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1. ABSTRACT  
 

This review focuses on advanced computational 
techniques that employ all atom molecular dynamics to 
study the folding of small two state proteins.  As protein 
folding is a rare event process, special sampling techniques 
are required to overcome high folding free energy barriers.  
Several biased sampling methods enable computation of 
the free energy landscape. Trajectory based sampling 
methods can assess the kinetics and the dynamical folding 
mechanisms. Proper sampling is only the first step, and 
further analysis is required to obtain the folding 
mechanisms reaction coordinate.  Only a combination of 
several simulation techniques can solve the sampling 
problems connected with all-atom protein folding, and 
allow computation of experimental observables that can 
validate the force fields and simulation techniques.  Several 
of the involved issues are illustrated with folding of small 
protein (fragments) such as beta hairpins and the Trp-cage 
mini protein.  
  
2. INTRODUCTION  
 
2.1 Defining the protein folding problem  

Protein folding has received much attention in 
the physical sciences, largely because folding is the key to 
protein design. Predicting the native structure from only the 
linear sequence promises the creation of de novo designed 
proteins with specific function. In a living cell, after being 
synthesized in the ribosome, proteins fold in to a specific 3-
dimensional native structure in order to become active (1).  
Already about fifty years ago it was recognized that long 
linear polypeptides chains can adopt this native structure 
starting from a random coil in a surprisingly short time (2). 
A random search cannot explain this behavior, as is expressed 
in the Levinthal paradox.  Protein folding has since become a 
paradigm of a complex transition with aspects of phase 
transitions as well as of chemical reactions.  Elucidating the 
origin of proteins stability and folding kinetics are important 
parts of the understanding of protein function in general.  
Moreover, the folding properties of proteins are important for 
the understanding of the basis of well known degenerative 
diseases, such as Alzheimer's, BSE, Creuzfeld-Jacob, ALS, 
Huntington's, Parkinson's disease, and many cancers and 
cancer-related syndromes (3).  

 
Since the advance of molecular simulation in the 

1970's, proteins have also received the attention of the 
simulation community. In particular the development of 
molecular dynamics (MD) in conjunction with accurate 
atomistic force fields, has had a great impact.  In this 
review I will focus on the use of all atom atomistic 
molecular dynamics simulations to investigate folding 
properties.  There are many factors that can be studied are 
with MD, for instance, the influence of the solvent, salt 
concentration, the temperature dependence, and non-
equilibrium pulling, and the effect of other molecules in the 
environment such as denaturant, osmolytes, or even 
chaperones. I restrict myself to spontaneous equilibrium 
folding at ambient conditions in water.  This is considered 
the canonical folding problem. For a review on other 
conditions I refer to an excellent review by Daggett (4).  As 

spontaneous two state folding is a rare event, taking place 
on timescales that cannot be (easily) reached by 
straightforward MD, special rare event methods are 
required.  First of all, free energy methods are 
indispensable to obtain insight in the equilibrium properties 
of proteins.  After a short introduction on the background 
of protein folding, I will discuss several of such methods, 
notably umbrella sampling, Metadynamics, and replica 
exchange (5,6,7).  Subsequently, I will discuss several methods 
developed to study the kinetic aspects of protein folding: 
parallel replica, high temperature MD (8,4). Several of the 
issues related to simulation of kinetics have been adequately 
described in a recent review (9).  However, as I will argue, 
path based methods are necessary to get truly unbiased insight 
in the dynamics of protein folding in explicit solvent. Of these 
I will focus on the transition path methodology (10).  The 
sampling is only a part of the solution, and analysis is just 
as crucial. Recent developments in reaction coordinate 
analysis allow insight in the mechanism and the extraction 
of important parameters. Thus, the theoretical study of 
protein folding by means of all-atom force fields depends 
not on a single simulation method, but rather on a 
combination of several complementary techniques.  
 
2.2 Native state stability  

Proteins spontaneously fold to their native state 
because that state has a lower free energy (11). In the 
unfolded (extended or denatured) state (In this review a 
state is defined as a thermodynamically (meta) stable state, 
consisting of many possible protein configurations.) the 
protein is solvated, i.e. the backbone and side groups form 
hydrogen bonds with the solvent. When folding proceeds 
these solvent hydrogen bonds are replaced with often 
energetically more favorable non covalent bonds within the 
protein, for instance hydrogen bonds or salt-bridges (11). 
Multiple intra-molecular hydrogen bonds and salt bridge 
stabilize secondary structures like helices and sheets. At the 
same time the configurational entropy of the proteins 
backbone reduces as it nears the native state. Instead of 
many possible conformations in the unfolded state (U), the 
native state (N) confines the protein in a single 
conformation.  This negative entropic effect is offset by a 
gain in entropy of the solvent molecules.  In addition, some 
of the hydrophobic side chains are buried in the protein 
during folding, reducing the energy (enthalpy) as well as 
increasing the solvent entropy. While each of these effects 
can be large (thousands of kJ/mole), all these effect taken 
together mostly cancel each other, and the free energy 
difference between the unfolded and native state is often 
only of a few tens of kJ/mol.  This marginal stability 
imposes severe constraints on the accuracy of the molecular 
modeling. Both the interaction energies as well as the 
entropic contributions (configurations, vibrational, 
rotational) have to be taken into account accurately, in 
order to predict the folding behavior. Classical force fields 
can describe the energy of the protein as long as quantum 
mechanical processes do not play an important role, but the 
entropy can only be obtained from statistical Boltzmann 
sampling. Together with the high computational expense of 
modeling a protein by an all atom model this makes a 
statistical mechanical approach to protein folding a 
challenge.
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Figure 1. Left: The curved solid line depicts a schematic 
energy landscape funnel of the folding process. The x-axis 
represents the accessible configuration space. At high 
energies, many configurations are possible; hence the 
entropy is large, as indicated by a wide funnel. The 
landscape guides the protein to lower energies where the 
protein has less configuration freedom. During this process 
the reaction coordinate Q increases.  The global minimum 
corresponds to the native state. Note that the transition state 
region does not appear naturally in this view. Right: 
Schematic free energy landscape of the protein folding 
process as a function of the reaction coordinate Q shows, 
two stable states separated by a barrier (the transition state). 
This picture combines the entropy and energy of the funnel, 
and views folding as a unimolecular reaction.   
 
2.3. Two-state behavior  

Because of its marginal stability, a protein in a 
native state can be forced to unfold relatively easy, e.g. by 
heat, adding denaturant or a change in pressure or pH. Such 
change of environment destabilizes the folded state or 
equivalently stabilizes the unfolded state. Anfinsen showed 
in 1973 that when reverting to the original conditions a 
single domain protein finds is way back to the folded state 
(2).  In addition, it was found that such transitions in 
proteins exhibited two-state kinetics. This means that the 
relaxation toward the equilibrium population can be 
described by a single exponential with a single rate 
constant, obeying an Arrhenius-like temperature 
dependence (That proteins also often show non-
Arrhenius behavior of protein folding highlights that it 
is not that simple). This finding established that the 
unfolded state and the native state are the most stable 
states, and all other possible states are at most 
metastable and are hardly populated.  Assuming there is 
no interference of different protein molecules in the 
solution this concept identifies the kinetics of protein 
folding as that of a unimolecular chemical reaction 
(U↔N). On the other hand, the heat capacity peak that 
occurs around the folding temperature resembles that of 
first order phase transition. Indeed, this peak is caused 
by cooperative behavior of the protein (12).  Both these 
observations allow the use of statistical mechanics and 
simulation techniques originally developed for chemical 
kinetics and first order phase transitions for 
investigation of protein folding.  
 
2.4. Energy landscapes guide the folding mechanism  

Folding proteins do not randomly search all 
conformations but are guided by a more or less funnel-
shaped underlying energy landscape (see Figure 1). When 

proteins are prepared in the extended state, for instance at 
high temperature, they have much entropy (13).  A sudden 
temperature decrease will lead to more population in the 
native state. During this process the protein, due to 
hydrophobic interaction, electrostatic and dispersion forces, 
first collapses into a molten globule: a metastable state in 
which there are much fewer conformations available. Only 
a few of those conformations lead to the native state in 
which the energy is low, but the entropy as well.  Adapted 
by evolution the energy landscapes of natural proteins 
exhibit a single, stable native state, separated from any 
misfolded state by a relatively large energy gap.  In 
contrast, random heteropolymers show a more glassy 
energy landscape with many degenerate misfolded states 
(14,15).  

 
Before the protein can enter the native state it has 

to pass a transition state, a state with low entropy but 
without most energetically favorable contacts.  Plotting the 
free energy as a function of the reaction coordinate Q 
(Figure 1), the transition state is on top of the free energy 
barrier to folding (16).  Overcoming this barrier is the rate-
limiting step in the folding mechanism.  Thus, this free 
energy barrier towards folding is the origin of the two-state 
behavior.  

 
For single domain two state folding proteins 

several decades of experimental, theoretical, and 
simulation studies have revealed two major qualitative 
folding mechanisms that explain this barrier  (see Figure 
2).  The nucleation-condensation model (17,19) states 
that the protein in the transition sate forms a nucleus of 
native contacts which can further grow towards the 
native state. The diffusion-collision model (also known 
as the framework model) assumes a very fast secondary 
structure formation (18,19,20) followed by diffusion of 
these secondary structure elements until they collide 
into the correct tertiary structure (20).  In recent years, 
these two mechanisms were combined in a unified view 
(21).  Which of these two scenarios holds depends on 
the protein.  Some two-state proteins, have an 
independently stable secondary structure, and fold 
according to the diffusion-collision mechanism, while 
other proteins, with a less stable secondary structure, 
fold cooperatively along the nucleation-condensation 
scenario. Two state folding behavior is prevalent in both 
cases as there is only one rate-limiting barrier.  

 
The last step in the folding process towards the 

native state is often the expulsion of water molecules.  
When the protein is close enough to the native state to 
expel the interstitial water molecules and form a nucleus 
(22), the energy of stabilization (hydrogen bonds etc) 
together with the gain in translational entropy of the solvent 
(23) start to overcome the decrease in conformational chain 
entropy.  In many cases the barrier to folding coincides 
with the water expulsion (4). 
 
2.5. Folding rate determining factors  

In the transition state theory (TST) framework 
the rate constant of folding kf is exponentially dependent on 
the height of free energy barrier (11) . 
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Figure 2. Left: Cartoon of the two main mechanisms of folding.  The top route denotes the diffusion collision model. The 
secondary structure elements are stable and form fast, and diffuse until the native structure is found. The bottom pathway 
corresponds to the nucleation condensation mechanism. The secondary and tertiary structure can only fully develop into the 
native state after a folding nucleus (TS) has been formed first.  Right: Unified global folding free energy landscape view for the 
diffusion-collision mechanism (top) can change gradually into that of a nucleation-condensation mechanism (bottom) depending 
on the stability of the secondary structure elements (21). In all cases two-state behavior is obeyed as the left barrier is lower than 
the highest barrier.  
 

,   (1) 
 

where  ∆G‡ is the free energy difference between 
the barrier and the denatured state, and β =1/kB T is the 
reciprocal temperature, with kB Boltzmann's constant.  
However, there is an enormous variation of experimental 
folding rates for small single domain two state proteins 
While the fastest (small) proteins fold on the order of a 
microsecond (24), proteins like chymotrypsin inhibitor-2 
fold on the order of seconds (11). The native state topology 
has been proposed as a major rate-determining factor. The 
topology can be partly characterized with contact order. A 
contact is formed when the alpha-carbons of two residues 
are within a certain cutoff distance (often 6 Å). Contact 
order measures how far contacts are separated along the 
sequence on average. Tertiary contacts have thus high 
contact order and alpha helices a low contact order. Contact 
order correlates well with folding rates (25).  This finding 
is rationalized in the so-called topomer model, which states 
that the protein most of the time is searching for its native 
topology, after which the protein can fold relatively fast to 
the native state (25).  

