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1. ABSTRACT 
 

This article reviews the literature on the circadian 
rhythm of body temperature. It starts with a description of 
the typical pattern of oscillation under standard laboratory 
conditions, with consideration being given to intra- and 
interspecies differences. It then addresses the influence of 
environmental factors (principally ambient temperature and 
food availability) and biological factors (including 
locomotor activity, maturation and aging, body size, and 
reproductive state). A discussion of the interplay of 
rhythmicity and homeostasis (including both regulatory and 
heat-exchange processes) is followed by concluding 
remarks. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Repeated measurements of body temperature 
over time -- allowing the study of 24-hour rhythmicity -- 
have been conducted in animals and human subjects since 
at least the mid-1800s (1-6). A few literature reviews, often 
with limited scopes, have been published occasionally in 
the last quarter of a century (7-10). The topic is important 
for at least two reasons: 1) the body temperature rhythm is 
a convenient marker of the circadian clock for studies on 
biological rhythms and sleep, and 2) the rhythm reflects a 
constant conflict between homeostasis and circadian 
rhythmicity in the control of core temperature in mammals 
and birds. 
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Figure 1. Mean pattern of daily oscillation of intra-
abdominal temperature of an Anatolian ground squirrel 
obtained by averaging data from 10 consecutive days in 15-
min intervals. The animal was housed in an individual cage 
in the laboratory with food freely available. The horizontal 
rectangles denote the dark and light phases of the 
prevailing light-dark cycle. Data from Gur, Refinetti, and 
Gur, 2008 (18). 

 
This review will start with the description of daily 

rhythmicity of body temperature in organisms kept under 
standard laboratory conditions, which usually include: 1) a 
daily light-dark cycle with 12 hours of light and 12 hours of 
darkness, 2) constant, neutral ambient temperature, and 3) food 
and water freely available at all times. Attention will be given 
to similarities and differences between species and between 
individuals of the same species. 

 
The influence of non-cyclic environmental factors 

on the CRT will be discussed next. The discussion will include 
variations in ambient temperature and in food availability. The 
influence of cyclic environmental factors, which can 
synchronize circadian rhythms including the CRT, will not be 
discussed here because most studies in this area use outputs of 
the circadian system other than the CRT. 

 
Afterwards, the influence of biological factors will 

be discussed. Biological factors include variations in the 
organism's locomotor activity, natural maturation and aging, 
variations in body size, and changes in reproductive state. 
These particular biological factors were selected for discussion 
primarily because much research has been conducted on them, 
but also because age, body size, and reproductive state are 
fundamental properties of organisms. 

 
Next, the relationship between the circadian and 

homeostatic components of body temperature regulation will 
be discussed with emphasis on both regulatory and heat-
exchange processes. The CRT is the result of an interplay of 
mechanisms of heat production and heat loss controlled by the 
circadian system. 

 
A final section will summarize the issues 

previously discussed and will put them all in perspective. 
 
3. RHYTHMICITY UNDER STANDARD 
CONDITIONS 
 

The expression "circadian rhythm of body 
temperature" (CRT) will be used throughout this article, but 

it is important to point out that the expression lacks technical 
precision. First, the word "circadian" is used in the non-
technical sense equivalent to "cycling every 24 hours." In 
contrast, those who study circadian rhythms reserve the term 
"circadian" to a rhythm that has been shown to free-run with a 
period (cycle length) of 18 to 30 hours in the absence of 
environmental cycles and to be capable of synchronization by 
environmental cycles with 24-hour periods (11). Of course, 
once a species has been shown to exhibit a CRT, it is 
reasonable to assume the existence of a CRT in all members of 
the species studied thereafter. It is not that clear, however, 
whether the demonstration of a CRT in one mouse species, for 
example, justifies the use of the expression in other mouse 
species. Most researchers would say that this generalization is 
not justified. What about different breeds, or different age 
cohorts, of the same species? Such cases remain debatable, and 
they highlight the problem at hand. Careful researchers will, of 
course, always avoid unjustified assumptions. 

 
The second imprecision in the expression 

"circadian rhythm of body temperature" has to do with the 
phrase "body temperature." It is traditional usage in thermal 
physiology to reserve the phrase "body temperature" to an 
abstract temperature computed as the weighed mean of the 
temperatures of various parts of the body (12). Yet, most 
studies of the CRT rely on measurements at a single part of 
the body, usually the intra-abdominal cavity. This 
measurement of body "core" temperature is most 
commonly obtained by means of probes inserted into the 
intestines through the anus or by means of temperature-
sensitive radio-transmitters or digital data loggers 
surgically implanted in the peritoneal space. In small 
animals, the stress of handling involved in manual 
measurement of core temperature can significantly affect 
the animal's temperature, so that the use of radio 
transmitters or data loggers is a necessity (13-15). 
 
3.1. Pattern of oscillation 

Figure 1 shows a typical, averaged body 
temperature rhythm. The data were obtained with a digital 
data logger surgically implanted in the intra-abdominal 
cavity of an Anatolian ground squirrel (Spermophilus 
xanthoprymnus) prior to the annual hibernation season. In 
this diurnal animal, temperature is clearly low at night, 
rises during the day, and falls again at night. The curve is 
quite smooth because it depicts the average of 10 
consecutive days, so that small irregular fluctuations are 
averaged out. 

 
To the extent that the CRT is a reproducible 

pattern of oscillation, it can be characterized by parameters 
that describe "pure" oscillatory phenomena such as sine or 
cosine functions. As shown in Figure 2, a regular 
oscillatory process can be characterized by its mesor (mean 
level), its amplitude (which is approximately half the full 
range of oscillation), its period (i.e., the duration of the 
cycle), and its phase (often reported as the position of the 
peak of the wave, called the acrophase, in relation to an 
external reference point) (16). Because the CRT is not a 
pure mathematical function, two other parameters are 
needed to fully characterize it. One of them is the wave 
form, which often differs considerably from a sine or
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Figure 2. Diagram of an oscillatory process identifying 
four parameters of the oscillation: mesor, period, 
amplitude, and acrophase. Wave form and robustness are 
not explicitly depicted. 

