. such as a localization signal for 
the wrong cellular compartment) there will be a selection 
pressure to remove the motif or thirdly further mutation and 
genetic drift will slowly wipe out the instance matching the 
functional motif, if it has no functional effect.  

 
Neduva et al. (37) clearly demonstrated the 

potential of models based on convergent evolution when 
they applied Dilimot to discover SLiMs in multiple HPRD 
datasets. They were able to verify two of their predictions 
with direct-binding assays, a protein phosphatase 1 binding 
motif (DxxDxxxD) and a motif that binds Translin 
(VxxxRxYS) (37). As previously discussed, keyword 
enrichment has aided in the discovery of novel KEN box 
(67), KEPE (80) and EH1 motifs (66). Pattern matching 
discovery was used to discover functional 14-3-3 motifs. 
Loss of function information for EFF-1 based on truncation 
of the C-terminal mutants led to the discovery of 23 
potential motifs matching known functional motifs from 
which two 14-3-3 motifs were experimentally validated as 
vital for function (58). 

 
Several approaches for novel motif discovery are 

available. Algorithmic motif discovery uses solely the over-
representation hypothesis to discovery putatively functional 
motifs. More successful approaches build biological 
models on top of algorithmic motif discovery using 
techniques such as masking and attribute-based inference to 
discover biologically relevant motifs. 
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3.3.1. Algorithmic motif discovery 
Several approaches are available to discover raw 

motifs, which can be broadly classed as alignment-based or 
alignment-free. In both cases, results will tend to be dominated 
by longer regions of conservation or homology (e.g. globular 
domains) at the cost of SLiM detection and so corresponding 
care must be taken where this might be a problem.  
 

TEIRESIAS (81) is an alignment-free algorithm 
that efficiently returns motifs occurring in greater than a user-
defined number of proteins by avoiding the enumeration of the 
entire pattern space. The method can return rigid ambiguous 
motifs using a predefined set of possible ambiguities. 
SLiMBuild (62) (one of the algorithms employed by 
SLiMFinder) identifies convergently evolved, short motifs in a 
dataset, reducing search times by explicitly screening out 
motifs that do not occur in enough unrelated proteins; this 
screening overcomes the problem of shared protein domains 
swamping the signal of SLiMs. The method allows flexibility 
(wildcard spacers of variable lengths) and ambiguity (in a 
similar fashion to TEIRESIAS). 

 
GLAM2 (82) is a generalization of the alignment-

based Gibbs Sampling method of MEME (83) with the 
additional ability to discover flexible length motif by allowing 
insertions and deletions. D-motif (84) uses a correlated motif 
approach to find pairs of interfaces (without flexible length 
wildcards or ambiguity) that could mediate interactions within 
a PPI network; it is not yet clear if this method has any 
practical application, however, since known examples of such 
correlated motifs typically include homologous domains which 
are best analyzed by other methods. PRATT (85) allows both 
flexibility and ambiguity but is more suited to domain 
descriptor discovery. Several other methods are available such 
as MEME (83) and ASSET (86) (a review of methods can be 
found here (87)). 
 
3.3.2. Biological models 

Dilimot (37, 79) was the first method to 
explicitly attempt de novo computational discovery of 
SLiMs in datasets of proteins. The enrichment of motifs in 
disordered regions is utilized by removing globular regions 
and coiled coil regions, using information from SMART 
(61) and Pfam (60) and using the globular region prediction 
tool Globplot (88). Regions of strong homology are 
removed, leaving only one representative homologous 
region for motif discovery and thereby enriching for motifs 
that have evolved convergently. Raw motifs are then 
returned by TEIRESIAS (81) and scored using a binomial 
scoring scheme introduced by ASSET (86). Conservation 
of the motif for several closely related species is calculated 
and incorporated into the scoring scheme, under the 
assumption that true motifs are usually conserved across 
closely related species. The tool was benchmarked on ELM 
datasets and on protein interaction datasets from the Human 
Protein Reference Database (HPRD) (89) returning many 
previously known functional motifs as well as several 
potential novel motifs, of which two were experimentally 
validated (37).  

 
SLiMDisc (90, 91) is also built on the basic 

pattern discovery abilities of the TEIRESIAS algorithm 

(81). Motifs are scored using an information content-based 
scoring scheme which use evolutionary weighted support 
(those SLiMs present in evolutionarily distant sequences 
are up-weighted and those primarily arising due to common 
evolutionary descent are down-weighted). A number of 
filtering options are provided, (disorder, globular regions 
etc) and user-defined masking is also possible, allowing 
experimental/topological information to be incorporated. 
This gives the user a great deal of control over the type of 
motif returned. SLiMDisc can be considered an empirical 
motif discovery tool as the scoring scheme is not based on 
a statistical scoring scheme. Rather, it is based on the 
observation that the scoring scheme performs well on 
benchmarking datasets and because of this can be seen as a 
complementary to the probabilistic methods of Dilimot (79) 
and SLiMFinder (62). 

 
SLiMFinder (62) is a probabilistic SLiM 

discovery program building on the principles of the 
SLiMDisc algorithm (91). The TEIRESIAS raw motif 
discovery tool is (81) replaced by SLiMBuild (62) allowing 
flexible and ambiguous motifs to be returned. Proteins can 
be masked to exclude under-conserved residues (38), non-
disordered regions predicted using IUPred (33), low 
complexity regions, specific amino acids or motifs, and 
annotated features including domains or user-annotated 
regions to allow any contextual information to be included 
in the analyses. Statistics are implemented in the 
SLiMChance algorithm (62), which is based on the 
binomial statistics introduced by ASSET (86) (also used by 
Dilimot (79)) with two major extensions: (1) homologous 
proteins are weighted (as in SLiMDisc) to account for the 
dependencies introduced into the probabilistic framework 
by homologous proteins; (2) introduction of significance 
scores, i.e. the probability that any motif considered would 
reach a binomial p-value by chance is calculated and used 
to rank motifs.  

 
3.3.3. Structural models 

Recently, methods have used structural data to 
attempt novel SLiM discovery from protein primary 
sequence. Alpha-MoRF pred (92) and ANCHOR (93) 
use the observation that many motifs have an inherent 
propensity to form a secondary structure. Alpha-
MoRFpred discovers deviation towards order in the 
primary sequence using PONDR VL-XT methods and 
filters these region based to remove false positives using 
neural networks. ANCHOR is based on the scoring 
scheme introduced by IUPred (33) and predicts regions 
that are likely to undergo disorder to order transition on 
binding. Both methods have their drawbacks and neither 
is specifically trained to discover motifs of the length 
typical of SLiMs concentrating more on larger 
disordered interaction regions. However, it is an area 
that will undoubtedly prove fruitful in the discovery of 
novel disorder regions involved in protein-protein 
interactions.  

