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1. ABSTRACT 
 

Excessive nitric oxide (NO) formation plays 
important roles in the pathogenesis of shock and multiple 
organ failure in sepsis and acute lung injury (ALI). 
Evidence from studies in large animal models of shock 
provide further insight into the role of NO and the varying 
nitric oxide synthase (NOS) isoforms. Nonselective NOS 
inhibition in sepsis models reversed sepsis-induced 
derangements in hemodynamic status, but was associated 
with side effects such as pulmonary vasoconstriction and 
decreases in global oxygen delivery. Results from studies 
on specific inhibition of inducible NOS (iNOS, NOS-2) 
and neuronal NOS (nNOS, NOS-1) in sepsis models 
remain inconclusive, but suggest that both isoenzymes are 
involved in the pathophysiological processes. While the 
long-term effects of NOS inhibition in models of burn and 
inhalation injury remain unknown, specific iNOS inhibition 
attenuated ALI without worsening injury-related 
pulmonary hypertension. Further investigation in large 
animal models is warranted to clarify the time course of 
increased expression and/or activity of different NOS 
isoenzymes and the effects of specific inhibition of the 
NOS isoforms at different time points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Nitric oxide (NO) is an endogenous vasodilator 
generated from L-arginine through catalysis by a family of 
enzymes called NO synthases (NOS). Three different 
genetic isoforms of NOS have been identified in mammals 
(1); in contrast to the constitutively synthesized isoenzymes 
endothelial NOS (eNOS, NOS-3) and neuronal NOS 
(nNOS, NOS-1), the inducible NOS (iNOS, NOS-2) is up-
regulated by diverse stress stimuli such as oxidative burst 
and systemic inflammation. Constitutively produced NO is 
involved in various physiologic processes, including 
neurotransmission and the regulation of vascular tone and 
blood flow (2). Under pathophysiological conditions, 
however, endotoxin or inflammatory cytokines such as 
interleukin-1 (IL-1), interleukin-6 (IL-6), interferon gamma 
(IFN-gamma) and tumor necrosis factor alpha (TNF-alpha) 
may lead to an increased expression of iNOS. The resulting 
overproduction of NO is thought to be an important factor 
in the pathogenesis of shock and multiple organ failure 
resulting from sepsis and acute lung injury (2-4).  

 
Importantly, a significant amount of research on 

the role of NO in shock states of various etiologies has 
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Figure 1. Possible role of nitric oxide in the pathophysiology of sepsis. Excessive nitric oxide production leads to vasodilation 
and arterio-venous shunting as well as peroxynitrite formation and poly(ADP-ribose) polymerase (PARP) activation, both 
contributing to tissue damage and multiple organ failure. The roles of the different nitric oxide synthase (NOS) isoenzymes at 
different time points of sepsis are not sufficiently identified. 

 
been conducted in large animal models. This 

review examines the role of NO production and its 
pharmacological inhibition in large animal models of septic 
shock and/or acute lung injury.  
 
3. ROLE OF NITRIC OXIDE IN ENDOTOXEMIA 
AND SEPSIS 
 

Sepsis is a state of sustained infection, resulting 
in a severe systemic inflammatory response and, ultimately, 
shock. Despite significant improvements in critical care 
medicine during the last few decades, the mortality in 
septic shock remains high (5). The pathophysiological 
changes in patients with sepsis are typically 
characterized by systemic vasodilation to metabolically 
inactive tissues (6). The resultant systemic arterial 
hypotension reduces blood flow to organs that are 
metabolically active. The ensuing misdistribution of 

systemic and microvascular blood flow leads to an 
impairment of tissue oxygenation, finally resulting in 
multiple organ failure (7, 8). Excessive formation of NO 
may be critically involved in these vascular changes 
(Figure 1). Via its secondary messenger, cyclic 
guanosine monophosphate, NO activates the myosin 
phosphatase and, by dephosphorylating myosin, causes 
vasodilation (8). Moreover, excessive NO formation 
may activate potassium channels in vascular smooth 
muscles, thereby causing vaso-relaxation (9, 10). The 
amount of NO production within the vascular system 
may vary at different anatomical sites, resulting in 
different degrees of vasodilation. Consequently, an 
underperfusion of metabolically active tissue and an 
overperfusion of metabolically inactive tissues may 
occur, possibly contributing to the deficient oxygen 
extraction, tissue hypoxia and lactic acidosis often 
observed in patients with septic shock (2).  