 
 
Figure 3. Five-day segments (with 6-minute resolution) 
of the records of body core temperature of 
representative individuals of three mammalian species: 
laboratory rat (Rattus norvegicus), fat-tailed gerbil 
(Pachyuromys duprasi), and tree shrew (Tupaia 
belangeri). The data were collected by telemetry in the 
laboratory. The white and dark horizontal bars at the top 
indicate the duration of the light and dark phases of the 
prevailing light-dark cycle. Figure adapted from 
Refinetti, 1999 (363). 

 
cosine wave and sometimes approximates a square wave. 
Variations in wave form, which are often affected by but 
are not solely the result of random variability ("biological 
noise"), invariably affect the strength and reproducibility of 
the CRT. The magnitude of this reproducibility (or the 
degree of "stationarity" of the time series) is the sixth 
parameter of the CRT, often called the robustness of the 
rhythm (17). 

 
Although a clear oscillatory pattern is often 

evident by visual inspection of data plots, sometimes 
computational tools are necessary for the identification of 
rhythmicity, particularly when the signal-to-noise ratio is 
low. Numerical analysis is also needed as a means of 
securing an objective index of rhythmicity and of 
characterizing the parameters of the oscillation. Various 
numerical procedures suitable for the analysis of circadian 
rhythms have been recently reviewed and compared (16). 
Analysis of the data in Figure 1 reveals that the oscillation 
has a mean level of 36.8 OC, amplitude of 1.2 OC (range of 
oscillation of 2.5 OC), acrophase at 13:05 h, a relatively 
sinusoidal wave form, and robustness of 60% (18). 
 
3.2. Intra- and interspecies differences 

Daily rhythmicity of body temperature has been 
extensively documented in a variety of species. The 
laboratory rat (Rattus norvegicus) is the species on which 
the greatest number of studies has been conducted (19-68), 
but many studies were also conducted on domestic mice 
(69-86), golden hamsters (87-96), and many other rodent 
species (97-129). A large number of studies has also been 
conducted on primates (130-145), including humans (146-
184), as well as in dogs (185-188), cats (189-191), goats 
(192-196), sheep (197-203), horses (203-208), cattle (209-
213), other mammals (214-234), and many species of birds 
(235-252). Although only mammals and birds are true 
endotherms and have the ability to generate body 
temperature rhythms in homogeneous thermal 
environments, other animals are capable of generating body 
temperature rhythms by selecting different ambient 
temperatures at different times of the day. Consistent daily 
variation in the selection of ambient temperature along a 
temperature gradient has been documented in crustaceans 
(253-256), fishes (257-261), and reptiles (262-275). At 
least one reptile -- the green iguana (Iguana iguana) -- is 
capable of generating a small-amplitude rhythm of body 
temperature even when housed in a homogeneous thermal 
environment (276, 277). Honey bee colonies, which 
function as endothermic pseudo-organisms, also exhibit 
daily rhythmicity of "body" temperature (278). 

 
Figure 3 facilitates the comparison of the CRTs 

of three rodent species. This figure shows raw data 
collected every 6 minutes, so that so-called ultradian 
oscillations can be seen as high-frequency oscillations 
superimposed on the 24-hour oscillatory pattern. Inspection 
of Figure 3 clearly indicates that the rhythms of the 
nocturnal animals (laboratory rat and fat-tailed gerbil) are 
characterized by higher temperatures during the night, 
whereas the rhythm of the diurnal animal (tree shrew) is 
characterized by higher temperatures during the day. Also 
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evident are differences in wave form: square for the rat, 
rectangular for the gerbil, and bimodal for the tree shrew. 
In addition, the amplitudes of the rhythms differ among the 
species: the daily range of oscillation of the temperature 
rhythm is less than 2 OC for the rat but more than 4 OC for 
the tree shrew. Table 1 lists the mean level, range of 
oscillation, and acrophase (peak time) of the body 
temperature rhythms of 67 species of mammals and birds. 
As will be discussed in detail in section 5.3, the mean level 
of the CRT tends to be higher by more than 1 OC in large-
sized species than in small-sized ones, although there is 
considerable inter-species variability. Also, the body 
temperature of birds tends to be more than 3 OC higher than 
that of mammals (on average, 41 OC and 37.5 OC, 
respectively), and the temperature of marsupial mammals 
tends to be about 3 OC lower than that of placental 
mammals. The range of oscillation also varies with body 
size across species: the range is almost 2 OC narrower in 
large species than in small ones -- although, again, there is 
considerable inter-species variability. As for the acrophase, 
it usually occurs at night in nocturnal animals and during 
the day in diurnal animals, but it does not seem to be 
related to body size, except that few large mammals are 
nocturnal. 

 
Very few studies have addressed directly the 

question of whether intraindividual differences (i.e., day-to-
day differences in the rhythmic pattern exhibited by an 
individual of a given species) are comparable to 
interindividual differences (i.e., differences between the 
average rhythmic patterns of different individuals of the 
same species). To the best of the author's knowledge, only 
three studies have addressed the question, one for the 
rhythm of melatonin secretion (279), one for the rhythm of 
cortisol secretion (280), and one for the rhythm of body 
temperature (206). The results of these studies are 
consistent with the impression that one acquires by reading 
studies conducted on various individuals of various species, 
namely, that the variabilities differ in different parameters 
of the rhythm and in different species but that -- whenever 
there is a difference between interindividual variability and 
intraindividual variability -- the latter is always smaller 
than the former. That is, the day-to-day variability of an 
individual's rhythm does not exceed the variability between 
the rhythms of different individuals. Intraindividual 
variability is consistently smaller than interindividual 
variability. 

 
Free-running circadian rhythms of body 

temperature recorded in controlled environments without 
external temporal cues have been documented in birds 
(236, 238-242, 244, 246-248, 250, 281, 282), rodents (21, 
32, 41, 50-52, 54, 59, 63, 68, 71, 83, 88, 96, 105, 116, 117, 
124, 128, 283, 283-291), primates (130, 131, 134, 138, 139, 
143-145, 292, 293), including humans (146, 159, 161, 162, 
171, 294-300), and other mammals (189-191, 198, 205, 
217, 230, 233, 301-303). While these studies provide 
sufficient evidence of the endogenous nature of the CRT, 
they do not necessarily demonstrate that the CRT is directly 
generated by the circadian clock. In principle, the CRT 
could be generated by another rhythmic process in the 
body, this other rhythmic process itself being generated by 

the circadian clock. The influence of biological factors on 
the CRT is discussed in section 5 below. 
 