 
In contrast, Mirny and Shakhnovich argue that 

contact order is mostly not dominated by tertiary contacts, 
but in fact more by local contacts. In their view, alpha 
helices have a low contact order, while beta-sheets have 
more distant contacts and hence a higher contact order.  
Indeed helical proteins fold faster than beta-proteins, 
providing a rather trivial correlation between rate and 
contact order (19). Nevertheless, recent work by Dill et al. 
(26) suggests that the bottleneck in folding process is the 

search for the native state, thus lending credit to the 
topomer model.  

 
2.6. Investigating the transition state with phi-analysis  

 
The folding transition state of the rate-

determining step can be studied experimentally with so-
called phi analysis (11). Phi analysis consists of making 
single point mutations along the sequence and probing the 
effect on the kinetics. The phi value of this mutant is then 
defined as the ratio of the change of free energy of the 
transition due to mutation and the change of free energy of 
the native state due to the mutation. 

 

,   (2) 
 

where the free energy differences  ∆G  is always 
measured with respect to the denatured state. ∆GN is thus 
the free energy of the native state, or the folding free 
energy.  ∆G‡ denotes the folding free energy barrier with 
respect to the denatured state. The superscript m stands for 
the mutant. The ∆∆G is therefore the change in free energy 
difference of the transition state upon mutation. The phi 
value reveals the involvement of the mutated residue in the 
transition state structure. If the residue has a native-like 
structure in the transition state ensemble, then mutating it 
will alter the native as well as the transition state 
energetics, and the phi value will be close to unity. On the 
other hand, when the residue is completely unfolded in the 
transition state, changing it to different amino acid will not 
influences the energies of the transition state that much, and 
hence the phi value will be zero.  Experimentally the phi 
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values can be extracted from measured (un)folding rate 
constants assuming that transition state theory (TST) 
applies. In this way mutation studies allow for indirect 
structural interpretation of the transition state (11). 
 
3. PROTEIN SIMULATIONS  
 
3.1. Molecular simulation  

Protein folding transition is ultimately governed 
by a balance between conformational entropy and 
stabilization energy, and requires a statistical mechanical 
description. In the last few decades molecular simulation 
methods has proved indispensable, amongst others, for 
studying phase behavior in complex systems, but also for 
obtaining microscopic insight in the structure and dynamics 
of proteins. Simulations are capable of sampling phase 
space without making any approximations besides the 
molecular interactions.  The most well known simulation 
methods comprise molecular dynamics (MD), Langevin 
dynamics and Monte Carlo (MC). Monte Carlo is an 
importance sampling of phase space, using the criterion of 
detailed balance to converge to the correct canonical 
isothermal Boltzmann distribution.  While MC is an 
important simulation method, able to simulate lattice 
models and other discrete models, it is less useful for the 
study of proteins using all atom models.  Therefore, I limit 
myself in this review to molecular (and Langevin) 
dynamics.  

 
In Molecular (or Langevin) Dynamics one 

integrates the deterministic Newtonian (or the stochastic 
Langevin) equation of motion using the instantaneous 
intermolecular forces between all atoms (27,5). This 
procedure leads to a time series of molecular configurations 
usually called a trajectory. This trajectory contains all 
dynamical information, and can be used for kinetics. 
Deterministic Hamiltonian dynamics conserves energy and, 
according to the ergodicity theorem, samples the micro-
canonical (constant energy) ensemble in the limit of long 
time.  Application of a thermostat, e.g. the Nose-Hoover 
thermostat, or Andersen thermostat (5) or the recent Bussi 
thermostat (28) allow for canonical sampling. In addition, a 
barostat can be used for the isobaric ensemble (29). 
Langevin integrators are necessary for situations in which 
many degrees of freedom have been integrated out. For 
instance, when the solvent is replaced by an effective 
medium, but also when using coarse grained models.  
 
3.2. Molecular models for proteins  

For proteins a host of (semi) empirical atomistic 
force fields have been developed including ENCAD(30-
31),AMBER(32), CHARMM(33), GROMOS(34), and 
OPLSAA(35).  Based on a potential form that includes 
bond, angle dihedral, van der Waals, and electrostatic 
terms, parameters in these force fields are fitted to ab initio 
results, and/or experimental data. The water model e.g. 
TIP3P or SPC is often included in the force field.  
Recent work has focused on including solvation free 
energies, and polarization (36,37).  Currently, force 
fields can reproduce structural features reliable, 
although the prediction of accurate relative stability (i.e. 
free energy) is still elusive.  

While by far not as computational intensive as 
quantum based simulation, all-atom MD is a relative 
expensive method, and much effort has been put into ways 
to speed up the code.  Among the tricks that speed up the 
computation, are the fast Ewald summation for the 
electrostatics, bond constraints, multiple time-steps, and 
Verlet neighbor lists for the van der Waals interactions. 
There are many packages exist that can perform MD 
efficiently.  Nevertheless, with current standard computer 
power, MD is roughly limited to 105 atoms and 1 
microsecond  

 
As for most proteins systems, more than 80 

percent of the systems consist of water, it is convenient to 
replace the solvent with an implicit solvent model. Often 
used implicit solvents are the effective energy function 
(EEF1) (38) and the Generalized Born/surface area 
(GB/SA) model (39).  EEF1 uses the solvation free 
energies of the amino acid side-chains, and treats 
electrostatic interaction via a distance-dependent dielectric 
constant.  The GB/SA model employs a combination of the 
solute-solvent electrostatic polarization (GB) and the 
solvent accessible surface of the solute (SA) to approximate 
the cost of the creation of a solvent interface and the van 
der Waals interactions.  

 
While this review is about accurate all-atom 

force fields, for many protein-folding studies such an 
approach is prohibitively expensive even when using 
implicit solvent.  In that case, coarse-grained potentials are 
often used as a cheaper alternative. In a coarse-grained 
(CG) model several atoms are lumped together in a single 
particle. The coarse-grained particle interacts via a 
simplified potential with all the other CG particles. This 
simplification emerges because of the integrating out of 
degrees of freedom.  Popular coarse-graining force fields 
include the basic Go model in all its guises, which is based 
on the native PDB state, as well as simplified off-lattice 
models see e.g. Refs (40-44). Most of these force fields 
have been devised to reproduce several properties. Other 
coarse graining force fields are obtained by actually 
carrying out the integrating out the degrees of freedom 
based on all atom force fields (45,46).  

 
Even simpler than the above off-lattice coarse-

grained potentials are the lattice models. Using a linear 
heteropolymer on a lattice, many statistical mechanical 
theories of protein folding have been tested (47,48, 16). 
Lattice models of proteins can be employed to test theories, 
and find generic folding behavior, including substrate 
induced folding, protein binding, disorder-order transitions 
associated with signaling proteins and even translocation 
(19,49,50).  While lattice models undoubtedly yield global 
insight into the statistical mechanics of folding they are not 
probable candidates for giving molecular insight into the 
kinetics of protein folding, because there is not enough 
molecular information in these models, besides the linearity 
of the polymer and the interaction matrix.  
 
 3.3. Order parameters  

The outcome of a molecular simulation is a 
sequence of system configurations. In case of MD and 
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Langevin Dynamics this is usually a molecular trajectory, 
and in case of MC it is an ensemble of configurations. The 
main point is that as long as these trajectories are a large 
file of numbers sitting on a hard disk, not much insight is to 
be gained. Visualization of the molecular trajectory is an 
option, and many visualization packages especially aimed 
at proteins have been developed  (a well known example is 
VMD (51), but many others exist).  Nevertheless, in many 
cases only visualizing a 3D representation of protein is 
insufficient., and a more quantitative analysis is desirable.  
Such quantification can be done with the help of relevant 
order parameters, which reduce the 3N dimensional 
configurations to just a few dimensions.  In the literature 
many order parameters have been developed for proteins, 
amongst others, the number of native contacts ( A contact 
is made when the alpha-carbons of non-adjacent residues 
are within a 6 Å, distance.  A native contact is a contact 
that also occurs in a reference configuration representing 
the native state, e.g. the PDB structure), the proteins radius 
of gyration, the root means square deviation from the native 
state (Computing the average square atomic distance 
between the two structures yields the mean square distance. 
The RMSD follows from minimizing this means square 
distance with respect to translation and rotation, and finally 
taking the square root.), dihedral angles, solvent accessible 
surface, number of hydrogen bonds, distances between 
relevant groups, salt bridges, bonds distances, combinations 
of bonds, contact order.   Phi values are hard to compute, as 
they involve the free energy barrier. However, a simple 
approximation of the phi value is through the ratio of the 
number of native contacts per residue (52). The rationale 
behind this is that similar to the phi value, the fraction of 
contacts gives the degree to which the environment of the 
residue is native-like (53). With this assumption the phi value 
can act as a simulation constraint to find transition states.  
 
3.4. What can simulation do for us?  

Performing a molecular dynamics simulation 
based on a classical force field, yields in principle, an 
accurate description of the system dynamics, within the 
accuracy of the force field. If the sampling of phase space 
is ergodic, it will give the equilibrium distribution of the 
systems of interest. This includes the stable states of the 
protein, as well as possible low populated intermediates.  In 
addition, because the dynamics is unbiased, insight in 
folding kinetics and mechanism is in principle available. 
This insight also extents to the role of the solvent in the 
folding reaction, as well as chemical factors such 
hydrophobicity, electrostatics, hydrogen bonding and steric 
effects.  
 

The goal of simulation is to provide new insight, 
interpret experimental results, test theories, and predict new 
phenomena (5). To do that MD must be able to predict 
experimentally accessible observables, such as 
thermodynamics, population, and the structure of the stable 
states and the intermediates.  In addition there are kinetic 
quantities such as the folding rate, transition states, 
diffusion constants, Arrhenius factors, phi values etc.  All 
this requires obviously an accurate force field, and one of 
the basic tasks in the simulation community is to validate 
such a force field by comparing predicted properties to 

experiments. While much progress have been made (54), 
different force fields predict slightly different results, and 
no force field is entirely perfect in correctly simulating 
protein dynamics (55).  

 
Once a good force field exists, it can be used to 

predict experimental observables of novel proteins.   In that 
case the MD approach is only hampered by the above-
mentioned sampling problem. This (large) obstacle can be 
ameliorated by the development of faster computers (or, for 
instance, the use of graphics cards developed to improve 
efficiency of MD), or special accelerated software (such as 
assembly loops for fast computation of special functions, 
fast Fourier transforms etc).  Here, we focus on the 
sampling algorithms. The interpretation of MD trajectories 
should be done, in fact, with statistical mechanics. After all, 
the predicted MD trajectory will not be realistic, i.e. will 
not correspond to the way each molecule reacts. We can 
only take MD results seriously by taking ensemble 
averages of the trajectories. For an ergodic system, this is a 
good way to obtain equilibrium properties of one stable 
state, e.g. the native state. For dynamic observables such as 
the rate, a good approach is to rerun the same simulation 
many times, with different initial conditions and average 
over these results (in fact this is the basis of the parallel 
replica methods, see next section). However, when the 
sampling of the reaction is very slow because of the 
existence of free energy barriers between the stable states, 
this might not be the most efficient method.  The approach 
that is pursued here is to improve the sampling itself by 
using specially developed techniques.  
 
4. EXPLORING THE FREE ENERGY LANDSCAPE   
 
4.1. Free energy of folding  

As folding is governed by thermodynamics, a 
key quantity of interest in a computational protein folding 
study is the free energy. To be more precise, one is 
interested in the free energy difference ∆F (or the Gibbs 
free energy ∆G at constant pressure) between the (meta) 
stable states in the folding process. The free energy can be 
related to the experimentally found equilibrium population.  
The important states in a protein obeying two-state kinetics 
are the native and unfolded states. Possible on-pathway 
intermediates, misfolded states, or other metastable states 
are supposed to be not well populated.  The other important 
quantity is the free energy barrier to folding/unfolding, 
which is related to the experimental rate.  