Role of nitric oxide in shock: the large animal perspective 

1981 

Increased plasma and urine levels of the stable 
NO byproducts nitrate and nitrite in septic patients, 
combined with the identification of the endothelium-
derived relaxing factor as NO, led to the assumption that 
NO may be involved in the pathogenesis of cardiovascular 
changes in septic shock (4, 11). Since then, a vast number 
of studies have been performed, investigating the role of 
NO in the pathogenesis of septic shock. Most research in 
that field has been conducted in animal models. Large 
animal models are most suitable to study the 
pathophysiology of septic shock and the effects of various 
treatment strategies because they exert circulatory 
alterations that closely mimic the hemodynamic changes in 
patients with sepsis (12-14), whereas rodents produce NO 
at a much greater rate.  

 
In response to continuous infusion of endotoxin 

or live bacteria, sheep typically develop significant 
decreases in systemic vascular resistance and blood 
pressure, while cardiac output and pulmonary pressure 
markedly increase. Furthermore, endotoxin infusion in 
sheep is associated with impairments of global oxygen 
transport and significantly increased regional blood flows 
(15-22). Notably, these endotoxin-related changes could be 
largely reversed by administration of the nonselective NOS 
inhibitor L-nitro-arginine-methylester (L-NAME), 
indicating that increased NO synthesis has a major role in 
the cardiovascular alterations in ovine endotoxemia. 
Infusion of L-NAME in endotoxemic ewes restored 
systemic vascular resistance and mean arterial pressure, 
while heart rate and cardiac index decreased. In addition, 
nonselective NOS inhibition in sheep reversed the 
endotoxin-induced elevation in cardiac output, oxygen 
delivery and regional blood flows (19-21).  

 
Like sheep, pigs exert a hyperdynamic circulation 

and a substantial decrease in systemic vascular resistance in 
response to continuous infusion of endotoxin (23-25). In an 
animal model of endotoxic shock in swine, Santak et al. 
(25) confirmed the significant role of increased NO 
formation in endotoxin-induced cardiovascular changes. 
Infusion of the nonselective NOS inhibitor N-monomethyl-
L-arginine (L-NMMA) reversed the hyperdynamic 
circulation close to pre-endotoxin levels. The authors also 
reported an attenuation of the endotoxin-related increase in 
NO3

¯ production by L-NMMA. However, despite 
hemodynamic stabilization, L-NMMA administration in 
pigs failed to beneficially influence the endotoxin-induced 
disturbances of both intestinal and liver energy balance (26, 
27). 

 
The role of NO in the pathogenesis of 

cardiovascular changes in response to endotoxin or tumor 
necrosis factor (TNF) has been investigated in a dog model 
(28-31). In anesthetized dogs, TNF, a cytotoxin produced 
by macrophages in reaction to bacterial endotoxin, induced 
a significant fall in mean arterial pressure, which was 
completely reversed by bolus infusion of L-NAME (28). 
Similarly, the decreases in systemic vascular resistance and 
mean arterial pressure following endotoxin infusion in dogs 
were inverted by bolus administration of L-NMMA (29). In 
the same animal model, Zhang et al. (30) tested the effects 

of methylene blue, an inhibitor of soluble guanylate 
cyclase, on cardiopulmonary hemodynamics in endotoxic 
shock. Methylene blue increased systemic vascular 
resistance and arterial pressure in a dose-dependent 
manner, while organ blood flows decreased. 