4. INFLUENCE OF ENVIRONMENTAL FACTORS 
 

The environment in which an organism lives can 
affect its circadian rhythms in two major ways: through 
entrainment and through masking (304, 305). Entrainment 
is the synchronization of the endogenous clock by an 
environmental cycle, which is achieved through modulation 
of the period and phase of the circadian clock. Cyclic and 
non-cyclic variations in the environment can also mask a 
circadian rhythm by disturbing its wave form and thus 
altering the mesor and amplitude and mimicking alterations 
in period and phase. 

 
Several decades of research on circadian rhythms 

have generated a large body of knowledge about 
entrainment mechanisms. The light-dark cycle is a potent 
entraining agent that has been thoroughly investigated (304, 
306). Cycles of ambient temperature (307, 308) and food 
availability (309, 310) have also been shown to entrain 
circadian rhythms. Specific masking effects of ambient 
temperature and food availability on the CRT will be 
discussed here -- in sections 4.1 and 4.2, respectively. 
 
4.1. Ambient temperature 

Most studies of the CRT are conducted under 
constant temperature conditions in the laboratory or under 
uncontrolled conditions in the field, but several laboratory 
studies have used controlled changes in ambient 
temperature to address the issue of the effects of different 
ambient temperatures on the CRT. 

 
Ambient temperatures constantly below or above 

thermoneutrality have not been found to affect the period or 
phase of the CRT -- and these negative findings are 
expected, as circadian period is "temperature compensated" 
even in ectothermic organisms (308, 311). However, 
exposure to lower temperatures down to 10 or 15 OC has 
been found to increase the amplitude of the CRT, and this 
increase in amplitude is often accompanied by a reduction 
in mesor. Greater CRT amplitude in the cold was observed 
in studies on squirrel monkeys (140), tree shrews (312), 
thirteen-lined ground squirrels (128), pigeons (238), 
mousebirds (313), sunbirds (314), and Australian 
frogmouth birds (315). On the other hand, no effect of 
ambient temperature on the amplitude of the CRT was 
found in rats (39, 66, 312), golden hamsters (312), or 
mouse lemurs (137). Genuine species differences, rather 
than differences in experimental methods, may be 
responsible for the conflicting results. 

 
If the increase in the amplitude of the CRT in a 

cold environment results mostly from lower nadirs (without 
higher zeniths), it is often referred to as "torpor," a well-
known mechanism of energy conservation analogous to 
seasonal hibernation (316, 317). Torpor may be induced by 
cold (or the short photoperiod that naturally accompanies 
the cold of winter) or simply by restricted food availability, 
as discussed in section 4.2. Daily torpor is controlled by the 
circadian system (317) and can, therefore, be thought of as
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Table 1 Parameters of the CRT of 67 species of mammals and birds, as determined in 160 published studies 
Species Mean 

(OC) 
Range 
(OC) 