 
The free energy can be estimated via several 

molecular simulation techniques.  A straightforward MD, 
Langevin Dynamics, or MC simulation can in principle 
yield all thermodynamic information. Keeping track of the 
population pi of a state i during the simulation, the relative 
free energy of state i is βFi = -ln pi. A usual tactics is to plot 
the free energy as a function of order parameters. Up to a 
constant this Landau free energy (5) is given by  
 

 ,  (3) 

 
where P({λi}) is the probability to find the system at certain 
value of the set of order parameters {λi}  This probability is  
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Figure 3. Schematic free energy contour plot of a two state 
system. The A and B minima are separated by a high 
barrier with three saddle points. Hysteresis can occur if the 
used order parameters (here represented by q) do not 
describe the reaction adequately.  Solid line: Initiated in 
state A, the ensemble is biased along the q axis, until the 
transition to B occurs. Dashed line: the reverse biased 
sampling along q will take a different route. In both cases, 
the true transition state (in the center of the plot) is not 
sampled at all.  
 
obtained by integrating out all degrees of freedom in the 
configurational partition function, except the set of order 
parameters {λi}  that are of interest: 
 

.  (4) 
 

Here,  r denotes the coordinate vector for all N 
particles, U(r) is the potential energy, and λ(r) the 
instantaneous value of the order parameter λ and δ(x) is the 
Dirac delta function. Note that this expression can be used 
irrespective of the simulation method as long as one samples 
the canonical distribution.  Both straightforward MC and MD 
can thus serve to find the free energy by simply histogramming 
the values of the order parameters (5).  While it might seem 
more clear that an MC simulation samples this distribution 
directly, according to the ergodicity theorem the probability 
also follows from straightforward from an long (in principle 
infinite) MD simulation. 

 
The problem lies of course in the fact that the 

convergence of a free energy difference requires a very long 
MD trajectory, in fact, much longer than the reaction time of 
the problem. As most proteins fold beyond microseconds, a 
straightforward approach is not practical.  These long 
timescales are due to high free energy barriers between the 
stable states. The problem is severe, because the time scale 
grows exponentially with the barrier height.  Fortunately, one 
can make use of algorithms that are specially designed to 
overcome high free energy barriers.  

4.2. Biased sampling   
One of the oldest methods to tackle the problem 

of high barriers is the Umbrella Sampling (US) technique 
(5). This technique introduces a bias as a function of an 
order parameter into the partition function that enables a 
more even sampling across the order parameter range:  
 

. (5) 
 
To obtain the free energy one can apply equation 3 but with 
a correction for the bias 
 
 

. (6) 
 

To obtain an evenly distributed sampling Pbs is 
difficult because it requires a biasing function that is 
exactly the free energy function one is looking after. In 
practice, one can use a fixed potential like a simple 
harmonic potential to increase the likelihood of crossing the 
barrier. Multiple runs for the bias at different locations lead 
to histograms spanning the entire order parameter space.  
These can be joined together using the weighted histogram 
analysis method (56,57).  Sampling more than one order 
parameter is possible using an adaptive scheme of US (57), 
but going beyond 2 order parameters has been unfeasible 
up to now.  

 
An alternative to US is the Metadynamics 

method, which allows for sampling up to 6 dimensions (6).  
This method has proven fruitful for small proteins and will 
be discussed in the next section. Other recently developed 
methods focusing on multidimensional biasing functions 
include flooding (58), hyperdynamics (59), multicanonical 
sampling (60) and the adaptive biasing force method (61).  

 
The efficiency of biasing depends very much on 

the choice of order parameter. The US method relies on a 
good sampling of the phase space in direction orthogonal 
on the order parameters. When there is an additional barrier 
in the direction perpendicular to the biasing variables, 
hysteresis can occur (see Figure 3). This hysteresis 
manifests itself when one tries to retrace the free energy 
back in the reverse direction. Suppose that unfolding a 
protein is forced by biasing the radius of gyration. Then the 
reverse biasing process from the unfolded state does not 
necessarily end in the native state and a different path is 
traced. Hence, a wrong free energy difference and barrier is 
estimated between the unfolded and the native states.  Shea 
and Brooks (57) try to circumvent hysteresis problem partly 
by initiating an umbrella sampling run at 298 K with high 
temperature unfolding trajectories.  However, this only 
works if the high temperature unfolding trajectories are 
sufficiently close to the folding process at ambient 
conditions. Still, such an approach is inherently biased by 
the high temperature trajectories, which can sample parts of 
phase space that would never be sampled at room 
temperature due to barriers in directions orthogonal to the 
biasing parameter. Umbrella sampling can only explore 
phase space locally.  Because of this problem of the order 
parameter choice, parameter free methods like parallel 
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tempering/replica exchange have become popular in the 
last decade (see section 4.4).  Nevertheless, umbrella 
sampling is an important and versatile method that can be 
applied in many ways. (5,57).  
 
4.3. Metadynamics  

Related to umbrella sampling, the Metadynamics 
technique aims to explore the free energy landscape 
efficiently in a predefined multidimensional space of 
collective variables (6,62). The method forces the system to 
explore other parts of configuration space by employing a 
history dependent biasing potential that slowly pushes the 
system out of a free energy minimum.  The bias potential is 
regularly updated based on the instantaneous position of the 
system:  
 

,    (7) 
 

This time dependent bias potential places 
Gaussians of width σi and height wi for each order 
parameter λi. As the simulation progresses, parts that have 
been visited are becoming less favorable, and the system is 
pushed to a different global state. Eventually, when the 
basin of that state is also filled with Gaussians, the system 
is forced to move back to the original state (provided there 
are only two states).  In the limit of long time, the bias 
potential will converge to the negative of the free energy as 
a function of λi. In that case, the phase space will be 
sampled evenly. This result is similar to the case of 
umbrella sampling, with the difference that Metadynamics 
employs a highly adaptive bias. The Metadynamics method 
is also reminiscent of the Wang-Landau sampling method, 
which continually updates a bias function to achieve flat 
distribution sampling (63). The accuracy of the result is 
governed by the height and width of the Gaussians. The 
smaller these are, the more features of the free energy 
landscape can be resolved. In practice, the height and width 
of the Gaussian are adapted in the course of the 
Metadynamics simulation.   Naturally, Metadynamics is 
very useful in combination with MD. While due to the time 
dependent bias the dynamics clearly will differ from the 
true dynamics of the system, Metadynamics is a powerful 
tool for the exploration of phase space and the computation 
of the free energy  landscape.  Still, the method, depends on 
an appropriate definition of the collective variables, and is 
in that sense not different to umbrella sampling.  In the 
field of protein folding, Metadynamics has been applied to 
hairpins (64) and the Trp-cage protein (65). In both cases 
the sampling was enhanced by making use of replica 
exchange techniques.  
  
4.4. Replica exchange/parallel tempering 

The necessity and dependence on an a priori 
correct choice of order parameter is a severe drawback of 
the biased sampling methods described above.  The Parallel 
Tempering (PT), a.k.a. the Replica Exchange Method 
(REM), has the large advantage of not requiring such a 
definition.  REM is a Monte Carlo algorithm to sample free 
energy landscapes with many local minima (5,66,67). In 
effect, PT/REM heats up the system periodically in a 
simulation to help the system escape local minima, and 

then lower the temperature again to ambient condition. A 
naive implementation of heating/cooling cycles does not 
obey the Boltzmann distribution. The Monte Carlo 
algorithm connected to PT/REM does restore the detailed 
balance. The method requires the simultaneous running of 
many replicas at different temperature in parallel. 
Occasionally, a random swap between replicas is tried. This 
trial move is then accepted with a probability  
 

,    (8) 
 

where ∆βij = βi - βj is the difference in reciprocal 
temperature between the two replicas, and ∆Uij = Ui - Uj  is 
the difference in potential energy.  This acceptance 
probability decreases exponentially for large temperature 
gaps and large energy differences (which scales linearly 
with the system size. That is why in practice many replicas 
are required to obtain a reasonable exchange probability. 
The temperature distribution can be chosen such that the 
swapping probability is optimal.  During the REM run, the 
replicas thus diffuse through the temperature space, heat up 
and cool down. Still, all replicas are distributed according 
to the canonical distribution. Sugita and Okamoto (67) 
showed that REM can be combined with MD, and used to 
study proteins.  Since then many such REMD studies have 
been conducted. For instance, Garcia and Onuchic (68) 
have applied the REMD approach to the folding of the tree 
helix bundle protein A. Lei et al. (69) performed a large 
scale REMD simulation of Villin headpiece in implicit 
solvent.  They compute the FE landscape and predict the ab 
initio folding structure.   

 
While replica exchange allows one to sample a 

rugged energy landscape, for which the order parameters to 
bias in are not known, the convergence of the method is 
very slow.  In principle, REMD conserves the Boltzmann 
distribution, but its sampling efficiency depends on visiting 
both high and low temperature regions many times during 
the simulation and, more importantly the transition of 
interest should happen spontaneously at high temperature.  
The exchange of replicas should be fast enough to allow 
good diffusion of the replicas, but at the same time slow 
enough to allow the replicas to adapt.  While a doubling of 
the temperature speeds up dynamics, for protein folding it 
often shifts the equilibrium to unfolding. This also 
negatively influences the convergence of PT/REM for 
protein folding in explicit solvent (70,71).  Seibert et al. 
(72) estimated the convergence time takes about 200 ns per 
replica for a small beta-hairpin in explicit solvent. (72).  
Periole and Mark (73) concluded from a REMD simulation 
study on a heptapeptide, that REMD is more efficient than 
straightforward MD. However, they argue that it is not so 
such the direct speed up of the dynamics that can explain 
the efficiency. Rather, there is a large sorting effect due 
mixing of the replicas, which quickly seem to stabilize and 
can give a false sense of convergence (73).  One way to 
improve on the slow convergence is to do away with the 
large energy of the explicit solvent. Berne and coworkers 
adapted the REMD scheme such that it only depends on the 
potential energy of the solute. A smaller potential energy 
allows for a reduction of the number of replicas, and an 
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enhanced diffusion in temperature space leading to an 
enhancement of the sampling (74).  

 
It is possible to combine the umbrella sampling 

and PT/REM by again adding a biasing function that is now 
a function of both the order parameter set {λi} and the 
temperature T. The advantage of such a combination might 
be that even though the dynamics at high temperature 
might be faster, it is not a priori certain that all relevant 
states are well sampled at high temperature.  This is in 
particular a problem for folding processes in which one 
state is stabilized by entropy, and the other by energetic 
interaction. Including a biasing function might be able to 
improve that, but, of course, assumes one already has a 
proper order parameter to bias in (75).  

 
The PT/REM methods can also be combined 

with Frenkel's recently proposed scheme of waste recycling 
(76). In this scheme Monte Carlo trial moves are not just 
discarded as useless but actually contribute to the average. 
It is straightforward to extend this to PT  (75), improving 
the statistics on the free energy dramatically. Note 
however, that the waste recycling scheme does not improve 
the sampling itself, but only the accuracy of the histograms.   
The PT/REM method is not limited to temperature 
exchange; other parameters can be used for the replica 
exchange (5). For instance, several approaches propose 
changing the Hamiltonian itself, instead of the temperature 
(77).  

 
The REM has also been combined with 

Metadynamics (64), leading to improved sampling. Also, 
Piana and Laio (65) have developed a replica method in 
which the bias functions in collective variables are 
exchanged instead of the temperature. In this bias exchange 
method, several replicas bias in different order parameters, 
and occasionally exchanging replicas are tried.  This 
approach seems particularly fruitful because the 
Metadynamics can in this sense be effectively extended to 
many dimensions.  

 
5. PROTEIN FOLDING KINETICS AND 
MECHANISM  
 

The previous section focused on extracting 
thermodynamic information from protein simulation, in 
particular the free energy. If the connection to the 
underlying dynamics of the system can be made, computer 
simulation can also access folding kinetics. Even lattice 
models can yield insight in folding kinetics, albeit of a 
more generic kind (47). When interested in the folding 
mechanism and rate of specific small proteins all-atom MD 
with explicit water seems to be the method of choice.  The 
first reason is that it does obey realistic dynamics (but only as 
accurate as the force field), and contains all kind of molecular 
information such as side chain packing and dynamics. 
Moreover, it gives insight in the behavior of the solvent.  