 
4. DATASET DESIGN FOR SLiM DISCOVERY 
 

Recent advances in methodology have caused 
dataset design to be the major limiting factor in motif 
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discovery and we believe that the next major advance in 
computational discovery of functional SLiMs will come 
from improvements in this area. Because of the challenges 
raised by the short and degenerate nature of SLiMs, 
maximizing the signal to noise ratio is crucial. Strong 
hypothesis-driven dataset design will always be the most 
important driver of success in a motif discovery analysis.  

 
4.1. Data sources 

The majority of SLiM discovery analyses use 
PPI data and these form the focus of this section. Two other 
very interesting sources of data for SLiM discovery are 
localization data and Gene Ontology (GO) data, and many 
of the same issues and solutions are relevant to these 
analyses as well. 
 
4.1.1. Gene ontology 
The GO (94) is a maze for the uninitiated user (to 
understand how GO is annotated, see (95)) but it is also a 
good source of protein groupings, many of which are 
candidates for potential SLiM-mediated interactions. The 
data is continuously updated with information from multiple 
sources reported in the literature, clustering proteins into 
logical groups that are formalized descriptions of a shared 
underlying biology. Many GO terms, especially larger high 
level ontologies, will have such a diverse focus that they are 
unlikely to be enriched for any one motif. To maximize 
chances of success, datasets with a strong hypothesis that a 
SLiM is responsible for the grouping of proteins should be 
analyzed. For example, there is a strong likelihood that a 
shared motif involved in binding PDZ domains could be 
discovered using the GO term ‘PDZ domain binding’ 
(GO:0003684) which contains 19 proteins, however, the level 
above ‘protein domain specific binding’ (GO:0019904), which 
has 582 gene products, is likely to have drawn together too 
much noise for any one signal to be discovered.  
 
4.1.2. Localization 

Eukaryotic targeting to sub-cellular locations 
involves multiple pathways, many of them mediated by 
SLiMs (2). For example, the peroxisomal targeting motif 
that tags proteins for import into the lumen of the 
peroxisome (96) or the KDEL endoplasmic reticulum (ER) 
retrieval signals that return ER proteins secreted while 
trafficking exported proteins to the ER (97). As 
fluorescence-based methods add to our knowledge of protein 
localization many more SLiMs are expected to be discovered 
(98).  Localisation data from datasets such as Locate (99) and 
GO (which also includes cellular component annotation) (94) 
or high-throughput analyses (100) can be used to search for 
over-represented targeting motifs. 
 
4.1.3. Protein-protein interaction data 

Ideally, all protein interaction interfaces would 
be solved with 3D structures of the interaction, however in 
reality only a small number of known proteins have been 
solved in complex (101) and even the best available 
interactomes are incomplete (102).  Many proteins’ 
functions rely on interaction with other proteins; to gain a 
true understanding of that functionality it is necessary to 
understand the method of binding in particular the residues 
mediating that binding. High-throughput analyses of 

protein-protein interactions have amassed large quantities 
of interaction data of varying quality. Lack of overlap 
(103), irreproducibility and high error rates have lowered 
confidence in any one interaction returned from a single 
source (104), but in general the overall quality of the data 
as a source of information to infer novel SLiMs is 
unrivalled (105). 
 

High-throughput experiments (105, 106) and 
literature curation in sources such as HPRD (89), STRING 
(107), Bind (108), DIP (109), IntAct (110), MIPS (111), 
MINT (112) and Reactome (113) (see for review (114)) 
have amassed large amounts of protein interaction data. PPI 
networks can be split into sub-networks on the hub-spoke 
model, where a central protein (hub) interacts with several 
interactors (spokes). The hypothesis for motif discovery is 
that the hub protein contains a module (for example a 
domain) that interacts through a SLiM in a subset of the 
interactors. Detecting such a motif, however, relies on the 
signal from the true SLiM-mediated interactors being 
strong enough to overcome the noise of proteins that 
interact via another mechanism and/or have been falsely 
included in the dataset of direct interactors with the hub 
(e.g. they may interact indirectly in complex or via shared 
intermediates). These issues are explored in the following 
sections. 
 
4.2. Working with PPI data 

Current interaction data is typically organized on 
a protein level as binary graphs, where an edge is indicative 
of an interaction between the two proteins signified by 
nodes. These interactions can be, but do not have to be, a 
physical interaction where the two proteins share an 
interface or co-occurrence in a more complicated multi-
protein complex (not to be confused with transient 
complexes). This level of abstraction allows proteins to be 
described as simple networks allowing easy manipulation 
of data and rapid integration of the various data sources; 
however it ignores much of the information available that is 
valuable to the motif discovery process. Instead, PPI data 
can be conceptualized on 4 defined levels of information 
(Binary, Protein complex, Atomic and Topological) to aid 
motif discovery (Figure 4), the level of an interaction 
should, if possible, be considered during dataset 
construction and the interpretation of results. 

 
4.2.1. Binary interaction 

The binary level (Figure 4A) describes proteins 
that are known to have a physical interaction. Information 
from some small scale binding experiments and Y2H data 
consists of binary physical interactions that share an 
interaction interface. This data is suitable for inferring 
SLiMs mediating protein binding without adding noise 
from complex partners that do not share a physical 
interaction.  

 
4.2.2. Protein complex interaction 

This level (Figure 4B) describes the interactions 
of true functional units, complex-complex and complex-
protein interactions.  A complex interaction is not 
indicative of any physical interaction between any two of 
the proteins in the complex and therefore contains large 
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Figure 4. Representation of the different levels of information available for protein-protein interaction data.  A: The binary level , 
B: the protein complex level, C: the atomic level and D the topology level. 

 
amounts of noise for use in SLiM discovery. Tandem 
affinity purification and co-immunoprecipitation provides in 
vivo information on a complex level, with some dependency 
on experimental conditions affecting stringency of protein 
dissociation during protein separation. While a complete 
binary map is likely to be superior to complex information for 
SLiM discovery, a very sparse binary map may well be 
improved by the addition of the noisier complex information, 
as it will also include some binary interactions. 