Acrophase 
(HALO a) Source 

Acomys russatus 37.1 2.5 18 98 
Aethomys namaquensis 36.8 3.9 18 102 
Antechinus stuartii 36.5 3.1 19 214 
Aotus trivirgatus 37.8 1.4 18 131 
Apodemus flavicollis 37.4 1.7 17 103 
Apodemus mystacinus 38.4 2.2 17 98 
Arvicanthis ansorgei 38.6 3.0 6 68 
Arvicanthis niloticus 37.5 2.2 6 105 
Arvicanthis niloticus 37.6 1.7 5 106 
Bettongia gaimardi 37.4 1.7 22 215 
Bos taurus 38.2 0.9 18 211 
Bos taurus 38.3 1.4 14 209 
Bos taurus 38.7 0.8 10 212 
Bos taurus 39.2 0.9 12 210 
Bos taurus 39.8 1.0 19 213 
Canis familiaris 38.7 0.7 11 188 
Canis familiaris 39.1 0.5 11 187 
Canis familiaris 39.2 0.4 12 387 
Capra hircus 38.5 0.7 13 195 
Capra hircus 38.8 1.0 10 192 
Capra hircus 38.9 0.7 14 194 
Capra hircus 39.0 0.4 16 202 
Capra hircus 39.0 0.8 10 196 
Cebus albifrons 37.2 2.7 6 132 
Columba livia 40.0 2.1 6 235 
Columba livia 40.3 2.7 6 338 
Columba livia 41.5 1.5 6 236 
Coturnix coturnix 41.0 1.3 15 240 
Cynomys ludovicianus 37.4 2.5 7 216 
Dasypus novemcinctus 35.5 2.6 18 217 
Dasyurus viverrinus 36.5 3.6 18 227 
Didelphis marsupialis 35.5 2.5 19 218 
Didelphis virginiana 35.4 4.0 20 218 
Equus caballus 37.4 1.0 12 208 
Equus caballus 38.0 0.9 14 207 
Equus caballus 38.3 1.0 14 205 
Erinaceus europaeus 35.4 1.2 16 219 
Eulemur fulvus 38.0 0.9 18 130 
Felis catus 37.9 1.3 16 189 
Felis catus 38.3 1.0 15 190 
Felis catus 38.4 0.5 14 191 
Gallus domesticus 40.2 1.1 12 249 
Gallus domesticus 40.2 1.5 6 248 
Gallus domesticus 40.7 2.2 8 242 
Gallus domesticus 40.8 0.8 6 246 
Glaucomys volans 37.1 2.1 17 108 
Heterocephalus glaber 33.8 3.8 15 220 
Homo sapiens 36.5 1.2 10 147 
Homo sapiens 36.7 1.1 10 154 
Homo sapiens 36.8 0.7 10 172 
Homo sapiens 36.8 0.8 8 164 
Homo sapiens 36.8 0.8 10 160 
Homo sapiens 36.8 1.2 10 162 
Homo sapiens 36.9 1.0 9 151 
Homo sapiens 36.9 1.2 10 177 
Homo sapiens 37.0 0.8 10 169 
Homo sapiens 37.0 1.0 8 181 
Homo sapiens 37.0 1.0 9 171 
Homo sapiens 37.0 1.0 10 495 
Homo sapiens 37.0 1.1 10 153 
Homo sapiens 37.0 1.2 9 507 
Homo sapiens 37.0 1.2 10 159 
Homo sapiens 37.0 1.3 10 155 
Homo sapiens 37.1 1.0 11 170 
Homo sapiens 37.6 1.6 10 163 
Isoodon macrouros 36.2 2.5 16 218 
Isoodon obesulus 36.5 2.5 13 252 
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Lasiorhinus latifrons 35.3 2.9 16 221 
Macaca fuscata 37.0 2.4 9 133 
Macaca mulatta 36.8 1.4 10 135 
Macaca mulatta 37.2 1.0  292 
Macaca mulatta 38.1 1.6 10 134 
Macropus giganteus 34.6 2.8 19 222 
Macropus rufus 36.3 1.7 17 222 
Marmota monax 37.7 1.3 10 109 
Meleagris gallopavo 40.2 1.2 12 250 
Mephitis mephitis 36.4 1.3 12 87 
Meriones unguiculatus 36.9 2.7 8 111 
Meriones unguiculatus 37.4 2.7 14 19 
Mesocricetus auratus 36.0 2.9 14 19 
Mesocricetus auratus 36.8 1.7 18 94 
Mesocricetus auratus 36.9 2.5 17 93 
Mesocricetus auratus 38.0 1.3 17 89 
Microcebus murinus 36.3 2.8 18 138 
Microcebus murinus 36.5 2.5  137 
Microcebus murinus 36.6 2.5 18 139 
Microcebus murinus 36.8 2.0 16 136 
Mus musculus 36.0 2.0 15 86 
Mus musculus 36.2 2.4 17 508 
Mus musculus 36.3 2.2 16 15 
Mus musculus 36.5 1.8 21 84 
Mus musculus 36.6 2.1 19 69 
Mus musculus 36.6 2.2 18 77 
Mus musculus 36.7 1.6 19 70 
Mus musculus 36.8 1.7 18 74 
Mus musculus 36.9 2.2 16 73 
Mus musculus 37.0 2.0 17 20 
Myrmecobius fasciatus 35.0 5.8 10 223 
Nasua nasua 37.5 1.9 7 224 
Octodon degus 36.5 2.0 5 117 
Octodon degus 36.8 2.5 11 19 
Octodon degus 37.0 1.7 5 113 
Octodon degus 37.2 1.8 8 115 
Octodon degus 37.3 2.0 6 114 
Oryctolagus cuniculus 38.9 0.9 20 225 
Oryctolagus cuniculus 39.8 0.8 12 87 
Ovis aries 38.7 1.0 9 199 
Ovis aries 39.3 0.3 14 202 
Ovis aries 40.4 1.3 9 198 
Pachyuromys duprasi 36.5 2.5 18 118 
Petaurus breviceps 37.0 3.2 18 226 
Procyon lotor 38.1 1.4 1 87 
Rattus norvegicus 36.8 2.5 16 37 
Rattus norvegicus 36.9 1.8 18 41 
Rattus norvegicus 37.0 1.7 18 32 
Rattus norvegicus 37.0 1.8 18 50 
Rattus norvegicus 37.0 1.9 19 31 
Rattus norvegicus 37.0 2.1 18 509 
Rattus norvegicus 37.1 1.8 18 60 
Rattus norvegicus 37.2 1.5 17 25 
Rattus norvegicus 37.2 1.5 17 30 
Rattus norvegicus 37.3 1.0 18 45 
Rattus norvegicus 37.3 1.4 18 290 
Rattus norvegicus 37.3 2.1 16 19 
Rattus norvegicus 37.4 1.2  287 
Rattus norvegicus 37.4 1.3 18 42 
Rattus norvegicus 37.4 1.4 18 24 
Rattus norvegicus 37.4 1.4 18 53 
Rattus norvegicus 37.5 1.3 18 20 
Rattus norvegicus 37.5 1.4 18 43 
Rattus norvegicus 37.5 1.4 18 69 
Rattus norvegicus 37.5 1.5 18 65 
Rattus norvegicus 37.5 2.0 18 14 
Rattus norvegicus 37.6 1.1 18 21 
Rattus norvegicus 37.6 1.2 16 27 
Rattus norvegicus 37.6 1.7 19 361 
Rattus norvegicus 37.7 1.3 17 26 
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Rattus norvegicus 37.8 1.8 18 68 
Saimiri sciureus 37.5 2.0 8 140 
Saimiri sciureus 37.5 2.7 6 141 
Saimiri sciureus 37.9 2.0  293 
Sarcophilus harrisii 35.7 4.2 18 227 
Sminthopsis macroura 36.2 5.5 18 318 
Spalax ehrenbergi 36.4 1.5 5 124 
Spermophilus beecheyi 36.4 2.4 5 125 
Spermophilus lateralis 36.5 4.0 6 126 
Spermophilus richardsonii 36.2 3.3 10 19 
Spermophilus tridecemlineatus 36.4 5.0 7 128 
Spermophilus tridecemlineatus 36.7 4.2 8 19 
Spermophilus xanthoprymnus 37.0 4.0 7 18 
Struthio camelus 39.1 1.8 9 251 
Suncus murinus 35.0 6.0 14 228 
Sus scrofa 39.0 1.4 14 230 
Sus scrofa 39.6 0.5 9 229 
Thallomys nigricauda 36.8 2.1 18 129 
Thallomys paedulcus 36.6 2.9 18 102 
Trichosurus vulpecula 37.4 2.9 16 218 
Tupaia belangeri 37.4 4.2 6 108 
Tupaia belangeri 38.0 5.0 5 233 
Vombatus ursinus 34.7 1.4 18 234 

a HALO = hours after lights on 
 
a large-amplitude CRT. However, it is not currently known 
whether daily torpor involves a distinct physiological 
process or is simply an extension of the CRT in 
heterothermic species. A few studies investigating the 
ambient temperature selected by torpid animals seem to 
suggest that torpor is a natural extension of the CRT (318, 
319). 
 