 
Short alpha-helical peptides fold reasonably fast 

(see e.g. Ref. (78)), but folding real proteins was for a long 
time out of reach. More than a decade ago, the tour de force 
microsecond MD simulation of Duan and Kollman of the 36-

residue villin headpiece in explicit water showed only partial 
folding (79).  Nowadays, standard computational power still 
only allows simulation on the order of a microsecond.  
Moreover, even if a folding event takes place within a 
microsecond of MD simulation time, it is only one possible 
pathway out of the many available to the system, and many 
folding and unfolding events are needed for an accurate 
estimate of the rate.  Therefore, it seems not be possible to 
study accurately the kinetics of even very fast folding proteins 
by direct MD.  Reproduction of many folding and unfolding 
events using direct MD, Langevin/Brownian dynamics or MC 
is currently only possible for coarse-grained models or 
atomistic models with implicit solvent.  Nevertheless, there are 
several methods that aim to simulate the kinetics of folding for 
all-atom molecular simulation.   

 
5.1. Parallel replica molecular dynamics  

The first of these methods is the parallel replica 
method (not to be confused with REM).  If one is interested 
in how often a protein passes through the transition region, 
one could start a MD simulation in a stable state, and just 
wait for it to make a transition over the barrier.  The 
average time it takes the protein to cross the folding barrier 
is the so-called mean first passage time (MFPT) and is 
related to the folding rate by k = 1/τMFPT.  In general, it is 
extremely costly to calculate MFPT for atomistic models 
with explicit solvent by brute force.  However, because for 
high free energy barriers the distribution of passage times is 
Poisson distributed, a few of the crossings take only a short 
time (these times are obviously offset by trajectories that 
take much longer that the MFPT).  This observation is the 
basis for the parallel replica methods.  This method runs 
many trajectories  (replicas) in parallel each initiated from a 
different from an equilibrium ensemble (80).  Clearly, to 
wait until all trajectories cross the barrier is as costly as 
running just a single trajectory. Therefore, as soon as one of 
the many replicas has crossed a barrier to a different stable 
state, all the replicas follow and are reinitialized in the new 
state (8).  This procedure is then repeated until all possible 
transition has taken place.  Pande et al. applied this method 
in combination with a distributed computing approach (15) 
using thousands of processors.  For processes with an 
MFPT of microseconds, starting 10000 trajectories of a few 
nanoseconds from different initial conditions (but in the 
same initial state, e.g. the denatured sate) are likely to result 
in a few successful barrier crossings. However, there is no 
computational gain, because the other 104 trajectories 
remain just confined to the initial state. In addition, the 
crossing time of a few ns might be not representative, 
certainly not when the reaction has to occur via obligatory 
intermediate.  Pande et al applied the parallel replica 
approach to the folding of villin headpiece (81) and of 
BBA5 (82). They found that the villin headpiece folding 
was governed by the formation of the hydrophobic core, 
while for BBA5 the (in fact experimentally very rapid) 
folding occurs due to fast secondary structure formation.   
 
5.2. High temperature trajectories  

In the replica exchange/parallel tempering 
approach raising the temperature increases kinetics 
dramatically. A doubling in temperature (e.g. from 300 to 
600K) results in a kinetic enhancement, corresponding to 
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taking the square root of the exponential Arrhenius factor. 
For an activation barrier of 10 kΒT the speed up is then 
around 150-fold, for 15 kΒT it is already 2000-fold. This 
brings the microsecond regime back to nanoseconds, and 
within reach of simulation.  This effect is exploited in the 
high temperature simulations (see e.g. Daggett (4)). From 
high temperature MD simulations one can deduce 
qualitative knowledge about the folding mechanisms 
(83,84,85).  

 
In a classic study Daggett and coworkers 

investigated high temperature unfolding of chymotrypsin 
inhibitor 2 (4,86), which is considered an archetypical 
single domain two state folding protein (11). This 64-
residue protein has a native structure consisting of an alpha 
helix and a beta sheet.  The protein folding kinetics has 
been studied by experiments, and the transition state has 
been studied by phi analysis.  To obtain the phi values from 
first principles in an MD study requires the computation of 
either the folding rates of the wild type and the mutant, or 
the computation of the free energies. Both are fairly 
computational expensive, and Daggett et al, do not attempt 
this (4). Instead, they use a clustering analysis to compute 
the transition state ensemble.  This led to a proposal of a 
single rate determining transition state ensemble.  In silico 
mutation studies led to more insight in the structure and 
functioning of the transition states. In particular, several 
mutations for faster folding proteins could be predicted that 
were experimentally confirmed.  The combination of 
experimental and theoretical work shows that the CI2 folds 
according to the nucleation condensation mechanism. The 
secondary structure by itself is not stable enough, and only 
when a nucleus of tertiary contact and secondary structure 
(small parts of the helix and the sheet) is formed, the 
protein collapses to the native state. It does so by expelling 
water from the interior, which is the last step to folding.  
While the simulated unfolding pathways have been 
performed at high temperature, it is claimed that the 
folding/unfolding pathways are relatively insensitive to 
temperatures for several proteins.  

 
Daggett et al. also performed quenching studies 

of the CI2 TS ensemble (4). They find that after the quench 
the proteins collapse by expulsion of water, but what 
determines whether or not the protein refolds is the fact 
whether the water molecules in the protein core are bound 
to the main chain.  Multiple quenched trajectories of a 
transition state also gave an indication of the refolding 
pathway.  These and other (e.g. engrailed homeodomain) 
quenching studies indicate that the folding at room 
temperature is the reverse of unfolding at high temperature.  

 
However, high temperature trajectories do not 

necessarily give the right mechanism of the reaction, and 
certainly do not yield the correct rate constant. While 
extrapolation of the rate behavior is possible in some cases 
using the Arrhenius expression, it is not necessarily reliable 
in the case of protein folding that can show non-Arrhenius 
behavior.  Moreover, a high temperature trajectory is biased 
towards overcoming enthalpy barriers, whereas at low 
temperature the preferred pathway might be more entropy 
dominated.  In addition, the force field is not parameterized 

for the high temperature, and as most simulations are done 
at constant volume, the pressures are unphysical high.  In 
short, although there is much to be gleaned from high 
temperature trajectories one would prefer to do the 
simulation at ambient condition.  
 
5.3. Rare event methods  
5.3.1. Bennett-Chandler algorithm  

Application of straightforward molecular 
dynamics at ambient conditions to protein folding is 
computational demanding because of the long times 
involved.  These long timescales are directly related to the 
two-state folding barrier. The crossing of the folding barrier 
is a rare event, compared to the fundamental dynamical 
time step (usually femtoseconds). For this kind of barrier 
crossings one can use approaches such as the TST based 
Bennett-Chandler (BC) method (87,88). In this approach, 
the rate constant is equal to the equilibrium probability to 
be on top of the barrier, multiplied by a kinetic prefactor.  
The equilibrium probability is basically given by the 
barrier free energy maximum, with respect to the stable 
state. This free energy can be calculated in the usual 
manner, for instance with the methods mentioned in 
section 4.  The second factor is the so-called 
transmission coefficient, and contains the dynamical 
information of the barrier crossing.  This factor follows 
from starting many short trajectories from a constrained 
ensemble of configurations on the top of barrier. The 
transmission factor accounts for trajectories recrossing 
on the barrier: paths that initially seem to move into the 
direction of the final state but recross the barrier and 
return to the initial state. The value of the transmission 
coefficient depends on the quality of the order parameter 
used for reaction coordinate. When the reaction 
coordinate is a good one the transmission coefficient is 
close to unity and the BC approach works fine. 
However, for a complex problem for which the reaction 
coordinate is not so easily defined, the transmission 
coefficient can be vanishingly small, meaning that most 
configurations corresponding to the top of the barrier, 
are actually already in the basin of attraction of either 
the initial or the finals state.  Thus the BC method 
suffers from the same hysteresis problem that was 
mentioned in the previous section: the so-called reaction 
coordinate problem.  
 
5.3.2. The reaction coordinate problem  

This reaction coordinate problem is prevalent in 
both simulation as well as experiments, because the barrier 
is not well populated, and cannot be observed in 
experiments as well as in simulation. Nevertheless, the rare 
crossing events are important for understanding the folding 
process. To get insight in folding, one requires knowledge 
of the reaction progression, e.g. when the transition state 
has been reached. A coordinate that does precisely this is 
the reaction coordinate. Moreover, such a coordinate 
should have a reasonably low dimension in order to 
understand the progress.  For simple reactions such as 
between two atoms, the relative distance is likely to be a 
good order parameter. But for proteins the reaction 
coordinate is not so easily found. All atoms move 
simultaneously in a complex manner, and there is no 
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Figure 4. Generic free energy landscapes can illustrate the 
reaction coordinate problem in complex systems. If both q 
and q' are important ingredients of the reaction coordinate 
(top left panel), leaving out one of them, e.g.  q', will lead 
to a wrong prediction of the transition state region (bottom 
panel), and hence a wrong mechanism and a statistically 
inaccurate rate constant. See text for more details.    

 
obvious candidate for a description of the reaction. In 
principle, the reaction coordinate can be a complex 
combination of all atom coordinates.  In the past, 
parameters such as native contacts ρ or RMSD have been 
proposed, but these turn out insufficient (71)  

 
The problem of the reaction coordinate is 

depicted schematically in Figure 4.  In this free energy 
contour plot all degrees of freedom are integrated out, 
except for the two true ingredients of the reaction 
coordinate q and q'. What remains are two stable states 
separated by a high free energy barrier. Because of the 
shape of the barrier, most trajectories crossing the barrier 
would follow on average a nonlinear path in the q-q'-plane. 
Clearly, to describe the barrier crossing both ingredients q 
and q' are required. However, q' does not sufficiently 
distinguish the initial from the final state, but q does If we 
would know nothing of the transition state, but we do know 
something of the initial and final state, then it would seem 
reasonable to call q the reaction coordinate.  Using only q 
as the reaction coordinate the free energy maximum would 
lie at q*, as is depicted in the lower panel of Figure 4. 
While this free energy does show the expected two state 

features, a configuration belonging to q* is already in the 
basin of attraction of U.  On the other hand, the transition 
state in the top Figure belongs in the q space entirely to 
native state basin.  This generic example illustrates that the 
reaction coordinate of complex processes, including protein 
folding, is generally difficult to define.  Therefore in the 
past decade methods have been developed to overcome the 
folding barrier and sample the folding kinetics without the 
dependence of predefining the reaction coordinate. 
Transition path sampling is such a method (89).  
 
5.4. Path sampling  
5.4.1. Sampling the transition path ensemble  

As mentioned above, reaction coordinates can be 
very elusive objects. A very long straightforward MD with 
many crossings would solve the reaction coordinate 
problem, but is computationally too expensive. However, 
this trajectory spends most of its time in the two stable 
states and very rarely leaves the stable state to cross the 
barriers.  Hence, we know very much about the initial and 
final stable states.  A potential solution to the rare event 
problem would hence be to focus only on the parts of the 
trajectories that are crossing the barriers. An infinite 
trajectory crosses the barrier an infinite number of times, 
thus forming an ensemble of crossing or transition paths.  
Because of the height of the barrier the time spent on 
crossing constitutes only a small fraction of total time.  The 
transition path ensemble (TPE) is defined as the collection 
of dynamic, unbiased trajectories connecting the initial and 
final stable states (89,90,10).  Obtaining this entire 
transition path ensemble would circumvent the problems 
related to defining a reaction coordinate. Transition path 
sampling was designed do just that by importance 
sampling. Based on the concept of sampling Markovian 
chains of states introduced by Pratt (91), TPS samples the 
TPE using a Monte Carlo scheme. Altering an existing 
pathway connecting initial and final state, and subsequently 
accepting or rejecting such a new trial way according to a 
proper acceptance rule results in a random walk through 
path space, and eventually leads to a representative TPE 
(90). TPS requires an initial trajectory to bootstrap the 
sampling. In the case of protein folding, high temperature 
unfolding pathways are easy to generate and act as valid 
initial pathways (71,95). Also, trajectories obtained from a 
biased sampling simulation might be used as input. In 
principle, the way one constructs such a path should not 
matter, as the importance sampling will relax the pathways 
to the equilibrium TPE.  
 