 
4.2.3. Atomic interaction 

The lowest, and most interesting, level (Figure 
4C) is the domain/SLiM/atomic level. The basic aim of in 
silico motif discovery is to aid experimental methods in 
deciphering the atomic interaction level for given proteins 
from binary and complex level data. Information from this 
level is usually of higher quality, literature-curated 
information from sources such as truncation and 
mutagenesis studies, or structural data of bound proteins by 
NMR and X-ray. Typically motif-domain interactions are 
fairly well defined prior to proceeding to structural 
characterization, so the scope for novel motif discovery 
from structural data is relatively limited.  

 
4.2.4. Topology specific interaction 

Topology specific information (Figure 4D) is an 
extension of the atomic level to consider the separation of 
interactions through space. This information can be 
particularly useful for eliminating “biological false 
positives”, where the proposed interactions can never 
actually occur in nature due to the physical separation of 
the proposed interactors (i.e. due to occurrence separate 
cellular compartments). As with atomic level data, 
however, the increased quality comes at the cost of a 
reduction in quantity and whether such data routinely 
delivers enough signal for motif discovery is yet to be 
determined. 

4.3. Issues with PPI data 
4.3.1. Comparability of sources 

Yeast 2-hybrid (Y2H) and protein Tandem 
Affinity Purification (TAP) are the largest sources of 
interaction data and both have well known biases. For Y2H, 
often proteins do not interact in the yeast nucleus and the 
proportion of interactions not detectable in Y2H has been 
shown to be high (115). Many modifications are not available 
in the assay host, this is an issue for regulated proteins were 
post-translational modifications are necessary for interaction or 
when glycosylation is necessary for folding (8). Many 
interactions are highly regulated requiring the presence or the 
absence of a modification acting as a regulatory switch for 
interaction (115). For example, many SLiMs function only 
when phosphorylated (e.g. 14-3-3 (116) and Grb2-like Src 
Homology 2 (SH2) domain binding motifs (117)), an 
experimental bias against such motifs would obviously affect 
the likelihood of a SLiM being returned from an analysis. 

 
Experimental information from Y2H analyses and 

affinity purification mass spectrometry (AP-MS) are the two 
largest contributors to PPI databases (111), however these two 
data sources offer a very different aspect on protein 
interactions. Sources of PPI data play an important role in the 
quality of an interaction network for motif discovery. Each 
source has different advantages and disadvantages that should 
be considered. In practice, with high-throughput analyses this 
is not always possible, however for small-scale analyses every 
effort should be made to include all ancillary information 
available. 

 
4.3.2. High affinity bias 

Binary data implies that a pair of proteins interact or 
they do not but, in reality, there are actually a variety of flavors 
of protein interactions and binding affinities. Many of these 
cause problems for high-throughput analyses. Many SLiM 
interactions are transient, making them extremely difficult to 
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capture due to their short half-life (often less than a second) 
and low affinities (1). Experimental PPI discovery may 
preferentially discover domain-domain interactions that are 
usually in the picomolar range of affinity compared to SLiMs 
interactions that are usually between 1 and 150 micromolar (1). 
Yeast-2-Hybrid (Y2H) data has been observed to be 
impoverished for SLiM interactions when compared to 
manually curated low-throughput interaction data  (although 
other factors mentioned above may influence this) (49) and 
Tandem Affinity Purification (TAP)-tagging often misses low 
affinity interactions due to the experiment procedures. 

 
4.3.3. Ascertainment bias 

As with all biological data, PPI data often suffer 
from ascertainment bias and is not of equal quality across 
the genome (118); data is often more complete and of 
higher quality for more easily studied proteins (e.g. proteins 
capable of interacting in the yeast nucleus) and for some 
proteins of high interest like disease causing genes (e.g. the 
“guardian of the genome” oncogene P53 (119, 120) which 
even has its own dedicated website (p53.free.fr)). Often 
high interest genes have large amounts of small-scale 
experimentation that means that not only do these genes 
have more data, but that data is often low-throughput and 
has higher quality annotation. 

 
4.3.4. Incomplete data 

Many motifs are involved in membrane-
associated interactions. However, data of this type is under-
represented in PPI datasets due to their biochemical 
properties (121) and the predominance of complex post-
translational modification. Co-operative binding is well 
known: for example the nuclear receptors require co-
activation, one interactor stabilizing the binding site for 
another (122). Most of the assays, however, are not set up 
for such complicated 3 partner binding events. Conversely, 
there are detectable interactions in vitro that never occur in 
vivo (123), so-called biological false positives. Often 
proteins when brought together will interact, however the 
observation that binding occurs in vitro does not signify 
that the interaction will occur in vivo as, for example, they 
may never co-localize (In an extreme case, they may not 
even be from the same organism). 

 
4.4. Reducing noise in datasets 

A high ratio of noise (proteins without an 
instance of the motif) to signal (proteins containing the 
motif) in a dataset has a negative effect on the ability of 
discovery methods to rank true positive motifs highly. 
There are two main techniques for reducing dataset noise; 
network pruning and motif enrichment. Network pruning 
is the removal of proteins that are unlikely to interact or 
mediate their function through SLiMs. Motif enrichment 
is the removal of regions of a protein that are unlikely to 
contain a functional motif. Each noise reduction technique 
has many approaches, a few of which will be discussed 
here.  

 
Functional motifs have been observed to be 

enriched in certain regions and impoverished in others, 
however, motifs that are over-represented due to chance 
occur at random within a protein/network. Protein masking 

and network pruning when carried out correctly will 
preferentially remove proteins and regions of proteins that 
are impoverished for functional motifs. For example, 
removing 50% of proteins known to be mediated by 
domain-domain interactions from the datasets through 
network pruning should remove 50% of background 
randomly occurring motif instances, yet should remove no 
functional SLiMs. This provides enrichment for the 
functional SLiM increasing the statistical power (the 
probability of seeing a SLiM 5 times in 10 proteins is much 
less likely than seeing that motif 5 times in 20 proteins).  
 