4.2. Food availability 

Because food ingestion is associated with an 
acute rise in body temperature in various species (197, 245, 
320-322), and because animals and humans tend to eat 
mostly at certain times of the day (323, 324), it is 
conceivable that the CRT could be a mere side-effect of the 
circadian rhythm of food consumption. That is, in animals 
fed ad libitum, the concentration of feeding during the light 
phase or the dark phase of the light-dark cycle could 
possibly result in the chronic elevation of body temperature 
that characterizes the CRT. In reality, however, the CRT 
persists in the absence of daily oscillation in food 
consumption. Thus, humans and animals fed small meals at 
regular intervals throughout the day nonetheless exhibit 
clear CRTs (172, 180, 205, 325, 326). Furthermore, 
animals and humans fed no meal at all (that is, subjected to 
total food deprivation) still show daily rhythmicity in body 
temperature (24, 156, 188, 202, 219, 230, 237, 327-329). 
An example is provided in Figure 4. The rectal temperature 
of a goat was recorded at 3-hour intervals for several days. 
During the first three days, the animal received a single 
meal each day (indicated by the arrows). For the next three 
days, no food was provided. Food deprivation caused a 
small decline in body temperature, but rhythmicity was 
clearly preserved. 

 
The fact that the CRT persists in the absence of 

daily oscillation in food consumption does not imply that 
disturbance of the usual pattern of feeding cannot affect the 
CRT. Numerous studies of "food anticipatory activity" in 
rodents have shown that food restriction can cause both 
entrainment and masking of the CRT (55, 330-333). 

In a number of species, moderate food 
deprivation induces a reduction in metabolic rate and a fall 
in body temperature (42, 237, 327, 329, 334-338). What is 
especially interesting about this phenomenon is its 
modulation by the circadian system. The hypothermia 
induced by food deprivation (or chronic food restriction) 
does not occur indiscriminately. Instead, it is restricted to 
the inactive phase of the circadian cycle. Although some 
animals have a natural disposition to exhibit daily torpor 
even when fed regularly (128, 223, 318, 339-349), various 
true homeotherms exhibit circadian-modulated starvation-
induced hypothermia. This has been documented in doves 
(282), pigeons (235, 237, 338, 350, 351), quail (328), 
mousebirds (313, 352), finches (353), pygmy mice (354), 
deer mice (355), domestic mice (356), rats (42, 43, 329, 
357, 358), lemurs (136, 138), sheep (202), and goats (194). 
 
5. INFLUENCE OF BIOLOGICAL FACTORS 
 

Over a century of research on circadian rhythms 
has produced extensive evidence that circadian rhythms are 
endogenously generated and that the period of a rhythm is 
genetically inherited, even if it can be partially and 
temporarily modulated by environmental factors (359, 
360). The fact that the CRT is endogenously generated does 
not mean, however, that it is generated as an autonomous 
physiological process. In sections 5.1 through 5.4, I will 
consider (and reject) the possibility that the CRT is merely 
a side effect of the circadian rhythm of locomotor activity 
and will discuss how the CRT is affected by the 
developmental state of an organism, by its body size, and 
by its reproductive state. 
 
5.1. Locomotor activity 

The daily/circadian rhythms of locomotor activity 
and body temperature have been simultaneously monitored 
in many studies on various species (30, 31, 51, 74, 88, 95, 
110, 130, 135, 159, 248, 285, 286, 361, 362). Generally, the 
temporal courses of the two rhythms are very similar. In 
diurnal animals, the activity and body temperature rhythms
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Figure 4. Seven-day segment of the records of rectal 
temperature of a goat (Capra hircus) maintained under a 
24-hour light-dark cycle with and without daily meals 
(which are indicated by the vertical arrows). Figure adapted 
from Piccione, Caola, and Refinetti, 2003 (194). 

 
exhibit high values during the day and low values during 
the night. Conversely, the activity and body temperature 
rhythms of nocturnal animals exhibit high values during the 
night and low values during the day. In both humans and 
rodents, body temperature starts to ascend slowly several 
hours before awakening and then rises abruptly (more so in 
rodents than in humans) at wake time (363). 

 
Because the rhythms of body temperature and 

activity proceed closely together -- both under a light-dark 
cycle and in constant conditions -- it is natural to wonder 
whether the temperature rhythm is not simply a 
consequence of the activity rhythm. Indeed, it is well 
known that acute episodes of physical activity and exercise 
can elevate body temperature in humans (2, 176, 364-367) 
and other vertebrates (91, 134, 204, 220, 368-370), so that 
the daily elevation in body temperature associated with 
circadian rhythmicity might be a direct result of increased 
activity. 

 
In order to investigate the potential causal link 

between the activity rhythm and the temperature rhythm, 
several researchers recorded the body temperature rhythm 
of human subjects maintained in continuous bed rest (156, 
158, 371), or undergoing a "constant routine" protocol, 
which involves bed rest as well as sleep deprivation and the 
ingestion of frequent, equal-size meals (172, 180, 325, 
326). Although the amplitude of the rhythm is reduced 
under this condition, robust rhythmicity persists. Thus, 
while the activity rhythm may alter the amplitude and 
shape of the body temperature rhythm, it does not cause it. 
Bed rest cannot be used with animals, but the autonomy of 
the CRT has been demonstrated by analysis of the day-
night difference in the correlation between the rhythms of 
activity and temperature. Although nocturnal animals are 
generally more active at night than during the day, their 
body temperature is higher at night regardless of the actual 
activity level (51, 92, 95, 130, 372, 373). Conversely, the 
body temperature of diurnal animals is higher during the 
day regardless of the actual activity level (363). Thus, we 
may confidently say that the body temperature rhythm in 
animals, as in humans, is not caused by the activity rhythm. 

 
The fact that the CRT is not caused by the 

activity rhythm does not imply that the CRT cannot be 

enhanced or disrupted (masked) by changes in activity. As 
a matter of fact, some researchers argue that the CRT is so 
strongly masked by changes in activity in free-living 
subjects that it should not be relied upon as a marker of the 
state of the circadian clock. Some argue that masking can 
be mathematically filtered out (374), whereas others 
recommend that the CRT be replaced by the rhythm of 
melatonin secretion as a reliable marker of the state of the 
clock (375). The advantages of the CRT include tradition, 
ease of measurement, and demonstrated autonomy from the 
activity rhythm, whereas the susceptibility to masking is a 
major disadvantage. The melatonin rhythm has the 
advantage of being resistant to masking caused by activity 
but has several disadvantages, including the need for 
frequent collection of blood (or saliva) samples and a high 
susceptibility to masking caused by environmental light 
during the night. 
 