5.4.2. The shooting algorithm 

While any proper MC algorithm conserving 
detailed balance could sample the path ensemble, the 
shooting move turns out to be both simple and very 
efficient (10,90).  This MC move starts by changing the 
momenta of a randomly chosen snapshot (called time slice) 
along an existing trajectory that connects the initial to final 
state. From this time slice the algorithm shoots a new 
trajectory by integrating the equations of motion both 
forward and backward in time. In the simplest 
implementation of the algorithm the new trial trajectory is 
accepted if it connects the initial with the final region. 
Otherwise it is rejected and the old path is retained.  The 
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shooting move is then repeated with a different shooting 
time slice. The resulting random walk in path space results 
eventually in a collection of the properly weighted 
pathways representative for the TPE.  Note that the TPS 
only samples the trajectories, and the resulting TPE should 
be analyzed for insight in the mechanism.  The major 
advantage of TPS is that one does not have to impose 
reaction coordinates on the system, but rather extracts these 
from the simulation results.  
 
5.4.3. Stochastic shooting algorithm  

The shooting algorithm works because around 
the shooting point the new trial path stays close to the 
previous path, while at the same time the basins of 
attraction of the stable states make the trajectory commit to 
either state.  Nevertheless, for long paths on rough energy 
landscape the TPS shooting algorithm can become less 
efficient because the old and the new trajectories will 
diverge completely before they can commit to the right 
stable basins.  In that case, a small change in momenta will 
cause the forward as well as the backward trajectory to 
return to the same stable region, leading to a very low 
acceptance of trajectories.  A stochastic implementation 
of TPS, which allows acceptance of a forward or 
backward shot independent of each other, enhances the 
acceptance dramatically (92). An Andersen-like 
thermostat ensures the stochastic nature of the 
trajectories by coupling the system to a heat bath (93). A 
small coupling constant related to a low enough 
frequency of re-initialization of the momenta of a 
randomly chosen molecule guarantees that the dynamics 
is equivalent to constant energy deterministic 
trajectories, while the paths can diverge fast enough for 
the stochastic path-sampling algorithm to work. The 
dynamics of the system is even less disturbed by only 
altering the momenta of the solvent molecules. The 
simplest implementation is then to only impose a new 
center of mass linear momentum, keeping the molecular 
angular momentum intact.  

 
Strictly speaking we do not need to keep the path 

length fixed (94). In fact, only the part of the pathways that 
leave the initial stable state, cross the barrier and enter the 
final state are of importance. In addition, only shots from 
this barrier part have a reasonable chance of creating a new 
pathway. Hence, it is more efficient to stop integrating the 
equations of motion when a stable state has been reached. 
The assumption one makes is that the path will have a very 
low chance of recrossing after it has reached such as state. 
This assumption requires a slightly stricter definition of the 
stable states than needed in fixed path length TPS (94,95).  
On the other hand, the shifting moves, introduced in the 
original implementation of TPS are not necessary.  The 
fluctuating path length requires a slightly adjusted 
Metropolis acceptance rule (94)  
 

 , (8) 
 
where L is the path length and hAB equals unity if the path 
connects the initial and final state, and zero otherwise.  The 
subscript o and n refer to the old and new path respectively.  

5.4.4. Rate constants  
Within the TPS framework one can compute rate 

constants accurately. This involves a procedure akin to 
umbrella sampling computing the reversible work to 
constrain the path ensemble from completely free to the 
path ensemble of interest.  The advantage of the TPS 
approach with respect to earlier techniques such as Bennett 
Chandler (87,88) or other TST based methods, is that TPS 
is much less sensitive to the choice of order parameter. The 
BC method is dependent on a correct choice of reaction 
coordinate, in order to yield a statistical meaningful result.  
As mentioned before, a poor choice will lead to a lower 
free energy barrier and hysteresis.  The computation of the 
transmission coefficient is then impossible (90,94). The 
TPS rate calculation yields accurate results but is 
computationally demanding and, hence, a more efficient 
approach would be useful.  The Transition interface 
sampling (TIS) method (94) is such an approach. TIS 
relies, just as the BC algorithm, on a factorization of the 
rate constant in a kinetic factor that measures the flux of 
leaving the initial state, and a crossing probability that 
measure the conditional probability that a trajectory reaches 
the final state, provided that it came directly from the initial 
state: 
 

.    (9) 
 

The flux factor fA is rather easy to calculate from 
a straightforward MD simulation. A trajectory will have a 
reasonable chance to leave the state, leading to an accurate 
estimate of the flux. The crossing probability PA(λB | λ1 ) is 
very low, and is hence more difficult to estimate. The TIS 
method proceeds by dividing the space by m interfaces. For 
each interface i , a path sampling scheme is used to 
estimate the probability to reach the next interface i+1, 
under the condition that all trajectories cross the interface i 
and come directly from the initial state.  

 
For the description of the interfaces a one-

dimensional order parameter λ is used, which should be 
determined by the instantaneous configuration only. This 
order parameter is preferably identical to the reaction 
coordinate, but it is much less sensitive to deviation of the 
exact order parameter than the BC algorithm. Employing 
path sampling, the TIS algorithm computes for each 
interface the probability PA(λi+1| λi+1) to reach  λi+1 while 
having crossed λi and coming from initial state A.  The last 
interface to be crossed is that of final state B.  The 
complete crossing probability PA(λB | λA ) constant is than 
the product of all interface probabilities. Final 
multiplication with the flux yields the rate constant.  In 
practice, all paths are binned in histograms as a function of 
λ for each interface path sampling. Subsequent matching of 
these histograms leads to the final crossing probability. For 
a fully detailed description of TIS I refer to Ref. (94).  

 
   Other techniques to sample paths connecting 

an initial and a finals state exist.  For instance, the path 
action algorithms by Elber et al. employ the stochastic 
Onsager-Machlup action for the study of protein folding 
(96,97,98), These methods use a Monte Carlo scheme to 
sample the path ensemble, where the weight of each path is 
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given by its action.  While elegant and efficient, the large 
time-steps involved in the action prohibit a direct 
correspondence between the transition probabilities and the 
underlying dynamics. Hence, the action methods cannot 
quantitatively address the computation of the rate constant.  

 
5.5. Coarse-graining kinetics  
5.5.1. Partial paths and Milestoning  

As mentioned above path sampling can be used 
to elucidate the folding process of small proteins and give 
an estimate of the rate constants (95).  For large proteins 
the required path length might make a path sampling 
simply too expensive, not only due to system size, but also 
because large proteins are more likely to have multiple 
intermediate states. Metastable states that are stable on the 
nanosecond scale are already detrimental for an efficient 
implementation. However, the diffusive nature of the paths 
and the corresponding loss of correlation can be made into 
an advantage in some more recently developed path 
sampling methods.  The partial path TIS technique (PPTIS) 
describes the rare event as a Markovian hopping process 
between the interfaces, with corresponding local hopping 
probabilities.  Path sampling is then employed as a means 
to obtain these hopping probabilities.  When the loss of 
correlation between three consecutive interfaces is justified, 
this method reproduces the kinetics in an accurate way 
(99).  
 

The Milestoning (100) method by Elber and 
coworkers assumes that the protein diffuses through a 
localized 'tube' in configuration space. This assumption 
allows the translation of the rare folding process into a non-
Markovian hopping between configuration space 
hyperplanes, the so-called 'milestones'.  (Note the similarity 
between the PPTIS interfaces and the milestones, also 
stipulated in Ref. (100).  The main difference is that they 
do not form a foliation, i.e. they can intersect. This is the 
reason why the method has to assume a tube-like process).   
An additional assumption is that configurations on each 
milestone are Boltzmann distributed. The Milestoning 
procedure itself consists of starting trajectories from an 
equilibrium ensemble on a milestone. The distribution of 
times to reach the next milestone in combination with a 
Kolgomorov equation then yields an accurate kinetic 
picture of the process of interest. 
  
5.5.2. Markovian state models and stochastic road maps  

The idea of correlation loss between intermediate 
states is the central concept in the Markovian state models 
(sometimes called stochastic road map (100,101,102,103) 
or equilibrium kinetic network (104). In these descriptions 
the folding pathways are represented by a chain of hopping 
events between a set of metastable states. A transition 
matrix gives the probabilities for hopping between these 
states. The other ingredient is the description of the states, 
which can be obtained by clustering of configurations or 
decomposition of state space.  From an MSM one can 
compute overall rate constant, and committor distribution 
(see section 5.6.1).  In a sense, the MSM is equivalent to a 
Kinetic Monte Carlo (105). Constructing the state space 
decomposition and the probability matrix are computational 
intensive (106). One approach to obtain the required 

ingredients for the MSM is to use clustering of 
conformations and measuring the transition probabilities 
from a TPS run (101).  Krivov and Karplus used a network 
approach to study the beta-hairpin of the next section in an 
implicit solvent (106).  Schütte et al have done much work 
in developing methods for the decomposition of phase 
space (107,108).  
 
5.5.3. Mapping the kinetics on reaction coordinates  

Notwithstanding the problems with free energy 
landscapes as a function of reaction coordinates, it is in 
principle possible to compute such a free energy landscape, 
and approximate the kinetics of a protein in solution by a 
Langevin description. Such a description can give correct 
results, but only if all the proper reaction coordinates have 
been identified. In addition, the effective diffusion along 
this coordinate is needed.  When both the free energy and 
the diffusion are known, a mapping on an effective is 
possible (see e.g. Ref. (109)).  

 
Recently it was shown that the free energy can 

be constructed from drift in the reaction coordinate, from 
straightforward MD simulation. Garcia et al applied that 
approach to replica exchange MD of a beta hairpin and 
obtained reasonable results for both the free energy and the 
kinetics (110).  
 
5.6. Analyzing the path ensemble  
5.6.1. Committors and the Transition State Ensemble  

Sampling the transition path ensemble or the 
Markovian state networks is an important first step, but true 
insight in protein folding can only come from analyzing the 
myriad of pathways that constitutes the folding process.  A 
protein can choose from many different paths via many 
different low populated intermediates or transition states, 
all leading eventually to the native state.  A description of 
these intermediates and transition states would yield insight 
in the reaction mechanisms. Intermediates are characterized 
by long dwelling times on the molecular times scale, and 
can be analyzed for instance using the decomposition 
methods of Schütte et al. (107). Transition states are more 
difficult to define.  As the path ensemble comprises many 
folding pathways, there is not just one transition state, but 
instead a whole ensemble of states: the transition state 
ensemble (TSE). But the question remains, what is the 
definition of the configurations comprising the TSE?  In 
physical chemistry usually the transition state is defined as 
a saddle point in the potential energy landscape.  At first 
sight it might seem useful to count all saddle points on the 
potential energy surface, but this makes only sense when 
the thermal energy is much smaller than most barriers in 
the energy surface. For solvated systems this is not the 
case. Besides, for complex systems the number of saddle 
points grows exponentially with the degrees of freedom. 
Counting saddles for solvated proteins would be unfeasible.  
Moreover, these saddles would give no insight in the 
reaction, because they are mostly not representative for 
folding.  Another favorable option might seem to describe 
the transition state as a saddle point in the free energy 
landscape. A single saddle point in the free energy 
landscape corresponds then to many TS configurations, 
because all degrees of freedom except the reaction 
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coordinates are integrated out. In addition, thermal 
fluctuations ensure that points close to the free energy 
saddle point also have a finite weight in the TSE ensemble. 
However, the free energy picture of the TSE depends 
entirely on the definition of the correct reaction coordinate. 
As discussed in section 5.3.2, this is just the problem we 
are trying to solve in the first place.  