4.4.1. Network pruning 
4.4.1.1. Domain-domain interactions 

Proteins often bind through the same mechanism 
(48) and interacting proteins containing the same domains 
as homologues known to bind through a domain-domain 
interaction will often reuse that mechanism of binding; 
although not certain to bind through a previously known 
mechanism from a different protein pair, the hypothesis is 
that reuse of such interfaces is more likely than a novel 
SLiM-mediated binding mechanism. Removal of these 
interactions from the dataset may therefore enrich for SLiM 
mediated binding. Pruning data can be taken from DIMA 
(124), 3did (125) and iPfam (126), datasets of known 
domain-domain interactions can be taken from 
experimentally discovered complex structures for a stricter 
scheme, several methods are available to infer interacting 
domains from PPI networks (127).  
 
4.4.1.2. Multidomain proteins 

Multi-module proteins draw together several 
sub-networks interacting through different interfaces 
(SLiM or domain) of the hub protein into a single network. 
Extracting these sub-networks may allow a signal to be 
discovered. As 65% of Eukaryotic proteins are 
multidomain (128), this problem is of major interest for 
motif discovery analyses. By analyzing the domain 
architecture of their interactors, spoke proteins can often be 
classified into sub-networks that can be analyzed 
separately. Neduva et al (37) attempted to enrich datasets 
for domain-SLiM interactions for a particular domain by 
grouping together proteins containing that domain, and 
pooling the interaction partners thereby increasing the 
signal. PIANA (129) observed that proteins with common 
interaction partners tend to interact through common 
interaction interfaces that they termed iMotifs. By grouping 
proteins’ common interaction partners, they discovered 
pairs of interacting interfaces. 

 
4.4.1.3. Physical contact 

As discussed above, often binary interaction data 
signifies interaction with a complex containing a protein 
rather that an actual physical interface with the protein. It is 
possible to infer proteins in the dataset that have no 
physical contact by analyzing the source of the interaction 
data. If there is both Y2H and TAP data for a complex, 
removing any complex members that have no Y2H data 
may enrich for these physical interactions. MPCDB (130) a 
database of known protein complexes provides useful data 
for this type of network pruning. As the interaction data 
becomes more complete such tasks will be simplified and 
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accuracy may improve. At present, however, caution must 
be taken as direct interaction data might not be available for 
all complexes of interest. 

 
4.4.1.4. Topology  

It has been estimated by computational methods 
that between 15% and 39% of human proteins contain a 
trans-membrane region (131). Membranes act as a 
separator for distinct subsets of interactors, since 
extracellular (EC) proteins and intracellular (IC) proteins 
can't interact with the same set of protein regions when 
membrane bound (see Figure 4D). Splitting data across a 
membrane enriches the dataset for proteins interacting with 
a particular region of the proteins. This approach would 
consider the intersection of PPI data and localization data, 
however as both sources are incomplete, such an analysis 
would prove intractable yet not impossible. Despite these 
problems, topology filtering is highly recommended for 
low throughput motif discovery in systems for which 
reliable data is available. 

 
4.4.2. Motif enrichment 

Much of the information described in the 
“Biological attributes of SLiMs” section can be used for 
masking and filtering; masking removes the regions pre-
analyses to improve speed and is mainly used for searches 
with high computation load such as Dilimot and 
SLiMfinder. Filtering is the post-processing of motifs to 
remove or flag data that is unlikely to be functional; the 
ELM server uses such an approach. 

 
4.4.2.1. Domains/globular regions 

Globular regions are often impoverished for 
SLiMs due to a combination of evolutionary and structural 
constraints (132) and approximately 85% of known SLiMs 
occur in disordered regions (2). It has been shown that 
using domain masking improves the ability of motif 
discovery tools to return functional motifs (91). Domain 
prediction is a highly mature field of bioinformatics with 
resources such as Pfam (60), Interpro (133) and SMART 
(61) providing detailed domain signatures and with high 
predictive power which can be used to remove known 
globular regions. It should be noted, however, that not all 
annotated domains are globular (134) and care must be 
taken with such filtering. 

 
Disordered regions may directly predicted in 

order to focus searches; typically this will mask out 
globular regions. A large number of disorder analysis 
algorithms, using various methods such as simple amino 
acid biases in a given window (88), probabilistic models 
(135), complicated amino acid interaction data (33) and 
incorporating conservation information (136)  are now 
available (for review, see (1)). Also, recent interest in the 
functional role of protein disorder has led to a large 
increase in experimental data for intrinsically disordered 
regions. This data has been curated in the Disprot database 
(137) providing motif discovery with high quality data for 
masking of a subset of proteins with known disorder as 
well as providing an excellent resource for benchmarking 
and training of disorder prediction tools.  

 

4.4.2.2. Evolutionarily under-constrained residues 
Although disordered regions tend to be less 

conserved than globular domains (35), it has been observed 
that disordered residues with functional constraint are more 
conserved than average (38). Using conservation 
information from orthologues to mask residues based on 
their level of evolutionary constraint in relation to their 
local sequence context leads to enrichment for functional 
residues. A scoring scheme using relative conservation 
increased 4-fold the ability of SLiMFinder to discover 
known ELMs from HPRD interaction datasets, where a 
subset of interactions were known to be mediated by 
SLiMs (38). One of the main decisions of conservation 
measures is the choice of proteins for the alignment. Use of 
all homologues potentially offers more information and 
conservation of a motif in paralogues (products of gene 
duplications) as well as their orthologues (products of 
speciation) is a strong indicator of functionality. 
However, use of paralogues may increase the difficulty 
to create a quality alignment and post-duplication 
functional diversity might mean that paralogues do not 
have the SLiM despite its functional relevance in the 
protein of interest. Use of only orthologues allows a 
simpler model of conservation and cleaner alignments, 
without the need to consider the pressure to diversify 
functionality on paralogues. However, definition of 
orthologues can often be difficult.  

 
The degree of sequence divergence in the 

considered alignment also has an important influence; 
sequences which are closely related will have very little 
change at any residues, while distantly related sequences 
will typically have unreliable alignments (for disordered 
regions in particular), therefore, there is an optimal 
degree of sequence divergence. Finally, aligning 
disordered regions remains a difficult problem. Recent 
work defined the problem, pointing out none of the 
programs currently available is capable of reliably 
aligning SLiMs in distantly related sequences, with no 
tool correctly aligning more than 73% of SLiMs (138). 
For these reasons, a relative conservation score – 
comparing the conservation of a given residue to that of 
its neighbors – is generally more powerful than an 
absolute score, which is highly dependent on homology 
levels and alignment quality (38). Hopefully, the 
addition of set of benchmarking alignments to the 
BAliBASE (138) will provide the impetus for research 
into the field of disorder alignment. 