5.2. Maturation and aging 

In rats, a rhythm of body temperature with a 
range of oscillation of 2-4 OC is observed on the day after 
birth, but it seems to vanish by 15-20 days of age (376-
381). Weak rhythmicity appears again at 25 days of age 
and attains the adult range (1.6 OC) at 45 days of age (382). 
Because the early temperature rhythm vanishes in a few 
days and is observed only when the pups are kept at an 
ambient temperature below thermoneutrality, this rhythm is 
thought not to be a true precursor of the adult rhythm of 
body temperature but a form of cold-induced torpor (378, 
383). In rabbits, temperature rhythmicity can be observed 
as early as 4 or 5 days after birth in pups allowed to remain 
with the doe (303, 384), but not in pups kept in isolation 
with continuous intra-esophageal feeding (379). 

 
Newborn calves lack daily rhythmicity of body 

temperature. Daily rhythms comparable to those of adults 
are not observed until two months after birth (209). One 
research group reported the presence of rhythmicity two 
weeks after birth (385), but their calves were exposed to 
large daily fluctuations in ambient temperature (about 20 
OC), which probably caused the fluctuation in body 
temperature. In calves maintained under constant ambient 
temperature, no difference between measurements taken at 
dawn and measurements taken at dusk was found for the 
first 10 days of life. Later on, measurements taken at dawn 
decreased gradually until a stable dusk-dawn difference of 
about 1 OC was achieved between 50 and 60 days after 
birth (209). 

 
Lambs (young sheep) and foals (young horses) 

also develop daily rhythms of body temperature during 
early life, although adult rhythms seem to be attained 
earlier than in calves, as a stable dusk-dawn difference is 
achieved about one month after birth (386). Evidently, 
different species develop the body temperature rhythm at 
different rates. In dogs, puppies of three different breeds 
failed to exhibit statistically significant daily rhythmicity 
for several days after birth. Regardless of breed or sex, 
rhythmicity matured over several weeks and attained a 
stable level by 6 weeks after birth (387). The reasons for 
the differences in timing among calves, dogs, lambs, and 
foals are not evident. Different species of domestic animals
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Figure 5. Relationship between the daily range of 
oscillation of the CRT and body size (A) and relationship 
between the mesor (mean level) of the CRT and body size 
(B), as reported in 135 published studies on 55 mammalian 
species. In both graphs, the abscissa is scaled 
logarithmically. The straight lines were fitted to the data by 
the method of the least squares (and the correlation 
coefficient and its associated probability under the null 
hypothesis are indicated). The data were obtained from the 
subset of mammalian studies listed in Table 1 

 
exhibit different parameters of body temperature 
rhythmicity in adulthood (388), and it is to be expected that 
differences will also exist in the ontogenetic development 
of rhythmicity. 

 
Newborn human babies do not have a rhythm of 

body temperature. The body temperature of a newborn 
oscillates randomly; a daily pattern is noticeable at 3 
months of age; and a mature daily rhythm is not reached 
until a year or more after birth (389, 390). 

 
Despite interspecies differences in the rate of 

maturation, the fact that the CRT is not present at birth 
seems to be a common finding. The absence of the CRT in 
early life may be due to immaturity of the circadian system, 
to immaturity of mechanisms of heat gain and heat loss, or 
to both. Immaturity of the circadian system is suggested by 
the fact that other bodily rhythms also undergo maturation. 
For instance, the rhythm of melatonin secretion is present 
immediately after birth in seals (391), but only two weeks 
after birth in hamsters and rats (392), and only three 
months after birth in humans (393, 394). However, the 
delay in the expression of rhythms is most likely due to the 
development of mechanisms downstream from the 
circadian pacemaker, because, at least in rats and sheep, the 
pacemaker itself is already oscillating before birth (395-

399). Furthermore, the thermoregulatory system is known 
to undergo maturation in young mammals and birds, 
principally through the development of heat conservation 
mechanisms (400). 

 
At the other end of the age spectrum, the CRT is 

affected by aging. By far the best characterized alteration in 
the circadian system related to aging is a reduction in the 
amplitude of circadian rhythms (401-403). Reduction in the 
amplitude of the body temperature rhythm in old age has 
been documented in humans (162, 163, 404, 405) as well as 
in various rodent species (53, 60, 61, 77, 119, 406-410). 

 
Aging seems to also be associated with a change 

in the phase and period of circadian rhythms. A small 
advance in the phase angle of entrainment in old age has 
been documented in humans (163, 411-414) and rodents 
(61, 78, 407), although few of these studies monitored the 
CRT. Studies on golden hamsters have generally found that 
circadian period is shortened in old age (415-421), and 
shortening of circadian period was also observed in deer 
mice (415), and laboratory rats (422). However, 
lengthening of circadian period was observed in aging 
domestic mice (423, 424) and canaries (425). In humans, 
one study found no difference between the free-running 
periods of young and old subjects (426), whereas another 
found shorter periods in older subjects (162). Clearly, more 
studies are needed to clarify these apparently conflicting 
results. 
 
5.3. Body size 

Many years ago, Aschoff pointed out that the 
amplitude of the CRT is 3 to 6 times smaller in large 
animals than in small animals in the body weight range 
from 10 g to 1 kg (427). The data from 135 independent 
studies shown in Figure 5 (panel A) confirm that the 
amplitude is about 3 times smaller in large mammals than 
in small animals in the body mass range from 10 g to 1,000 
kg. Presumably, large bodies buffer the effects of the 
oscillations in heat production and heat loss responsible for 
the CRT, although the effect is modest (as indicated by the 
relatively small correlation coefficient of -0.26). Curiously, 
body size has the opposite effect on the mean level of the 
CRT (Figure 5, panel B). Animals in the 1,000-kg range 
have, on average, body temperatures 0.6 OC higher than the 
body temperatures of animals in the 10-g range. Again, this 
is presumably due to the greater thermal inertia of large 
animals, and again caution should be exercised in the 
interpretation of this weak albeit statistically significant 
relationship. A recent literature survey based on 125 
independent studies in mammals has also confirmed 
Aschoff's prediction (428). The amplitude of the body 
temperature rhythm was found to be smaller, and the mean 
level to be higher, in large animals than in small animals. 