 
A definition of the transition state based on a 

configuration itself, independent of the free energy, which 
requires a priori knowledge of the reaction coordinate, 
would be helpful.  Du et al. (111) proposed such a 
definition, making use of a general property of a transition 
state. For a configuration that is a transition state, a 
trajectory starting from that configuration with a random 
momentum has an equal probability to reach either the final 
state or the initial state.  One can thus test an arbitrary 
configuration for this property by running many short 
trajectories from it, initiated with momenta from the 
Maxwell-Boltzmann distribution and measuring the 
probability to reach the final state pB. This probability is, in 
general, called the commitment probability or 'committor' 
(90). For protein folding it is also known as pfold.  However, 
such a definition only marks the boundary between the 
basins of attraction of the initial and the final state: the 
separatrix. To obtain the TSE one would have to weight the 
configurations of the separatrix with the probability to 
occur. Suppose that we have a very long (in principle 
infinite) unbiased MD trajectory, visiting both stable states 
and crossing the barrier many times back and forth. By 
definition this trajectory has to pass through the TSE. In 
fact, the configurations along this trajectory that have a 
pB=0.5 constitute the TSE. Such configurations lie 
precisely on the separatrix and are weighted correctly.  It 
goes without saying that obtaining the TSE in this way is 
undo-able in practice. Computing the unbiased very long 
trajectory with many crossings was the very problem of 
rare events. Moreover, obtaining this trajectory is trivial 
compared to the effort one would need to perform in order 
to compute the committor values for each of the 
configurations along this trajectory.  Nevertheless, the 
concept of the committor (or pfold) can be used to extract 
the TSE from the transition path ensemble. As the TPE 
properly weights each pathway, the configurations along 
these paths obeying the pB=0.5 criterion belong to the TSE 
and, in fact constitute the TSE.  

 
While Daggett found no commitment of CI2 

within tens of nanoseconds (4), Pande has computed 
commitment probabilities for BBA5 in explicit water and 
found commitment times of less than 5 ns (82). Also for the 
Trp cage protein, commitment times were quite low (71). 
Rhee and Pande  (112) compared the pfold prediction for 
different simulation models and concluded that chemical 
detail is important for small protein folding kinetics, 
including the explicitness of the solvent. In particular, there 
is a large difference between the mechanism in the Go 
model and in the explicit solvent   

 
The concept of the committor does yield the 

TSE, but does not give much insight in the reaction, as it 
only follows from performing many trajectories.  Still, it 

can be used to analyze the validity of reaction coordinates, 
through committor distributions (90).  
 
5.6.2. Testing reaction coordinates with committor 
distributions  

For complex reactions such as protein folding the 
reaction coordinate is not trivial. As discussed above, from 
the transition path ensemble one can obtain the TSE by 
computing the committor values along the pathways. The 
structures with a committor half are considered a transition 
state and are part of the TSE.  However, one would like to 
extract the reaction coordinate as well, or at least be able to 
test a candidate reaction coordinate.  

 
A good reaction coordinate parameterizes the 

committor, that is, the reaction coordinate based on an 
instantaneous structure can predict what the commitment 
probability of that structure is. In principle, the committor 
itself is the perfect reaction coordinate by definition is, but 
does not contain information, i.e. it does not predict the 
committor value of other structures. A good reaction 
coordinate should be low dimensional and able to predict 
the committor. Moreover, structures with a particular 
reaction coordinate should have the same committor value. 
This enables a test for the quality of a proposed reaction 
coordinate.  Suppose that a biased simulation (e.g. using 
umbrella sampling) samples a properly weighed 
equilibrium ensemble of configurations r confined to a 
particular value q of the proposed reaction coordinate 
function q(r).  For each member of this ensemble one can 
compute the committor pB (where B denotes the final state, 
for instance, the native state).  The probability distribution 
of the committor P(pB) reveals the ability of the reaction 
coordinate to represent the committor (113,114).  If the 
proposed reaction coordinate is sufficient to predict the 
value of the committor, the committor distribution P(pB) 
will be peaked around committor value corresponding to 
the fixed reaction coordinate q. For a poor reaction 
coordinate on the other hand, the committor distribution 
P(pB) will not be unimodal, as configurations with the same 
value of the reaction coordinate can have different 
committors. In particular the committor distribution for free 
energy saddle points q* is revealing.  If q(r) is a good 
reaction coordinate, all the configurations that have 
q(r)=q* are transition states and the committor distribution 
P(pB) is peaked around pB=1/2.  When a committor 
distribution P(pB) turns out not unimodal at pB=1/2, a 
correct characterization of the transition state ensemble 
requires degrees of freedom, additional to the proposed 
reaction coordinate (90).  Initially introduced to study ionic 
dissociation in water (113), committor distribution analysis 
has subsequently applied to elucidate the mechanism of 
various complex biologically relevant reactions 
(114,115,116).  

 
Pande et al. investigate the folding of the villin 

headpiece with MD and MSM (117).  They also probed the 
role of water in the folding of villin using commitment 
probabilities. By keeping the structure fixed and the re-
annealing the water molecules, they basically performed a 
committor analysis (with q the structure itself). In this way 
the authors could test the influence of the water molecules 
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on the kinetics of the folding reaction. They conclude that 
the water structure does not the kinetics to a very large 
extent.  Juraszek et al. come to the same conclusion in case 
of Trp-cage protein (71). 
 
5.6.3. Genetic neural networks 

A disadvantage of the committor distribution 
approach is that when a prospect reaction coordinate does 
not show the desired unimodal pB histogram, a new 
reaction coordinate should be tested by performing the 
computational expensive committor analysis again.  To 
avoid the expensive recalculation of committor 
distributions, Ma and Dinner employed a genetic neural 
network (GNN) (118,119) that automatically selects the 
collective variable that best parameterizes the committor 
form among many possible reaction coordinate (115). The 
first step of this methods is the building of a database 
which contains for many different structures, the committor 
pB(x), as well as a list of all collective variables q(x) that 
are candidate reaction coordinates.  As the method works 
best if all values of the committor are represented, taking 
the structure from a straightforward MD run is highly 
inefficient.  A more practical way is to take the structures in 
the database from a transition path ensemble.  Part of the 
database is then used as training set for the neural network, 
which optimizes its weights for certain combinations of 
collective variables. The quality of the network is then 
tested from the deviations between the predicted committor 
values and the previously computed committor, for the 
other part of the database.  In principle, this optimization 
should be done for all combinations of reaction coordinate 
candidates, in order to find the one with smallest committor 
prediction error. As this is too expensive, Ma and Dinner 
employ a genetic algorithm to search for the best 
combination of collective variables. The GNN-method has 
been used to investigate the nature of the reaction 
coordinate for the isomerization of alanine dipeptide in 
vacuum and explicit solvent (115), but has not been applied 
yet to protein folding.  

 
5.6.4. Bayesian path statistics  

Hummer (120,121) proposed an alternative 
definition of transition states based on a Bayesian relation 
between the transition path ensemble and the equilibrium 
(canonical) ensemble. The transition path ensemble 
constrains pathways to connect A and B. Therefore the 
probability density of microscopic states P(x|TP) for these 
selected transition pathways (TP) differ from the 
equilibrium distribution ρ(x).  The Bayesian expression for 
the probability P(TP|x), that a trajectory visiting phase 
space point x={r,p},with r the configuration, and p the 
momenta, is in fact on a transition path, reads  
 

    (10) 
 

Here, the factor P(TP) measures the overall 
probability to be on a transition states, and is equal to the 
fraction of time that a infinitely long trajectory spent on 
crossing the barrier from A to B. According to this 
expression the conditional probability P(TP|x) is 

maximized for structures with a low equilibrium weight, 
but with a high chance to occur on transition paths. This is 
true for transitions state, and thus this probability can be 
used to identify the TSE.  For diffusive dynamics this 
probability becomes  
 

,   (11) 
 

 which clearly has a maximum for pB=0.5, which 
is indeed the definition of the TSE.  In the following we 
assume that the dynamics is governed by diffusion, and 
equation 11 applies.  
 

A practical application of the Bayesian relation 
involves the projection of reaction coordinate q. The 
probability P(TP|x) can be averaged over the constrained 
equilibrium ensemble q(x)=q, to yield P(TP|q), the 
probability that a configuration with a reaction coordinate 
q, is indeed on a transition path. Analogous to equation 10 
this probability relates the probability density of q in the 
transition path ensemble P(q|TP) with the equilibrium 
ensemble  P(q) according to  
 

,    (12) 
 

Here, P(q) ∝ exp(-β F(q)) and  P(q|TP) follow 
from equilibrium free energy (e.g. umbrella sampling ) 
simulation and a path sampling simulation, respectively, 
P(TP) is again a normalizing factor.  

 
Analogous to the committor distribution analysis, 

the application of eq. 12 for a good reaction coordinate 
reveals a peak in the probability P(TP|q) at the transition 
state value of q.  This is because for all transition states, i.e. 
the states x with large probabilities P(TP|x), should 
correspond to approximately the same value of the reaction 
coordinate q(x).  A poor choice of reaction coordinate q(x) 
will have no signification correlation with P(TP| x), and 
lead to a flat P(TP|q) .  Best and Hummer used this 
approach to test reaction coordinates for the folding of a 
simple three-helix bundle protein using a Go like model 
(121) .  
 
5.6.5. Likelihood Maximization  

The likelihood maximization (LM) method of 
Peters and Trout  (122) has the same aim as the GNN 
approach discussed above. The method screens many 
possible collective variables for fitness as a reaction 
coordinate. Where the GNN relies on the computation of 
committor values for a large set of TPS structures, the LM 
method uses the sampling data of the TPS itself only. 
Therefore it is in principle computationally more efficient 
than the GNN. The LM method is based on the notion that 
the shooting algorithm is itself based on a type of 
commitment probability. A forward shot from a particular 
structure leading to the correct final state reveals a 
tendency for a larger committor value than if the shot lead 
to the initial state.  Hence, it should be (and in fact is) 
possible to use the acceptance data from a TPS run to find a 
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description of the committor that best serves as a reaction 
coordinate.  

 
The starting point of the method is the 

probability P(TP |r)  that a certain structure r in 
configuration space leads to a transition path using the 
shooting algorithm, already introduced in the previous 
section. An unbiased estimate of that probability 
requires, in general a randomized momentum at the 
shooting point. Peters and Trout introduce therefore the 
aimless shooting algorithm that reinitializes the 
momenta (122). In addition, they bias the shooting point 
to the transition state region to enhance the acceptance 
ratio, but this is not strictly necessary.  Each shot is a 
realization of a process that estimates P(TP|r), and 
which is strongly connected to a committor calculation.  
If the dynamics is rather diffusive, such as is the case 
with protein folding, the expression for the P(TP|r) is 
given by eq. 11.  Any pB(q) function that has a rough s-
shaped curve, smoothly varying from 0 to 1, would give 
a function peaking at the transition state value of q and 
decaying to zero away from this peak, as is required for 
a good reaction coordinate (120). Peters and Trout 
choose the following dependence: 
 

 ,     (13) 
 
which leads to the probability  
 

 ,    (14) 
 

where p0 is a constant prefactor. Note that the 
dependence of q(r) on the structure r is implicit.  Just as in 
the Bayesian approach of Hummer et al. the goal is to find 
a reaction coordinate model q(r) that gives the best 
prediction of P(TP|q), the probability to be on a transition 
path for a certain value of q.  
 
Next, Peter and Trout define a general simple dependence 
of the reaction coordinate q on a set of M collective 
variables q1, q2,….,qM  
 

    , (15) 
 

where αk are the models’ fitting parameters, to be 
optimized by the LM. The likelihood function L(α) gives 
the probability to observed the measured data, as a function 
of the model parameters α: 

 

 ,    (16) 
 

where the products run over, respectively, the 
accepted and rejected shooting points obtained by TPS.  
Maximizing (the logarithm of) the function L(α) with 
respect to the parameters α results in the best reaction 
coordinate given the model eq. 15, that describes the 
observed data,  

In practice, the LM method is first tried on a 
large set of single order parameters. The largest likelihood 
gives then collective variable that is the best reaction 
coordinate.  Then, all combinations of two order parameters 
are tested.  If a systematic improvement in the log 
likelihood is found, given by the Bayesian criterion ∆L= ln 
M, then the new combination of parameters is adopted as 
the best reaction coordinate model. This procedure is 
repeated until no further significant improvement is found. 
Due to combinatorial explosion combination of 3-4 
parameters is typically the maximum.  

 
In a later paper, Peters and Trout note that 

knowledge of the fate of only half trajectories, that is, either 
forward (or backward) shots only, is enough to perform the 
analysis (123). They applied the LM to structural solid-
solid transitions of terephtalic acid (124).  The LM is 
particularly useful for screening complex reactions such as 
protein folding.  