 
4.4.2.3. Topology 

The use of topology, for network pruning, to split 
interaction datasets of membrane bound proteins into EC 
and IC interactors has been discussed. Similar logic can 
be used for proteins interacting with membrane bound 
proteins to mask regions which are inaccessible to the 
hub protein for interaction. For example, an IC hub 
protein may only interact with IC regions of a 
transmembrane spoke protein once it has localized to the 
membrane. Analysis of the dataset should be considered 
compartment specific and the proteins masked accordingly. 
Again, reliable data is required to do this accurately. 
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Figure 5. Expectation of known ELMs. The distribution of counts, for all 132 motif classes in the ELM database, against the 
number of residues inspected before 1 instance of a given ELM would be expected by chance.  

 
4.4.2.4. Surface accessibility 

15% of known SLiMs occur in accessible 
portions, such as loops, in globular regions of proteins. 
Analysis of these regions is often desirable but for these 
analyses it is advisable to consider only accessible residues. 
Tools such as DSSP (139) can be used to return surface 
accessibility scores for proteins with experimentally 
derived 3D structures; a recently added ELM filter takes 
advantage of such methods. Often the structure of the 
protein of interest is not available, however coverage for 
homologous protein structures is improving, allowing 
homology modeling to predict a structure (see for review 
(140)) from which accessibility scores can be calculated. 
Several techniques are also available which attempt to 
calculate surface accessibility from primary sequence (see 
(141)).  

 
5. MOTIF STATISTICS 
 
5.1. Motif-based metrics 

It is often desirable to compare motifs, ranking 
based on their level of degeneracy or their likelihood of 
occurence (for example, the Dynein binding motif KxTQT 
occurs considerably less frequently than the highly 
degenerate CK1 phosphorylation site Sxx (ST)). The most 
useful score for motif comparison is the probability that a 
motif of interest will occur by chance at a single position in 
a protein (this can also be thought of as the probability that 
a motif chosen at random from a sequence, with the same 
length and number of wildcards, will be a particular motif). 
This calculation (eq. 1), which is the basis of the 
SLiMChance algorithm (employed by SLiMFinder and 
SLiMSearch), is straightforward once an appropriate amino 
acid background probability is chosen. This score is 

particularly useful for ranking motifs discovered, based on 
level of interest, in a search of known motifs against a 
single protein. 
 

Information Content (143) is a measure of 
randomness, which can be used to describe the degeneracy 
of a motif (eq. 2) (85); highly ambiguous motifs have high 
levels of degeneracy and therefore randomness. Although 
motifs can be compared based on the level of 
randomness, the Information Content of a motif does not 
correlate uniformly with the likelihood of a motif to 
occur by chance. However, Information Content has 
been used in motif discovery, SLiMDisc (91) and 
PRATT (85) both used the flexibility of the scoring 
scheme to avoid the strict dependency rules of 
probability based scoring schemes allowing the 
manipulation of homology in input datasets by 
weighting (144). Also, Information Content is widely 
used in conservation measures for scoring columns of a 
multiple alignments (see review (145)). Finally, 
CompariMotif (146), a tool for comparison of motifs, 
scores motifs similarity based on their normalized 
shared information content. 

 
5.2. Protein-based metrics 

When a motif is known and proteins are being 
searched for novel instances, matches can occur regularly 
by chance (Figure 5). When searching for novel instances 
of a motif in a protein it is useful to quantify how unlikely 
it is that the motif would occur in that protein by chance, 
particularly as the probability of the protein containing a 
particular motif is highly correlated with its length. These 
probabilities can be calculated both probabilistically and 
empirically. 
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5.2.1. Probabilistic calculation  
With knowledge of amino acid frequencies it is 

possible to calculate the probability of a motif occurring at 
any position in the protein by chance (eq. 1). From this it is 
possible to calculate the probability, using the binomial 
distribution, of the motif occurring in the protein k times 
(eq. 3) or, the highly useful metric, 1 or more times (eq. 4) 
(62). Probabilistic methods will give unique probabilities 
for each protein considering the effect of protein length, 
however it does not explicitly account for compositional 
biases (although when tested no effect was discovered 
(62)). SLiMChance (SLiMFinder and SLiMSearch) is 
based on these calculations and MnM (47) uses similar 
methods to calculate highly intuitive fold enrichment 
scores. 

 
5.2.2. Empirical calculations  

In motif count based metrics such as those used 
in Dilimot (37), the support of a given motif is counted in a 
background dataset, often the entire proteome, and the 
probability of a motif occurring in a given protein is 
estimated as the proportion of proteins in the background 
dataset containing that motif (eq. 5). Motif count methods 
are based on empirical data and consider possible 
compositional biases present in many proteins. It does not 
consider the differing probabilities for proteins of differing 
lengths. 

 
5.2.3. Background sampling 

The background data sampled for amino acid 
frequencies/motif counts will have a strong effect on the 
calculated probabilities. For example, a test set of 
extracellular proteins or highly disordered proteins will 
have very different amino acid frequencies, and therefore 
motif counts, than the whole proteome and this should, if 
possible, be considered. Empirical calculations can employ 
dataset matching, i.e. selecting background datasets with 
similar attributes to the test dataset is also possible, but 
over-fitting is a problem. For probabilistic methods, it is 
preferable to sample amino acid frequencies from the 
dataset of interest. 

 
5.3. Dataset-based motif probability 

The utility of the over-representation hypothesis 
(that over-representation of convergently evolved motifs is a 
pointer to purifying selection), as a tool for the discovery of 
putatively functional motifs in a dataset has been proven in 
analyses (49, 62). The major task of motif scoring for motif 
discovery is to separate motifs that are over-represented due to 
purifying selection (true positives) from those which are over 
represented due to chance (false positives). Several scoring 
schemes have been applied to tackle this problem. 

 
Empirical schemes, such as the Information 

Content based metric used by SLiMDisc and PRATT, are 
based on the observation that the methods work well on 
benchmarking datasets (eq. 7) but have problems of false 
positives in dataset that do not contain any true motifs. 
Probabilistic binomial scoring schemes, such as 
SLiMChance (SLiMFinder and SLiMSearch) and Dilimot 
represent null hypotheses, the background distribution 
defining the probability that a motif will occur with a given 

support if there were no evolutionary pressures selecting 
for the motif. By comparing supports of motifs with this 
distribution it is possible to calculate how unlikely a motif 
is to occur with a given support by chance (eq. 6). The 
Fisher’s Exact test, based on the hypergeometric 
distribution, is often used to test for enrichment in motif 
rediscovery analyses (66, 67, 80). A dataset will be tested 
for enrichment of a motif against a background dataset 
which is considered as a control (eq. 8).  
 