 
Interspecies studies of the relationship between 

body temperature and body size based on literature surveys 
have either failed to identify a significant correlation (429, 
430) or identified a weak positive correlation (427, 428, 
431). Curiously, intraspecies studies in dogs (387) and 
humans (432) identified a significant inverse correlation 
between body temperature and body mass. The data for
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Figure 6. Rectal temperature as a function of body size for 
115 dogs of 19 different breeds ranging from 2-kg 
Yorkshire Terriers to 85-kg Great Danes. The straight line 
was fitted to the data by the method of the least squares 
(and the correlation coefficient and its associated 
probability under the null hypothesis are indicated). Figure 
adapted from Piccione, Fazio, Giudice, and Refinetti, 2009 
(387). 

 
dogs are shown in Figure 6. The negative correlation 
between body temperature and body size has a coefficient 
of -0.57. Why interspecies coefficients should be positive 
and intraspecies coefficients be negative is not evident, but 
there must clearly be differences between species. As a 
matter of fact, a recent literature review identified no 
significant relationship between temperature and body mass 
in mammals overall but uncovered significant relationships 
for particular subgroups (433). For instance, a positive 
scaling relationship was found in bats, whereas a negative 
scaling relationship was found in artiodactyls. The finding 
that the scaling of body temperature is positive in some 
phylogenetic groups but negative in others implies that the 
causes of the scaling must be found in ecological factors 
that affected the evolution of different phylogenetic groups 
differently. 
 
5.4. Reproductive state 

Most female animals do not ovulate on demand, 
so that reproduction is possible only during the appropriate 
phase of an ovulatory cycle (434). The reproductive cycle 
involves not only timed ovulation but also estrous 
rhythmicity in hormonal secretions (250, 435-451), vaginal 
discharges (234, 444, 448, 449, 452-454), behavioral sexual 
receptivity (445, 446, 451, 453, 455-458), and locomotor 
activity (66, 114, 234, 435, 437, 452, 459-463). In addition, 
many species of mammals and birds exhibit estrous 
rhythmicity in body temperature (66, 114, 209, 234, 240, 
242, 243, 250, 438, 442, 452, 461-470). All of these 
processes can mask the CRT in multiple ways. For this 
reason, most studies of daily and circadian rhythms of body 
temperature (or of locomotor activity, for that matter) are 
conducted on males. 
 
6. RHYTHMICITY AND HOMEOSTASIS 
 

The homeostatic control of body temperature has 
the goal of ensuring stability -- that is, of preventing 
deviations from an ideal set point. On the other hand, the 
circadian control of body temperature imposes a persistent 
oscillation in body temperature. Somehow, these two 

antithetic processes must be integrated. How this is 
accomplished in terms of physiological control will be 
discussed in section 6.1. How it is accomplished in terms of 
effector mechanisms will be discussed in section 6.2. 
 
6.1. Regulatory process 

Thermal physiologists have generally assumed 
that the CRT is primarily under homeostatic control and is 
secondarily modulated by the circadian system through an 
oscillation in the thermoregulatory set point (293, 471-
473). According to this view, the circadian pacemaker acts 
on the thermoregulatory thermostat so that the set point is 
elevated during subjective day and lowered during 
subjective night in diurnal animals (or vice versa in 
nocturnal animals). An alternate arrangement, more logical 
from the viewpoint of circadian biologists, would be to 
have the circadian oscillation in body temperature primarily 
under circadian control, bypassing the thermoregulatory set 
point, and being secondarily modulated by the 
thermoregulatory system. Research conducted in the past 
10 years or so strongly supports the alternate explanation. 

 
The idea that the CRT might result from a daily 

oscillation of the thermoregulatory set point seemed to be 
supported by laboratory evidence that autonomic heat loss 
responses are activated during the circadian phase of low 
body temperature, and heat conservation responses are 
activated during the phase of high body temperature, in rats 
(474), pigeons (475, 476), and humans (148, 477-479). The 
reasoning was that, for instance, enhanced thermogenesis 
during the circadian phase when body temperature is high 
implies an elevation of the set point (because, presumably, 
the elevation in the set point was responsible for the 
enhanced heat production). The finding that injection of 
antipyretics could reduce the amplitude of the CRT of 
otherwise undisturbed rats (58) provided further support for 
the notion of circadian modulation of the set point. 

 
What was wrong with the preceding reasoning 

was that the measurement of autonomic thermoregulatory 
responses at different times of the day does not really tell 
us anything about the state of the set point. It tells us only 
that heat production and heat loss mechanisms are being 
activated -- and it is a thermodynamic necessity that 
mechanisms of heat production or heat loss must be 
activated in order for body temperature to change (if 
ambient temperature is kept constant). In other words, the 
studies that allegedly supported the set-point explanation of 
the CRT failed to evaluate set point changes. In order to 
judge whether there is circadian modulation of the 
thermoregulatory set point, one must be able to monitor the 
set point. In order to measure the state of the set point, one 
needs a variable that is not normally required for the 
production of the body temperature rhythm but that, at the 
same time, does reflect the operation of the set point. It is 
known that autonomic and behavioral thermoregulatory 
responses can complement each other in the homeostatic 
control of body temperature (480-486), and it was pointed 
out above that the body temperature rhythm of endotherms 
does not require behavioral responses. Therefore, the use of 
behavioral responses can provide a reliable measure of the 
state of the set point. 
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Figure 7. Relationship between the average rhythm of body 
temperature and the average rhythm of selected ambient 
temperature of fat-tailed gerbils (Pachyuromys duprasi) 
maintained in a temperature gradient under a 24-h light-dark 
cycle (as indicated by the shading). The average rhythms are 
derived from 5 gerbils, each studied over 10 consecutive days 
with 6-minute resolution. Figure adapted from Refinetti, 1998 
(118). 
 

 
The first investigator to directly address the issue 

was probably Hensel, in 1978, who studied the thermal 
sensation evoked by warming of the hand of human 
subjects at different times of the day and noticed that warm 
stimuli were perceived as more pleasant during the 
circadian phase of low body temperature than during the 
phase of high temperature (487). The following year, 
Carlisle noticed that rats exposed to the cold would press a 
lever for heat more vigorously during the phase of low 
body temperature than during the phase of high temperature 
(488). Research in many other laboratories over the years, 
using a variety of behavioral research techniques, has 
documented that higher ambient temperatures are preferred 
during the phase of low body temperature, and lower 
ambient temperatures are preferred during the phase of high 
body temperature, in rats (22, 45, 48, 329, 489-491), mice 
(492), golden hamsters (93, 490, 493), Siberian hamsters 
(319), fat-tailed gerbils (118), degus (115), stripe-faced 
dunnarts (318), tree shrews (108), flying squirrels (108), 
lemurs (494), and humans (495-498). 