 
Note that the LM is entirely different from the 

often-used principal component analysis or essential 
dynamics (see e.g. Ref.(125) ). These methods decompose 
movement of the protein into a high dimensional vector 
representing this motion, but do not reveal the low 
dimensional relevant reaction coordinate  
 
6. APPLICATION OF PATH SAMPLING 
TECHNIQUES ON PROTEIN FOLDING  
 
6.1. The GB1 beta-hairpin  
6.1.1. Introduction  

Advanced path sampling methods addressing the 
kinetics of protein folding have up to now only been 
applied to small proteins or even protein fragments. One of 
the earliest applications was the 16 residue C-terminal 
fragment (41-56) of protein G-B1 (sequence 
GEWTYDDATKTFTVTE). This short sequence forms a 
stable non-aggregating beta-hairpin in solution, and has 
become an experimental an theoretical model system for 
investigating beta sheet secondary structure formation.  
Eaton and coworkers (126,127) showed that the hairpin 
obeys a two state kinetics, with a reaction time of 6 
microseconds. Many simulation studies followed using 
simplified models (128,129,130) full atom models in 
implicit solvent (131,132,104) or in explicit solvent 
(85,125,133,98,134,135,136). 

 
Straightforward high temperature MD simulation 

in explicit solvent (85) and multi-canonical Monte Carlo 
sampling in implicit solvent (131) highlight the discrete 
nature of the folding process.  The initial beta turn 
formation is followed by a collapse of the hydrophobic 
residues in the peptide into a hydrophobic core (H-state) 
and eventually formation of the backbone hydrogen bonds 
towards F and N states (see Figure 5).  Garcia et al. (134) 
and Zhou et al. (135), determined the beta hairpin free 
energy landscape in explicit solvent. Bussi et al, use a 
combination of REMD and Metadynamics to improve 
sampling, and obtain a converged free energy landscape 
(64).  Yang et al. extracted folding kinetics from a REMD 
simulation (110).  
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Figure 5.  Top: Structures of the several (meta) stable states.  The backbone is represented by a ribbon, the hydrophobic core in 
stick model with dots to indicate the size of the atoms. All other residues and solvent molecules are left out.   (Figures are made 
with VMD (51) ). 

 
 
Figure 6. A typical F-H transition state configuration. A strip of water molecules separates the two strands. In particular, the 
water molecules bridge important backbone hydrogen bonds 3-4  (indicated by large spheres on the backbone oxygen and 
hydrogen atoms).    (Figure is made with VMD (51) ) 
 
6.1.2. TPS of GB1 

Molecular dynamics runs at ambient conditions 
started from the native state indicate that there is a 
substantial barrier to unfolding (85,125,134,135). To be 
more precise, the H-F transition turns out to be the rate 
limiting step, or the highest barrier in the folding process of 
a two-state folder. Employing TPS techniques to the GB1-
beta hairpin's H-F transition in explicit solvent at room 
temperature I could study the kinetic pathways and obtain 
the folding rates (92,95). 

Computing the commitment probabilities pA 
(folding) and pB (unfolding) for representative pathways 
from the TPE  (95), yielded true transition state ensembles 
for the rate-limiting step. Figure 6 shows that the transition 
state has a native like hairpin shape, with no native 
backbone hydrogen bonds formed, and a strip of water 
molecules bridging the two strands. Water acts as a 
lubricant to folding (57,137,138,139) bringing together the 
native backbone hydrogen bonds. Moreover, expulsion of 
water is the last step of folding, before collapsing to the  



Molecular dynamics of protein folding 

2818 

 
 
Figure 7.  Representations of the folding event in 2 
different order parameter planes. The free energy landscape 
from replica exchange is given by thin solid contour lines 
separated by 0.2 kBT. A few smoothed paths in the F-H 
ensemble are denoted by a scatter plot (small dots). Each 
dot represents a time slice along a path. Also given are the 
different committor ensembles: pB<0.2 light gray, 0.4< 
pB<0.6 in dark gray and pB>0.9 in black. Arrows indicated 
the apparent transition state saddle points in the FE 
landscape.    
 
native state.  The major cause for the barrier to folding is 
thus the formation of this unfavorable transition state, 
which has a low conformational entropy of the protein as 
well as a low translational entropy of the bound solvent 
molecules (22,23).  

 
Previous MD and REMD simulation focused 

on the number of backbone hydrogen bonds Nhb and the 
hydrophobic core radius of gyration Rg as governing 
reaction coordinates for the folding of GB1 (135).  
Analysis of the TSE obtained from the transition path 
sampling runs, shows the transition states plotted in 
these variables falls entirely within the basin of 
attraction of the unfolded H state (see Figure 7).  This 
analysis shows that the TSE does not always correspond 
to saddle points in the free energy landscape, and it 
depends very much on the choice of reaction coordinate 
(90).  

Inspection of the TSE structures suggests that the 
backbone solvation actually determines the F-H transition.  
A possible measure for solvation is the difference between 
native backbone hydrogen bonds Nhb and water molecules 
bound to water. We define ∆ = 2 Nhb –Nsolv where Nsolv 
denotes the number of backbone-solvent hydrogen bonds.  
Another good order parameter describing the F-H transition 
is the inter-strand proximity, captured in the sum of 
distances between oxygen and hydrogen of the native 
backbone hydrogen bonds ROH.  Indeed, the free energy 
saddle point in the ∆ -ROH plane corresponds to the TSE 
pB=0.5 ensemble, making a case for these as reasonable 
order parameters for the F-H transition.    

 
From the TPS analysis the following general 

kinetic mechanism for the H-F transition of the GB1 
hairpin arose.  In the H state the hairpin has to search for 
the transition state, characterized by water molecules 
bridging the middle backbone hydrogen bonds (labeled 3-
4). These hydrogen bonds are formed first as they are 
driven together by the nearby hydrophobic core. The 
vicinity of the core might also cause the expulsion of 
bridging waters.  
 
6.1.3. Folding rate calculation  

Using λ=ROH the folding and unfolding rates as 
computed by TIS simulation were, respectively,  kH-F = 0.20 
µs-1, and kF-H = 0.4 µs-1, both in reasonable agreement with 
experiment.  The TIS results suggested a barrier of more 
than 10 kBT between the F and H states, whereas the free 
energy landscapes of the REMD revealed only a barrier of 
approximately 3-4 kBT. The lower value in the REMD is 
caused by an overlap of the F and H state in the order 
parameters used, thus lowering the barrier.  The low barrier 
also shows that TST based methods (87,88) must suffer 
from recrossings and give vanishing transmission 
coefficients to correct for the low free energy barrier.  
Indeed, a one dimensional overdamped Langevin 
description with a fixed diffusion constant on one-
dimensional free energy landscape as function of ROH 
yielded a rate constant that was orders of magnitude too 
high, indicating that the true free energy barrier must have 
been much higher than 3-4 kBT (95).  

 
This projection on a one dimensional Langevin 

equation (Fokker-Planck equation) was also done by Garcia 
and coworkers for the GB1 (see section 5.5.3 and Ref. 
(110).  They determined the reaction coordinate (which was 
similar to ROH) dependent diffusion and drift constant from 
straightforward MD and used these in a coarse-grained 
simulation. The kinetics they obtained was in reasonable 
agreement with the experimental rates, showing that 
recrossings result in a much slower diffusion at the barrier.   
 
6.2. Trp-cage  
6.2.1. Introduction  

Following the success of small fragments like the 
GB1 hairpin, many small and fast folding proteins and 
protein fragments were discovered. Examples of these are 
the Villin headpiece, the BBA5, and the Trp-cage mini 
protein. These fast folding proteins have contributed much 
to the understanding of generic folding mechanisms 
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Figure 8. REMD free energy contour maps of Trp-cage in 
explicit water at 300K in the RMSDhx versus RMSD plane. 
The contours are separated by 1 kBT. Left: results starting 
from the folded native state. Right: starting from the 
unfolded state. Note that the two free energy landscapes are 
not converged. Also note that for the unfolded REMD the 
transition to the native state is not observed at all. 
 
because they bridge the gap between experiments and 
computer simulation.  The designed 20-residue mini-
protein Trp-cage (NLYIQ WLKDG GPSSG RPPPS) (14) 
is among the fastest folders with a room temperature 
relaxation time of  12 µs. The native state of Trp cage has 
an alpha-helix, a salt-bridge and a polyproline II helix 
shielding the central tryptophan from the surrounding 
solvent.  Laser temperature-jump spectroscopy (141) 
showed that Trp cage is a two state folding, whereas 
fluorescent correlation spectroscopy (142) revealed an 
intermediate state with tryptophan solvent exposed. The 
folding mechanism, however, remained unclear. UV-
resonance Raman spectroscopy measurements suggested 
early formation of the helix in the folding transition (143) .  
Molecular dynamics simulations investigated both 
thermodynamic stability of the protein and its possible 
folding pathways using all-atom models with implicit 
solvent (55,144,145,146,147) explicit solvent (148,65) or 

simplified models such as Go-models~ (149).  Explicit 
solvent REMD studies simulations in (148) confirmed Trp-
cage as a fast two state folder, with an intermediate state 
that contains two hydrophobic cores. A recent study by 
Piana and Laio, using a novel bias-exchange, reconfirms 
this finding(65).  Recently, Paschek et al.(152) observe 
complete folding of Trp-cage in explicit solvent using 
REMD with the Amber force field.  Earlier, all-atom 
implicit solvent MD (144,55,147) and a coarse-grained 
simulation (150) exhibited complete folding of the protein.  
Nevertheless, several observed misfolded states in the 
implicit solvent computations indicated a less reliable and 
efficient folding Trp-cage (147).  The few studies that 
investigated the dynamics of the process either employed 
an implicit force field (FF) (55) or a simplified model 
(149).  Because the solvent does play a role in protein 
folding (151) Juraszek et al. performed TPS of the folding 
of Trp-cage with an explicit (71). The initial and final states 
can be found by conducting a REMD simulation first. 
These simulations were done with the OPLSAA force field 
(154) using Gromacs (153). In the following sections we 
briefly describe the findings of that work (71). 
 
6.2.2. Order parameters   

Several order parameters turned out to be 
important: the protein radius of gyration using the alpha-
carbons (Rg), the Rg including the side-chain atoms (Rgsc), 
the fraction of native contacts (ρ), the root mean square 
deviation from the native alpha-carbons structure (RMSD), 
the root mean square deviation of the alpha-helical residues 
(2-8) from an ideal helix (RMSDhx), the solvent accessible 
surface (SASA) of the whole protein (153), the salt-bridge 
distance (sb) defined as the minimum distance between 
donors and acceptors in the hydrogen bond between Arg-16 
and Asp-9 and the number of water molecules within 4 Å 
around Trp-6 (nwW).  Construction of free energy diagrams 
from REMD using these order parameters allows for the 
determination of the stable state definitions required for 
TPS. 
 
6.2.3. Replica exchange MD   

Conducting two independent 64-replica REMD 
simulations (148), one starting in the native and one 
starting in the unfolded state, can assess the convergence 
properties of the REMD.  Figure 8 shows the free energy 
landscape for both REMD simulations plotted in the (Rg,ρ) 
plane. Both REMD runs did not converge in 36 ns per 
replica. Moreover, in the unfolded REMD the native state 
was not even reached.  Cluster analysis revealed several 
different metastable states, shown in Figure 9.  The largest 
cluster contains twisted hairpin like structures and bent 
loop structures, all having Trp-6 fully exposed to the 
solvent.  The second largest cluster consisted of U-shape 
structures, with the tryptophan oriented correctly and 
packed  in the center of the protein and one turn of the helix 
formed.  The third cluster contained fully helical structures 
with the polyproline detached from the rest of the 
hydrophobic part, while the rest of the clusters could not be 
classified and were deemed molten globular structures.    
The three different groups correspond to FE minima in the 
RMSDhx vs RMSD plane of the unfolded REMD run 
(Figure 8). These groups immediately suggest two routes  
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Figure 9. Three types of clusters found in the unfolded 
initiated REMD ensemble.  The top cluster (red, 45%) is a 
set of several loop structures, with Trp-6 fully exposed to 
the solvent. The middle cluster (green, 15\) consists of the 
loop structures with Trp-6 positioned in between prolines. 
The bottom cluster (blue,3%) denotes fully helical 
structures. Typical structures belong to each group are 
shown on the left.  Structures plotted as gray stars belong to 
clusters that did not reach the minimum abundance of 2%.   

 
for the folding process: 1) initial loop formation 

followed by packing of the tryptophan between the proline 
residues.2) helix formation followed by correct packing of 
Trp-6.  While both pathways seem possible, complete 
folding did not occur within 36 ns, because a substantial 
free energy barrier separates the native state from the 
intermediate. Still, the REMD simulations yield insight in 
intermediate structures and enabled a definition of the 
initial and final state for TPS.  
 