 
Taken together, these findings in dogs are in 

agreement with those made in sheep and pigs, suggesting 
that NO is critically involved in the pathophysiology of 
cardiovascular alterations due to endotoxemia in large 
animals. However, nonselective NOS inhibition in large 
animals was also associated with several unfavorable side 
effects. Inhibition of NOS by L-NAME and L-NMMA 
apparently reversed the endotoxin-related hyperdynamic 
circulation, as indicated by decreases in cardiac output, 
oxygen delivery and regional blood flows, including 
hepatic, portal, mesenteric and renal blood flow (15, 19-21, 
30, 31). Nonetheless, it should be noted that NO is not only 
involved in pathophysiological processes (e.g., iNOS), but 
constitutively produced NO is an important physiological 
regulator of vascular tone and blood flow (e.g., nNOS, 
eNOS). Especially in sepsis, a condition of increased 
oxygen demand, it appears deleterious to inhibit all NOS 
isoforms to the same extent, because this process may lead 
to a further dysregulation of local vascular tone and 
regional perfusion, thereby possibly fostering tissue 
hypoxia and organ failure.  

 
Furthermore, administration of L-NAME in 

sheep, dogs and pigs aggravated endotoxin-related 
pulmonary hypertension (15, 17, 20, 21, 25, 28-33) and 
pulmonary edema (17). This phenomenon may be 
explained by the blunt of vasodilatory effects of 
constitutively produced NO due to nonselective NOS 
inhibition. In this regard, it could be demonstrated that 
concomitant inhalation of NO decreased pulmonary 
hypertension (17, 32, 33) and ameliorated pulmonary 
edema (17) in experimental endotoxemia.  

 
In interpreting these findings, it appears desirable 

to selectively inhibit iNOS without affecting the beneficial 
effects of constitutively expressed NOS. Several studies on 
selective iNOS inhibition using different compounds have 
been conducted. However, the results of these 
investigations remain largely inconclusive.  

 
Booke et al. (34) investigated the effects of S-

ethylisothiourea (S-EITU), a selective iNOS inhibitor in 
vitro, in healthy sheep and sheep exposed to continuous 
infusion of live bacteria. Since the overproduction of iNOS 
is believed to be responsible for septic vasodilation, S-
EITU was expected to cause a more intense 
vasoconstriction under septic conditions. However, the 
effects of S-EITU on hemodynamics and regional blood 
flows were comparable in both septic and healthy sheep, 
suggesting either that S-EITU does not selectively inhibit 
iNOS or that other mediators besides NO play a significant 
role in septic vasodilation in sheep. Employing different 
selective iNOS inhibitors in an animal model of porcine 
endotoxemia also yielded controversial results. 
Administration of mercaptoethylguanadine (MEG) 
decreased the amount of expired NO and prevented the fall 
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in systemic blood pressure without affecting cardiac output, 
but failed to improve the disturbances in hepatosplanchnic 
metabolism (24).  

 
In contrast, the application of N- [3-

(aminomethyl) benzyl] acetamidine hydrochloride (1400W) 
reversed the endotoxin-associated disturbances in the 
systemic circulation and attenuated the impairment of 
intestinal and hepatocellular oxygenation and energy state 
(23, 35). Matejovic et al. (36) investigated the selective 
iNOS inhibitor L-N6-(1-iminoethyl)-lysine (L-NIL) in a 
model of continuous Pseudomonas aeruginosa infusion in 
pigs. Besides an inhibition of plasma nitrate/nitrite (NOx) 
levels and a stabilization of systemic hemodynamics, the 
authors observed several beneficial effects of L-NIL on 
hepatosplanchnic metabolism, including a mitigation of the 
sepsis-associated impairment of hepatosplanchnic redox 
state and liver lactate clearance, as well as an attenuation of 
mesenteric and hepatic venous acidosis. 