5.3.1. Achieving independence 

A probabilistic scoring scheme is suitable for 
analyses when data is independent, or data can be 
organized in such a way that it can be assumed 
independent. With the inclusion of non-independent 
(evolutionarily divergent) proteins in datasets, motifs are 
often shared due to the lack of evolutionary distance to 
accumulate mutations rather than due to a purifying 
selection to keep functional motifs. For instance, if a motif 
occurs once, the probability of reoccurrence increases in 
homologous proteins. In such cases, simpler scoring 
schemes based on Information Content, such as those used 
in PRATT (85) and SLiMDisc (91) are cleaner and more 
intuitive. However, advances in dataset modeling have 
allowed statistical models to accurately calculate 
probabilities considering the dependencies of proteins of 
common descent (62). Dilimot (79) removes regions of 
homology (BLAST E> 0.001), keeping only a single 
instance. SLiMFinder (62) groups proteins by homology 
and weights success probability based on a framework 
introduced by SLiMDisc (91). 

 
5.4. Dataset-based motif significance  

Dataset based motif over-representation scores 
(eq. 6&8) are motif centric, returning the probability that a 
given motif will reach its support by chance. This score 
allows useful ranking of returned motifs yet has two major 
drawbacks; (1) Motifs scores can only be compared against 
scores for similar motifs (same number of non-wildcard 
positions (i.e. 3-mer scores and 5-mer scores are not 
comparable)) in the same dataset and (2) motif scores do 
not offer any indication that any motif in the dataset will 
achieve that score by chance (62). Each dataset will have a 
proportion of motifs which are extremely unlikely yet are at 
the tail of a distribution of expected binomial p-values for a 
dataset (This observation, a multiple testing problem, is 
similar to the extreme value distribution of BLAST (147) 
where although a hit between two proteins may be unlikely, 
when searching against a proteome the chances of two sub-
sequences matching by chance increases rapidly). 

 
A dataset significance score (eq. 9) calculates the 

probability that any motif in the dataset will reach a given 
binomial p-value score by chance. The score allows motifs 
to be compared across motif lengths and between datasets 
which is of huge benefit to high-throughput analyses 
allowing the ranking of datasets based on their level of 
interest. Dilimot (37) introduced a simple confidence 
threshold cut-off by random sampling of datasets, allowing 
motifs which are in the tail of an expected score 
distribution to be discovered. SLiMFinder (62) heuristically 
calculates a significance score approximating the 
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probability that the dataset would return any motifs with a 
given p-value by chance.  

 
5.5. Outstanding issues for motif statistics  
5.5.1. Selection against motif occurrences 

It has been hypothesized that there may be 
selection against groups of close (sub-cellular location 
wise) proteins evolving motifs that compete for binding 
with another protein. In such a case, there would be 
strong pressure on a motif to be removed from the 
protein. Via et al. (148) surveyed PROSITE motifs (54) 
finding some evidence of selection against novel 
instances of functional motifs convergently evolving. A 
survey analyzing this hypothesis on less specific motifs 
from SLiM databases such as ELM or MnM is difficult, 
as often instances of matches to a motif regular 
expression have not been differentiated as either true or 
false positives. However, if this effect is true and 
widespread, it will have implications for over-
representation based motif discovery methods. 

 
5.5.2. Classification of motifs 

One of the major misconceptions about over-
representation based motif discovery is that all instance 
of an over-represented motif are equally interesting. In 
fact, over-represented motifs are discovered when a 
probabilistically defined number of randomly occurring 
background instances of a motif occur as well as 1 or 
more functional instances of the motif. These functional 
instances cause the support for a given motif to be 
statistically unlikely and therefore discoverable. In the 
situations when the number of background instances of a 
motif is less than the expected support it can be difficult 
for a set of true positives and false positives matching 
that regular expression to reach a significance threshold. 
This also works advantageously for motifs when the 
number of true positives for a functional motif is low 
and when the numbers of false positives is above the 
expected support. 

 
5.5.3. Significance of ambiguous motifs 

Although the method for calculation of the 
binomial p-value of an ambiguous motif is well known (62) 
and significance values for fixed motifs have also been 
defined the significance of ambiguous motifs still has not 
been fully explored. Currently, a heuristic approach is used 
comparing the ambiguous motifs against significance 
distributions for fixed motifs (62). The complicated nature 
of motif ambiguity, being made up of multiple possible 
combinations of support for fixed position motifs, makes 
the calculations extremely difficult and any exact solution 
will undoubtedly be computationally expensive. In such 
situations, permutation tests may provide robust 
computationally expensive, but feasible, estimates of 
significance. 
 
5.5.4. Non-independence of datasets 

High-throughput analyses on GO and protein-
protein interaction datasets introduce a difficult multiple 
testing problem (149). If the datasets were independent, 
having no overlap, the significance statistics described 
above would be able to account for this multiple testing 

problem as they quantify the number of datasets which 
would need to be analyzed to see such an over-represented 
motif by chance. However, the fact that GO and PPI 
datasets are highly overlapping causes a number of 
complex dependencies. Normal statistical measures are 
insufficient to deal with the highly dependent and 
overlapping data produced by these analyses. A large 
amount of research is available in the field of multiple 
testing for GO term enrichment (150), which could be 
modified in future for high throughput SLiM discovery.  

 
6. MOTIF ANALYSIS 
 

Classification of potential functional motifs is a 
difficult procedure; the following four steps may help 
increase confidence and make the process more empirical. 
 
6.1. Matching known motifs 

One of the first tasks when analyzing 
putatively functional motifs is comparison against 
datasets of known motifs. CompariMotif (146) is a tool 
for making motif–motif comparisons, identifying and 
describing similarities between regular expression 
motifs. Motif relationships are scored using shared 
Information Content, allowing the best matches to be 
easily identified in large comparisons. Motifs can be 
searched against the datasets from the ELM (2) and 
MnM servers (47), as well as the PhosphoMotif Finder 
(151) phosphorylation site database, to find matches to 
known motifs as well as “fuzzy” matches to the regular 
expression of known motifs.  