Several simulation studies have observed 
spontaneous folding in MD  (144) and in REMD (152). The 
difference with the results discussed here and those of Ref. 
(152) are almost certainly due to the force field. Piana and 
Laio performed a combination of replica exchange and 
Metadynamics (65), called bias exchange, to study the 
folding of the Trp-cage employing the OPLSAA force 
field. They find that the FE landscape starting from the 
extended state converges much better with the bias 
exchange, than by using PT-REMD.  These authors 
conclude that the Trp-cage can fold via an intermediate in 
which the helix is fully formed, and the Trp-6 partially 
exposed. They do not find the L state, possibly due to the 
choice of biasing coordinates.  
 
6.2.4. Transition path sampling  

While in the TPS simulation of Ref (71) the 
folded state (A) was defined rather rigorously by RMSD, 
RMSDhx, SASA, ρ and nwW, the definition of B was less 
strict, only including parameters RMSD, ρ and nwW. The 
RMSDhx was excluded because the order of unfolding was 
unknown and SASA was left out to allow molten globular 

structures with low SASA into the final state.  The final 
region B thus includes both intermediate states found in the 
REMD simulation to avoid unnecessary long pathways in 
the TPS simulations.   

 
The TPS simulation yielded several thousands 

room temperature pathways, broadly revealing two 
different main routes (Figure 10).  Note that this path 
ensemble is as valid for the unfolding as for the folding 
process as the dynamical trajectories are microscopically 
time-reversible.  Starting from the unfolded (intermediate) 
state each path in the ensemble reaches the native state 
within a few ns, but the folding barrier itself is of course 
substantial.  During the folding process the protein can 
choose between a fast initial collapse to a loop state L and a 
helix formation.  In the loop state the Trp will be still the 
solvent exposed. This hairpin resembling structure, also 
found in the REMD, is stabilized by tertiary contacts and 
hydrogen bonds.  Incorporating the tryptophan in the 
protein center leads eventually to the native state. When a 
helix is formed as an initial step the protein will follow the 
I-N route.  A small probability of misfolding exists to 
structures with a salt-bridge on the opposite side of the 
protein.  

 
Unfolding is the reverse of folding. Starting from 

the native state, the trajectories in the path ensemble unfold 
by first partially expose of the tryptophan to the solvent. If 
the water penetrating the hydrophobic region between Trp-
6 and Pro-12 leads to a thread of waters through the core, 
the protein will end up in the loop state L.  This path 
preserves the compact form of the protein upon the 
desolvation.  The other possibility is that hydrogen bonds 
between residues Gly10-Gly11 and Ser13-Ser14 impede 
solvation of this region.  Subsequent solvation of Trp-6 and 
Pro-18 results in a detachment of the polyproline helix via 
the short-lived "Proline detached"  (Pd) state. Thus, two 
hydrophobic clusters are formed separated by a layer of 
water molecules.  Both the L and I state contain a salt 
bridge, which can break easily to form the unfolded state U. 
The N-L and N-I transitions thus contain indeed the rate 
limiting steps.  

 
There are several reasons to think that these two 

global pathways are indeed the only possible folding routes 
for Trp cage.  The first is that the L and I were also found 
as intermediates the REMD-unf simulations, but, in 
contrast to the TPS runs, the barrier towards the native state 
was not crossed within the 64 x 36 ns simulation time.  The 
second reason is that several switches between the N-L to 
N-Pd-I pathways took place during the path sampling, 
mostly via an intermediate N-Pd-L pathway.  The 
switching probability from N-Pd-I to N-L was about 4 
times higher than the reverse switch, in agreement with the 
four times more likely L-N pathway in the ensemble. Such 
switches between qualitatively different pathways indicate 
that TPS is able to sample the path space adequately. 
Moreover, in the ensemble the least changed pathway 
diffuses over a large part of the RMSD-RMSDhx plane (71).  
Note that the TPS procedure does not impose the final L 
and I structures, but selects these from a loosely defined 
unfolded state B. The presence of two pathways can 
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Figure 10. The two main folding routes in the path ensemble schematically depicted in the RMSD/RMSDhx plane. Protein 
backbone structures were rendered in cartoon style, hydrophobic residues in licorice and waters within 4 Å of the tryptophan in 
space-filling representations.  At the first stage of folding (U) key hydrophobic contacts are formed and either Pro-12 or Pro-
17/18/19 collapse on the helical residues.  The first global route leads to the formation of two hydrophobic clusters.  The alpha 
helix appears quickly in the larger cluster  (I state) and eventually the smaller hydrophobic cluster approaches Trp-6 (Pd). 
Subsequently, the protein finds its native state (N) relatively easily.  In the second scenario a loop structure (L) with correct 
tertiary contacts precedes the formation of the alpha helix. Both routes show water expulsion step in the last stage of folding 
(Structures made with VMD (51) ). 

 
explain the experimentally found existence of 

helical content (I state) in the early stages of folding (143) 
and the structurally restricted intermediate (142) (L-state). 

 
The dynamics of the solvent is different in each 

of the routes.  Most water-proteins contacts have a 
residence time of less than 50 ps, but water molecules 
around Trp-6 can stay bound much longer than 100 ps. In 
the N-L route a quarter of the water molecules bound to 
Trp carbonyl oxygen remains trapped for longer than 100 
ps, hydrogen bonded to both the alpha helix and the 310-
helix. It is this double hydrogen-bonding that increases the 
residence time.   For the N-Pd-I route the water residence 
times are not as long, because water cannot bridge 
tryptophan and the glycine after the hydrophobic collapse, 
as the 310-helical part is separated from the alpha helix.  
The explicit modeling of solvent molecules can thus reveal 
crucial aspects of folding kinetics.  

6.2.5. Transition states 
The transition state (TS) ensemble follows from 

computing the committors along several trajectories of the 
path ensemble and consist of those time slices with the 
same commitment probability to unfold and to fold.  Figure 
11 shows a few of those configurations, that are in fact 
almost native like, but with a decreased number of native 
contacts.  The N-L TS structure  (Figure 11) has a largely 
dissolved helix and a entirely solvated tryptophan In the TS 
structures of the Pd-I pathway  (Figure 11), the polyproline 
helix is perpendicular to the surface of the tryptophan 
aromatic ring, with layer of water molecules in between. 
While the tryptophan is also fully solvated, there is no 
thread of water molecules penetrating the protein.  Plotting 
the TSE in the RMSDhx/RMSD plane in Figure 11 reveals 
that these order parameters are capable of describing the 
folding process, or at least distinguish the TSE from the 
stable states. In contrast, in the ρ/Rgsc representation, there 
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Figure 11. Stable states and transition states obtained by committor calculation, plotted in Rgsc- ρ (left top figure) and in RMSD-
RMSDhx planes (right top figure). Transition states for the N-L and N-Pd transitions are shown as stars and squares respectively. 
Scatter points indicate the corresponding TPS trajectories.  Native states (N) are plotted as green, loop structures (L) as orange, 
near-native structures with Pro-12 detached (Pd) as blue and the I-state as black points. The region to the left of the gray line on 
the RMSDhx/RMSD (to the right on the ρ/Rgsc) plot is the part of the configuration space, which was not sampled, in the REMD-
unf simulation.  Lower structures: Left: superimposed TS structures for four different N-L (star) and six Pd-I paths (square). 
Middle and right: one of the TS structures for both routes and its side view plotted in cartoon representation.  Hydrophobic 
residues are shown in licorice representation (blue), water molecules within 4 Å of Trp-6 in space-filling representation. (All 
structures made with VMD (51) ). 

 
is substantial overlap, and the location of the TSE is inside 
the native stable state, disqualifying these order parameters 
as proper reaction coordinates.  The gray curve in the same 
Figure is the projected area accessible to the REMD-unf 
simulation and suggests that the water expulsion transition 
is the rate-limiting step for both folding routes.  The 
hypothesis of water expulsion or solvation as an important 
step was already put forward by Caflisch and Karplus in an 
early simulation study of barnase in explicit solvent (155), 
and in other computational studies (156, 139).  
Interestingly, folding simulations BBA5, a small protein 
stabilized by a hydrophobic core did not show this 
expulsion (151). 

The water dynamics can have a profound 
contribution to the reaction coordinate, as was observed in 
ref (157) and later in Ref (158).  To estimate the extent of this 
contribution, one can measure the effect of the water structure 
on the committor values of the transition states (112).  After 
freezing the protein coordinates and randomizing the water 
structures, a new committor values is estimated and tested for 
systematic deviation from 0.5. A strong deviation indicates that 
the solvent dynamics plays a large role in the reaction 
coordinate.  Such an analysis for the transition states of Trp-
cage showed no significant change in committor. Therefore, 
the committor is independent on the dynamics of the water. 
The instantaneous water configuration still has a structural role 
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by bridging several parts of the protein during folding.  This 
finding seems to contradict the conclusion of the study by Ma 
and Dinner (115) that the solvent dynamics is coupled to 
alanine dipeptide isomerization. This contradiction might be 
explained by the fact that the Trp-cage backbone chain is 
orders of magnitude slower than that of both the dipeptide and 
the solvent, and its size larger than correlation lengths in water. 
The water molecules relax rather slowly in next to the protein. 
When the randomized solvent structure was only equilibrated 
for a 100 ps, the committor was significantly changed toward 
the unfolded state. This means that water molecules have not 
fully relaxed yet.  
 
6.2.6. Summary   

To summarize, the use of TPS techniques has shed 
light on the folding mechanism of a small protein in explicit 
solvent. After a fast initial collapse, the Trp-cage can choose 
between two global routes. About 80% of the folding pathways 
first form the tertiary contact between Trp-6 and the 
polyproline part before the helix in the shape of a loop.  The 
other 20% of the paths first form the helix before folding the 
tertiary structure.  These two different global routes are 
reminiscent of the two generic protein-folding mechanisms 
mentioned in section 2.4: the diffusion-collision mechanism 
(18) and the nucleation-condensation mechanism (17).  Both 
mechanisms can be prevalent simultaneously in one protein 
(21,16).  Further committor analysis revealed the water 
dynamics is not a part of the reaction coordinate. Nevertheless, 
the finding that some water molecules are strongly bound to 
the protein during the folding might lead to improved implicit 
solvent models.  
 
7. PERSPECTIVE  
 

The field of protein folding simulation has seen 
much progress in the past years, not in the least due to the 
discovery of fast folding small proteins that allowed a bridge 
between experiment and simulation.  Many simulation studies 
have contributed to this progress, ranging from MC simulation 
of simple lattice models to full-blown all-atom brute-force MD 
simulation in explicit solvent.  The latter direct simulation 
approach has profited from the development of increasingly 
accurate force fields, but still suffers from the time scale 
problem. The last few years have seen the rise of novel 
methodology that allows for more efficient sampling of phase 
space. Metadynamics has the potential to sample large barriers 
in many dimensions.  Path sampling methods allow the 
prediction of mechanistic kinetic details that cannot be 
obtained otherwise. Nevertheless, for large proteins the path 
sampling computational effort due to both system size and 
long time-scales becomes prohibitive.  Thus, there is still much 
room for improvement, in particular by using coarse-grained 
models based on atomistic detailed force fields, and by 
applying e.g. Markovian state models.  Path sampling and 
related methods are only one part of the answer. The 
development of novel analysis techniques such as LM has 
enabled a relative cheap way to test reaction coordinate.  I 
stress that there is not a single method that can solve the 
protein-folding problem. In contrast, one should use a 
combination of several complementary simulation methods in 
order to make progress.  In the next few years we will almost 
certainly see the use of such combinations of methods to 

elucidate folding pathways, and predict final native structures. 
In this manner, simulation will be able to give better molecular 
understanding and interpretation of protein folding 
experiments.  
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