 
Recently, an ovine model has been developed that 

induces sepsis by instillation of live Pseudomonas 
aeruginosa bacteria into the airways following acute lung 
injury by smoke inhalation (37, 38). This large animal 
model resembles the pathophysiological conditions of 
hyperdynamic sepsis in humans more closely than models 
of continuous intravenous endotoxin or bacteria infusion 
and may, therefore, provide further insight into the role of 
increased NO formation and the value of selective 
pharmacological NOS inhibition. However, while the 
administration of aminoguanidine, a specific inhibitor of 
iNOS, significantly inhibited the increase in plasma NOx 
concentrations in this model, it failed to prevent the drop in 
mean arterial pressure and pulmonary gas exchange and 
pulmonary shunt fraction. Likewise, the increases in lung 
wet-to-dry weightratio and bronchial blood flow were not 
inhibited by aminoguanidine (38). It remains unclear why 
aminoguanidine was effective in reversing the endotoxin-
induced changes in sheep, as reported by Evgenov et al. 
(39), but this may be related to the differences in the two 
animal models. Endotoxin infusion in sheep produces an 
acute and severe response, although the animals usually 
recover spontaneously after discontinuation of infusion. 
Instillation of live bacteria into the lungs produces a 
subacute response, likely with a different pathophysiology. 
In the same ovine model of sepsis following acute lung 
injury, Enkhbaatar et al. (40) investigated the effects of 
BBS-2, a newer and more potent selective iNOS inhibitor. 
Although BBS-2 significantly improved the pulmonary gas 
exchange and partially attenuated airway obstruction and 
increased ventilatory pressures, lung water content (lung 
wet-to-dry weight ratio) was not affected and septic 
vasodilation could not be reversed.  

 
These results indicate that increased iNOS 

expression is only partially responsible for the 
pathophysiological alterations in sepsis induced by smoke 
inhalation and bacterial instillation in the airway in sheep. 
On the other hand, nonselective NOS inhibition improved 
those changes (38), suggesting that constitutively-produced 
NOS may be more critically involved in the septic process. 
Neuronal NOS is a constitutively expressed isoform of 

NOS and its activation is regulated by the intracellular 
concentration of calcium. It is present in both the central 
and peripheral nervous system (41). The presence of nNOS 
in the airway epithelium, airway smooth muscle, 
submucosal glands, blood vessels, non-adrenergic non-
cholinergic nerve endings, and in the airway intrinsic 
parasympathetic plexus has been described (42). We have 
also identified nNOS in the airway and goblet cells of the 
bronchi (43). This is another finding that differentiates 
large animals including humans from mice and rats since 
these small animals lack the large mucous secreting cells. 
The results of these studies led to the hypothesis that 
nNOS-derived NO in the lung could possibly participate in 
the pathogenesis of lung injury associated with sepsis. To 
test this hypothesis, Enkhbaatar et al. (44, 45) investigated 
the effects of 7-nitroindazole (7-NI), a specific inhibitor of 
nNOS in septic sheep. The administration of 7-NI 
significantly inhibited the increased plasma NOx levels, 
suggesting that the up-regulation of NO was, at least in 
part, due to the nNOS isoenzyme. In contrast to the specific 
iNOS inhibitor BBS-2, 7-NI significantly attenuated the 
drop in mean arterial pressure in sheep. Furthermore, nNOS 
blockade with 7-NI significantly improved the pulmonary 
gas exchange as well as reductions in lung water content, 
histological airway obstruction, and airway pressures. The 
fact that the specific nNOS inhibitor 7-NI reduced all these 
pathophysiological indices indicates that nNOS-derived 
NO could be an essential pathogenetic factor. Importantly, 
7-NI inhibited the plasma NOx levels especially during the 
initial 12 hours after induction of sepsis, while the 
reduction was weaker during the second 12 hour interval 
after injury. These results suggest that early formation 
of NO was mainly derived from nNOS; and nNOS may 
be important in the up-regulation of iNOS during the 
later course of sepsis. In support of this relationship we 
found that iNOS mRNA is increased in a model of 
ARDS and that this increase was attenuated in animals 
that had been treated with a nNOS inhibitor 
(unpublished data). This hypothesis agrees with the 
finding that inhibition of plasma NOx levels by the 
selective iNOS inhibitor BBS-2 was greater at later time 
points (40).  