 
Figure 7 illustrates the phase opposition between 

the rhythms of body temperature and of preferred ambient 
temperature in fat-tailed gerbils (Pachyuromys duprasi) 
tested in a temperature gradient. As expected for a 
nocturnal animal, body temperature was high during the 
night and low during the day. The rhythm of behavioral 
temperature selection was, however, 180O out of phase with 
the rhythm of body temperature. Clearly, higher 
environmental temperatures are selected when body 
temperature is low, and vice versa. Thus, the oscillation of 
the set point cannot possibly be responsible for the 
temperature rhythm. As a matter of fact, there is no reason 
to assume that the set point oscillates at all (499, 500). As 
body temperature oscillates, the animals behaviorally 
counteract the oscillation to defend the unaltered set point. 
The thermoregulatory system actually opposes the 
oscillation of body temperature imposed by the circadian 
system. 

The thermoregulatory system's opposition to the 
circadian oscillation of body temperature is evidently not 
fully successful, as witnessed by the very existence of the 
rhythm. However, the amplitude of the temperature rhythm 
is effectively reduced by the action of the thermoregulatory 
system. This has been shown in two ways. One way was by 
comparing the amplitude of the rhythm in animals 
maintained in a constant-temperature environment with the 
amplitude in animals allowed to continually select their 
environmental temperature in a gradient. The amplitude of 
the body temperature rhythm was reduced in tree shrews 
and flying squirrels allowed to select their environmental 
temperature (108). The other way was by impairing the 
thermoregulatory system through surgical ablation of the 
main thermoregulatory center in the preoptic area of the 
brain. The amplitude of the body temperature rhythm was 
greatly enhanced in rats and golden hamsters with preoptic 
lesions (501-503), implying that ablation of the preoptic 
area releases the circadian oscillation of body temperature 
from inhibitory control. Thus, it can be inferred that the 
thermoregulatory center in the preoptic area of unlesioned 
animals restricts the oscillation of body temperature to an 
acceptable range. In other words, the circadian system 
generates an oscillatory signal that is communicated to the 
organs responsible for heat production and heat loss. At the 
same time, the thermoregulatory system generates a set 
point that, like most control systems, has a margin of 
hysteresis error. The integrated output of the two systems is 
an oscillation whose amplitude is restricted to the 
boundaries of hysteresis error. 
 
6.2. Heat-exchange process 

In order to produce a CRT, the body must 
produce an oscillation in the amount of metabolic heat 
produced and/or in the amount of heat lost to the 
environment. Aschoff reasoned early on that both heat 
production and heat loss needed to oscillate, and that the 
oscillation of heat loss needed to lag behind the oscillation 
of heat production (7). This has indeed been observed in 
rats (64, 287), squirrel monkeys (141, 293), and humans 
(172, 504). An example is shown in Figure  8. Cosine 
waves were fitted to the raw data of body temperature, heat 
production, and heat loss of a rat (top three graphs). The 
vertical dashed lines indicate the acrophases of the 
rhythms. Notice that heat production leads body 
temperature by 1.3 hours, whereas heat loss trails body 
temperature by 0.9 hour. If heat balance is calculated 
(bottom panel), a phase difference of 6 hours is found. That 
is, the heat-balance rhythm leads the temperature rhythm 
by 6 hours. This phase difference is presumably due to 
thermal inertia of the body and should be different in 
animals of different body sizes (427). 
 
7. PERSPECTIVE 
 

Daily oscillation in the body core temperature of 
mammals and birds has been documented in numerous 
studies on a large number of species. Body temperature is 
generally higher during the day in diurnal species and 
higher during the night in nocturnal species. The mean 
level of the oscillation is between 36 and 41 OC in most 
species, and the daily range of oscillation is between 1 and
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Figure 8. Relationships between body temperature, heat 
production, and heat loss of a laboratory rat maintained in 
constant darkness. Thin lines correspond to actual data 
collected at 6-minute intervals. Thick lines are cosine waves fit 
to the data. Dashed vertical lines indicate the acrophases of the 
rhythms. The last graph at the bottom compares the body 
temperature rhythm with the heat-balance rhythm (where heat 
balance is defined as the difference between the normalized 
values of heat production and heat loss). Figure adapted from 
Refinetti, 2003 (287). 
 
5 OC. Under constant environmental conditions, the rhythm 
free-runs with a period shorter or longer than 24 hours, 
depending on the species. 

 
The CRT is robust under constant, neutral 

environmental conditions, but its amplitude is enhanced in 
cold environments in some species. Enhanced amplitude 
can also be observed in animals with restricted access to 
food. Although the CRT persists in the absence of daily 
rhythmicity in activity, activity can greatly affect the CRT. 
Maturational stage, body size, and reproductive state can 
also affect the CRT. 

 
The circadian oscillation in body temperature is 

primarily under circadian control, bypassing the 
thermoregulatory set point, and is secondarily modulated 

by the thermoregulatory system. The actual change in 
temperature is achieved by modulation of heat balance, 
with the oscillation of heat loss lagging behind the 
oscillation of heat production by a few hours. 

 
Understanding the causes and properties of the 

CRT is important because homeothermic endothermy 
provides physiological and ecological benefits believed to be 
responsible for the adaptive success of birds and mammals in a 
wide range of aerial, aquatic, and terrestrial environments 
(505). Thus, the violation of homeothermy represented by the 
CRT must be seen as much more than just a curious deviation 
from an ideal pattern. Although it is generally assumed that 
hibernation and torpor are relatively recent specializations 
arising from homeothermic ancestors, it has been proposed that 
heterothermy may have actually preceded homeothermy in 
vertebrates (506). Thus, the CRT may very well be a mild 
recent form of an ancient process of daily torpidity. 
Interestingly, it has been extensively documented that extant 
ectothermic species, particularly reptiles (262-275), can 
generate CRTs if provided with the opportunity to select the 
temperature of their environment, which further supports the 
notion of an ancestral origin of daily/circadian rhythmicity. It 
is possible, therefore, that the evolutionarily "new" drive to 
maintain homeostasis in homeotherms conflicts with the "old" 
universal drive to oscillate body temperature -- and this may 
explain the opposition between the thermoregulatory system 
and the circadian system in the control of body temperature in 
contemporary homeotherms. 
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