 
A literature search may yield motifs that have 

not yet been added to these SLiM repositories. Motif 
databases are not exhaustive, mainly due to the 
difficulty in motif curation from the literature. Although 
standards have been suggested (152, 153), they are sadly 
not widely adopted by the scientific community and 
motifs are described in several different formats, for 
example the canonical SH2 Grb2 (154) binding motif 
YxN has been described as YxN, pYxN, Y.N, Tyr-x-
Asn as well as being described in relation to its 
surrounding residues Tyr-Gly-Asn-Gly. Additionally, 
abstracts often fail to mention the word "motif" at all, 
perhaps failing to differentiate motifs as a class from 
active sites in a domain, or instead using one of the 
many alternative (and often more specific) terms, such 
as peptide, interface, interaction site, SLiM, ELM, LM, 
minimotif or mOrf.  

 
Proteins returning a putatively functional motif 

that contains a phosphorylatable residue can be cross-
referenced with a dataset of phosphorylation sites such 
as the Phospho.ELM (50) database for information on 
whether phosphorylation of that residue has been seen 
experimentally. Much work has been carried out on the 
Kinome and multiple specialized tools are available to 
both discover novel phosphorylation sites and to predict 
particular kinases for a given site (69). Care should be 
taken with interpretation of hits, as the degeneracy of 
many known functional motif regular expression will 
often cause non-biologically meaningful matches. 
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Figure 6. HP1 binding motif of Chromatin assembly factor 1 subunit A. (A) IUPred plot for the 100 residues window 
surrounding the motif showing the decreased disorder surrounding the motif. (B) The beta strand structure of the bound ligand 
binding by beta augmentation. (C) Conservation of the neighboring region shows the constraints surrounding the core PxVxL residues. 

 
6.2. Conservation 

Although functional SLiMs in disordered regions 
are not as conserved as domains (4), mainly due to the lack 
of strong structural constraints, they are more conserved 
than surrounding residues and more importantly, more 
conserved than non-functional instances matching the 
regular expression for the motifs (155). Expanding this 
observation, conservation can be used to distinguish 
between true and false positive by classifying based on 
presence or absence in homologues. Dilimot (37) 
incorporates motif conservation into the scoring scheme 
and SLiMDisc (91) and SLiMFinder (62) provide 
conservation metrics that allow the user to gauge putative 
motif functionality.  

 
Although many conservation scoring schemes 

have been suggested no consensus has been agreed 
amongst the community as to which method should be used 
(see for reviews (145, 156)). Recent interest in the field of 
motif discovery has led to the development of conservation 
measures specifically for describing SLiM conservation, 
these methods use an Information Content based scoring 
scheme which incorporated phylogeny information to 
weight sequences (155) and a probabilistic method (157). 

More recently, relative conservation has been introduced to 
allow the quantification of conservation of residues 
compared to their surrounding residues (38). The method 
also advocated splitting the data into two states to consider 
the differing levels of conservation for globular and 
disordered regions. 

 
6.3. Confidence through context 

One of the conundrums of SLiMs is that the 
multitudes of false positives, often indistinguishable from true 
positives, are easily avoidable by the binding partner. 
However, clues lie in the observation that the number of 
residues involved in the binding seems inadequate to provide 
the specificity observed in these interactions (39). Contextual 
information such as propensity to form secondary structure, 
surface accessibility, residue conservation data and information 
about known motifs can be very important in further 
investigation of a motif and can be decisive in the rejection or 
selection of a motif for further experimental analysis.  For 
example, propensity to form a secondary structure (shown 
by the dip in IUPred disorder score) and high conservation 
of the intrinsic residues and neighboring context of the HP1 
binding motif of Chromatin assembly factor 1 subunit A is 
clearly illustrative of a functional motif (Figure 6). 
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Table 1. List of motifs statistics 
Score type Description Equation # 
Motif-based metrics Probability a motif chosen at random will be motif m 

pm = f (mik)
k=1

x

∑
i =1

l

∏
 

 (eq. 1) 

 Information Content based measure of randomness of the motif 
m ICm = − log20

i=1

l

∑ ( f (mik)
k=1

x
∑ )

 

 (eq. 2) 

Protein-based metrics Probability that the motif m will occur c times in a protein 
pc =

N!
(N − c)!c!

pm
c (1− pm)N − c

 

 (eq. 3) 

 Probability that the motif m will occur 1 or more times in a 
protein p1+ =1− (1− pm)N

 

 (eq. 4) 

 Count-based probability the motif m occurring 1 or mores times 
in a protein p1+ = C

B  

 (eq. 5) 

Dataset-based metrics Probability a given motif will occur with a support of k or more 
in a dataset p =

n!
(n − k)!k!

p1 + µ
k (1− p1 + µ )n − k

j =k

n

∑
 

 (eq. 6) 

 Information Content based empirical score for the motif m in n 
proteins 

IC = nw * ICm   (eq. 7) 

  
Count-based probability the motif m will occur support of k 
times in a dataset 

p =

C
k

 

 
 

 

 
 

B − C
n − k

 

 
 

 

 
 

B
n

 

 
 

 

 
 

 

 (eq. 8) 

Dataset-based 
Significance 

Estimated probability any motif in a dataset will reach the p of 
motif m Sig =1− (1− p)Rl

 
 (eq. 9) 

 
m is the motif of interest, l is the number of non-wildcard positions in the motif, x is the maximum length of a wildcard region 
allowed, mi is position i in the motif, x is the number of ambiguous possibilities at position i, mik  is the kth ambiguous possibility 
in mi , f (mik) is the background frequency of the amino acid mik. N is the number of positions in the protein that the motif m can 
occur, C is the count of proteins containing 1 or more occurrence of the motif in a background dataset, B is the size of the 
background dataset. n is the number of proteins or protein clusters in the dataset, k is the support of the motif (i.e. the number of 
proteins containing it), p1+µ  is the mean success probability of a motif occurring in any protein in the dataset, nw is the support 
weighted based on the homology of the proteins in the dataset.  R is calculated as 20l (x+1)l-1. 
 
6.3.1. Structural information 

Motifs that bind a common interface will, in 
general, bind with a similar secondary structure (for 
example the NRBOX motif LxxLL when bound forms a 
short alpha helix (158)). Using this information, it may be 
possible to differentiate true and false positives based on 
their propensity to form a particular secondary structure. A 
simple example would be the presence of a proline, a 
potent alpha helix breaker (159), in a putative motif for 
which all functional instances form an alpha helix when 
bound, which would be indicative of a false positive. 