 
Large amounts of NO exert potential cytotoxic 

and pro-inflammatory effects by reacting with superoxide 
radicals, yielding reactive nitrogen species such as 
peroxynitrite. Peroxynitrite exerts a deleterious influence 
by oxidizing/nitrating/nitrosating various other molecules 
or decaying and producing even more damaging species 
such as hydroxyl radicals (3, 46). Nitric oxide-mediated 
tissue injury may be related to DNA damage and 
subsequent activation of the nuclear enzyme poly (ADP-
ribose) polymerase (PARP) (47, 48). After activation by 
DNA single-strand breaks, PARP catalyzes ADP-ribose 
subunits to nuclear proteins. This process depletes 
intracellular NAD+ and reduces the rate of glycolysis, 
electron transfer and ATP formation. Excessive PARP 
activation in response to immense oxidant-induced DNA 
strand breakage causes cell necrosis (47-49). It has been 
demonstrated that PARP activation can be induced by 
NO or its toxic products such as peroxynitrite (50) 
(Figure 1).  
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There is good evidence of increased PARP 
activation and its detrimental effects in various large animal 
models of sepsis. Administration of the potent PARP 
inhibitor PJ34 in septic pigs following fecal peritonitis 
abolished injury-related poly (ADP-ribose) accumulation 
and formation of nitrotyrosine, a marker of 
oxidative/nitrative stress. In addition, inhibition of PARP 
synthesis by PJ34 significantly improved survival and 
attenuated both sepsis-induced hemodynamic changes as 
well as cytokine response (51). Murakami et al. (52) 
reported that administration of INO-1001, another PARP 
inhibitor, improved the acute lung injury induced by smoke 
inhalation and pneumonia in sheep. INO-1001 treatment 
attenuated the sepsis-induced worsening of pulmonary gas 
exchange and pulmonary shunt fraction. Moreover, INO-
1001 reduced pulmonary histological injury and attenuated 
poly (ADP-ribose) formation in the lung.  

 
4. ROLE OF NTRIC OXIDE IN BURN AND 
INHALATION INJURY 
 

Despite the fact that care of burn victims has 
significantly improved with the use of broad-spectrum 
antibiotics, effective fluid resuscitation and early surgical 
removal of burned tissue, the mortality of burn victims with 
inhalation injury remains high (53, 54). In these patients, 
progressive pulmonary dysfunction and cardiovascular 
failure frequently occur, culminating in multiple organ 
failure and death.  

 
Pulmonary edema formation after inhalation 

injury may be caused by critical changes in pulmonary 
blood flow and alterations in capillary permeability. 
Especially in patients with concomitant extensive 
cutaneous burns, vascular hyperpermeability occurs not 
only at the injured site, but also in regions distant from the 
injury (55, 56), leading to a fluid shift from the 
intravascular to the interstitial space. The loss of fluid from 
the circulation results in hypovolemic shock unless 
adequate fluid resuscitation is performed (57). The 
combination of capillary hyperpermeability and fluid 
resuscitation may lead to an excessive accumulation of 
fluid in the interstitial space of the lung. The ensuing 
pulmonary edema formation represents a major source of 
morbidity and mortality in burn patients (58).  

 
In sheep, bronchial blood flow increases 

approximately 8-fold after smoke inhalation injury alone 
(59, 60), and tracheal blood flow increases approximately 
20-fold after combined burn and inhalation injury, resulting 
in an impairment of pulmonary gas exchange and an 
increase in lung fluid content (61, 62). It has been 
demonstrated that these changes were all markedly 
improved by bronchial artery occlusion either by ligation or 
ethanol injection (63-65), suggesting that bronchial 
circulation also plays a crucial role in the pathophysiology 
of lung edema formation that occurs after smoke inhalation 
injury.  

 
The pathophysiological response to combined 

smoke and inhalation injury in sheep has been described 
previously (43, 61, 62, 64-71). Acute lung injury in this 

large animal model is characterized by significant increases 
in transpulmonary fluid flux and lung water content (wet-
to-dry weight ratio), as well as significant decreases in 
PaO2/FiO2 (partial arterial O2 pressure/inspired O2 fraction) 
ratio. These changes are associated with the occurrence of 
marked airway obstruction and increases in ventilatory 
pressures.  

As an essential regulator of vasotonus and 
microcirculatory blood flow, including vascular 
permeability (72), NO is thought to be critically involved in 
the regulation of bronchial blood flow (73). In acute lung 
injury, however, disturbances of NO synthesis in the lung 
tissue may, at least in part, account for the observed 
pathophysiological alterations (Figure 2). It has been 
demonstrated that human lung epithelium cells express 
iNOS (74), and that iNOS is up-regulated after burn and 
smoke inhalation injury in sheep (71).  

 
Plasma NOx levels are known to be significantly 

increased in sheep exposed to burn and inhalation injury, as 
compared to uninjured control animals (61, 69). This increase 
in NOx levels can be eliminated by NOS inhibition (61, 71). 
Because inhalation injury mainly affects the lung, arginine 
metabolism in lung tissue has been measured by using the 
stable isotope (15N) arginine as a tracer in this ovine model. 24 
hours after injury, lung arginine metabolism was markedly 
increased and could be significantly attenuated by 
administration of the nonselective NOS inhibitor L-NAME, 
suggesting that excessive NO may be responsible for the 
increased arginine metabolism (75). It has also been reported 
that the NOS enzymes can become uncoupled when arginine 
levels are reduced resulting in the formation of superoxide and 
peroxynitrite (76). We reported that the levels of arginine are 
markedly reduced following burn and inhalation injury but that 
the restoration of arginine levels reduced the pathophysiology 
seen with inhalation injury, suggesting that reactive oxygen 
and nitrogen species may be generated by NOS in this 
situation (77). To address these issues experiments were 
carried out in sheep with combined burn and smoke inhalation 
injury that were treated with vitamin E which scavenges 
reactive oxygen species. This treatment with tocopherols 
prevented increases in 3-nitrotyrosine, a peroxynitrite marker, 
as well as much of the pathophysiology that was noted in 
untreated subjects with burn and smoke inhalation injury (67, 
68).  

 
The effects of different specific iNOS inhibitors 

on pulmonary function and vascular permeability have 
been investigated in combined burn and smoke 
inhalation injury in sheep (61, 71, 78). Inhibition of 
iNOS in these studies congruently resulted in a significant 
amelioration of pathologically altered variables, providing 
evidence that iNOS is a key mediator of pulmonary 
pathology in this model. Administration of iNOS reversed 
the impairment of pulmonary gas exchange in addition 
to reducing pulmonary shunt fraction, tracheal blood 
flow, lung water content, and lung lymph flow. 
Furthermore, signs of histologically determined airway 
obstruction as well as increased ventilatory pressures were 
significantly attenuated. However, the exact mechanism by 
which NO formation contributes to the development of 
acute lung injury has not yet been clarified. 
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Figure 2. Possible role of nitric oxide in the pathophysiology of burn and inhalation injury. Excessive nitric oxide production by 
the inducible nitric oxide synthase causes pulmonary vasodilation, leading to the loss of hypoxic pulmonary vasoconstriction 
(HPV) and increased bronchial blood flow which, in turn, result in pulmonary shunting and pulmonary edema. Both nitric oxide-
induced peroxynitrite formation and poly(ADP-ribose) polymerase (PARP) activation cause increased pulmonary vascular 
permeability. In combination with mucus secretion, fibrin clotting, as well as congregation of neutrophils and epithelial cell 
debris, airway obstruction occurs. Pulmonary shunting, pulmonary edema and airway obstruction result in impaired pulmonary 
gas exchange and ultimately multiple organ failure.  

 
Hypoxic pulmonary vasoconstriction (HPV) is a 

physiologic reflex that matches lung perfusion to 
ventilation in order to optimize pulmonary gas exchange. 
Vasoconstriction occurs in under-ventilated, hypoxic areas 
of the lung, resulting in a diversion of blood flow from the 
unventilated to ventilated alveoli (79). Combined burn and 
smoke inhalation injury has recently been demonstrated to 
impair HPV in sheep (80). Excessive formation of NO may 
lead to a critical disturbance in pulmonary vasoregulation 
with a subsequent loss of HPV. This pathomechanism may 
play an important role in the pulmonary changes following 
inhalation injury (Figure 2).  

 
As described above, large amounts of NO exert 

potential pro-inflammatory and cytotoxic effects by 

reacting with superoxide radicals to form reactive nitrogen 
species such as peroxynitrite (81-83). Peroxynitrite may 
damage the alveolar capillary membrane, resulting in 
increased pulmonary vascular permeability and edema 
formation (83). Nitrotyrosine, a marker of peroxynitrite 
production, is markedly increased in lung tissue of sheep 
exposed to burn and smoke inhalation injury (80). This 
increase could be significantly attenuated by selective 
iNOS inhibition.  