 
Often a motif can offer hints to its bound 

structure based on the residue spacing, for example the 
PCNA binding motif Qxx (ILM)xx (DHFM) (FMY) (160) 
or the MDM2 binding motif FxxxWxx (LIV) (161), both of 
which are natively alpha-helical and have defined residues 
matching the helical moment of 3.6 (162), signifying that 
these residues of the motif are adjacent on one side of the 
helix. Motifs with such a residue spacing, where residues 
with aligned side chains are more highly conserved and the 
region looks like it has a propensity to form a helix has a 
large body of contextual information to suggest that it is a 
functional helical motif.  

 
Motifs obviously need to be surface accessible in 

order to be available for intermolecular interactions, and 
visualizing the position of a SLiM in a 3D structure, using 

visualization tools such as seeMotif (142), can give 
additional confidence, or otherwise, of a motif prediction. 
This is obviously limited by the availability of 3D 
structures, however, and an additional confounding factor 
in the case of SLiMs is their preponderance for occurring in 
structurally disordered regions of proteins, which are 
notoriously difficult to solve structurally due to their 
dynamic nature. (134). Secondly, the possibility must be 
borne in mind that a region may be buried in the typical 
conformation of a protein, but become accessible after a 
structural rearrangement.  

 
6.4. Off-target motifs 

A common occurrence in novel dataset-driven 
over-representation based motif discovery is “off-target” 
motifs, i.e. the discovery of a known functional motif that 
obviously is not mediating the function hypothesized for 
the analysis. In general, it is advisable to consider this 
possibility thoroughly when deciding on the next step of 
analysis such as validation.  
 
6.4.1. Modification 

Many proteins are regulated by protein 
modifications such as phosphorylation, ubiquitination or 
sumoylation; therefore motifs modified by these post-
translational modifications are omnipresent. In biology, 
modification sites are the most commonly occurring SLiMs 
with many proteins known to have multiple modification 
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sites (e.g. P53 has at least 14 phosphorylation sites (31)). 
As a result, there is a reasonable chance that any set of 
proteins will have over-represented PTM motifs. To help 
combat this problem, SLiMFinder provides options for 
masking user-defined motifs, or even specific amino acids 
(such as serines to reduce phosphorylation motifs) but it 
remains to be seen whether these options will significantly 
enhance motif discovery. 
 
6.4.2. Localization 

Sets of interacting proteins often co-localize in 
particular cellular regions (e.g. proteins involved in 
transcription will be present in the nucleus). The 
hypothesis of novel motif discovery is that a motif 
mediating the interaction would be over-represented, 
though often motifs returned from interaction datasets of 
these location-specific proteins can be localization 
signals (for example, commonly occurring nuclear 
localization signals (163) are often returned). This 
problem will obviously be exacerbated by the use of 
topological pruning of datasets. Cross-referencing 
motifs against a dataset of known localization signals (2, 
47), or even masking these motifs, will aid in such situations.  

 
6.4.3. Indirect binding 

Due to the nature of interaction datasets 
(discussed in Dataset design), often the binary 
interaction network for a motif will include many 
proteins that interact with a complex involving the hub 
protein but have no direct interaction with the hub itself. 
This can cause hub-centric datasets to return a motif 
with which it does not interact with an interface on that 
hub, but with an interface on a binding partner in the 
same complex. Such a motif could prove an expensive 
false positive if brought to the experimental stage. 
Complex data for the hub, from sources such as 
immunoprecipitation, TAP or NMR or the MPCDB 
database (130) will provide information about the 
likelihood that a motif is an off target motif of this type. 
Such motifs can often be recognized by the fact that the 
interactomes of several members of the same complex 
are all returning the same motif. 

 
6.4.4. Multi-functionality 

Several motifs are known to be widely over-
represented due to re-use of the motif by the proteome for 
multiple functions, for example arginine and lysine rich 
motifs such as KRK are involved in cleavage (11), 
localization (164) and modification (102). An unusual 
example is the N-terminus motif M (AGS) (AGS) which 
even has a genomic component. The mammalian 
translation initiation Kozak sequence GCCRCCaugG that 
binds mRNA to the small subunit of the ribosome also has 
an effect on the +2 residue as it favors G in the first 
position of the codon (165) enriching for Ala and Gly. The 
other components are, for methionine aminopeptidase that 
cleaves Methionine only when small amino acid occurs 
downstream (166) and myristoylation sites, a common N-
terminal modification of Glycine (73). For this reason, 
SLiMFinder provides options to mask out these common 
motifs prior to searching. 

 

7. CONCLUSION 
 

The vast repertoire of activities mediated by 
SLiMs underlines the importance of their study and the 
vital part they play in cell functionality. Due to their 
elusiveness, both experimentally and computationally, 
many of SLiMs are still to be discovered. This, in 
conjunction with the recent expansion of experimentally 
derived examples, has made SLiM discovery a fruitful field 
of research that has expanded rapidly and is on the cusp of 
taking a place alongside domain-based tools as a primary 
source of protein function inference. 

 
The potential of computational methods for motif 

discovery has been demonstrated and, although the deluge 
of motifs expected from these methods has yet to appear, 
methods have improved to a point where they can enrich 
experimental analysis. Advances continue in areas such as 
motif occurrence statistics, motif discovery algorithm 
design, motif enrichment methods and motif classification 
strategies leaving the field primed for the inundation of 
experimental data expected over the coming years. 
However, many hurdles still remain; computationally, the 
statistics of ambiguous occurrences are still ill-defined, and 
the field of de novo motifs discovery from primary 
sequence is still in its infancy. Experimentally, methods for 
the high throughput discovery of SLiMs and SLiM-
mediated interactions are still to be fully explored. 
Advances will be needed to design experiments to discover 
modules that are low affinity, highly regulated, and often 
temporal or reactionary to stimuli.  

 
Our current knowledge is just the tip of the 

iceberg with regards to the importance of SLiMs and over 
the next decade we should see an explosion in the 
recognition of their significance by the wider biological 
community. Research in this area will at the very least 
enrich our understanding of cellular biology, but, it is not 
unfounded optimism to believe that they may play a central 
role in future therapeutic advances against a range of 
important human diseases. 
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