 
Excessive NO production and peroxynitrite 

formation cause DNA single-strand breakage with 
subsequent activation of PARP (50). To elucidate the role 
of PARP activation in burn and inhalation injury, Shimoda 
et al. (69) administered the selective PARP inhibitor INO-
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1001 in an ovine model. INO-1001 attenuated the observed 
deterioration in pulmonary gas exchange, lung edema 
formation, increases in airway blood flow and airway 
pressure, as well as histological lung injury. These findings 
suggest that PARP is involved in the lung damage caused 
by combined burn and inhalation injury in sheep (Figure 2). 

 
Additional studies have been performed to asses 

the effects of selective iNOS inhibition on extrapulmonary 
co-morbidities in burn and smoke inhalation injury in sheep 
(66, 70). The injury induced systemic vascular leakage as 
evidenced by hemoconcentration and increased prefemoral 
lymph flow, an effect that could be reversed by iNOS 
inhibition. Moreover, iNOS inhibition attenuated both 
injury-associated myocardial depression and impaired renal 
function. These findings establish an important role of 
iNOS in the pathogenesis of systemic morbidity and 
multiple organ failure in combined burn and inhalation 
injury. 

 
5. CONCLUSIONS 
 

Results from large animal models prove the 
significant role of NO, subsequent peroxynitrite formation 
and PARP activation in the pathophysiology of shock and 
organ failure, resulting from both sepsis and combined burn 
and inhalation injury. Nonselective NOS inhibition has 
been reported to improve sepsis-related derangements in 
hemodynamic status, while simultaneously inducing 
significant adverse effects such as decreases in global 
oxygen delivery and organ blood flow, as well as increases 
in pulmonary vascular resistance. These results from large 
animal models are consistent with data available from 
clinical studies. Although administration of the 
nonselective NOS inhibitor 546C88 has been demonstrated 
to promote the resolution of shock in septic patients (84), 
the drug actually increased mortality in a recent phase III 
trial (85). Notably, the protocol of the latter study allowed a 
more rapid dose escalation of 546C88, resulting in the 
application of higher doses. These findings suggest that 
lower doses of a nonselective NOS inhibitor may be more 
beneficial in human septic shock, possibly even improving 
survival (85). However, since the only available phase III 
study in this field demonstrated increased mortality in 
patients treated with nonselective NOS inhibitors, further 
clinical trials will be problematic. Future large animal 
studies may provide valuable information in determining 
whether lower doses of nonspecific NOS inhibitors 
improve sepsis-related cardiopulmonary dysfunction with 
reduced side effects.  

 
Furthermore, it may be crucial to know which 

NOS isoforms are involved in the pathophysiology of 
sepsis, as well as their respective time points, when 
considering possible treatment strategies. It has been 
generally believed that NO derived from constitutive NOS 
exerts physiological, regulatory effects, while NO from 
iNOS is detrimental. This assumption needs to be revised, 
as recent experimental studies indicate that constitutive 
NOS isoforms are also involved in the pathophysiology of 
sepsis (86, 87). However, different isoforms may be 
increasingly expressed at different time points. 

Investigations on specific iNOS and nNOS inhibitors 
suggest that the early pathophysiological changes in ovine 
sepsis were induced by NO derived from nNOS, while NO 
from iNOS expression may account for the derangements 
in the later course of sepsis. Results from a rat model of 
sepsis following peritonitis indicate that the administration 
of a selective iNOS inhibitor improves survival only when 
given 12 hours after injury (88). The initiation of iNOS 
inhibition at an earlier time point in the same animal model 
even increased mortality. Future studies in large animal 
models are needed to shed light on the time course of 
different NOS isoenzyme expression in sepsis and the 
effects of their selective inhibition at different time points. 
Knowledge from these studies may allow for the 
development of more differentiated treatment strategies.  

 
Existing evidence about the role of NO in burn 

and inhalation injury is more conclusive. Specific inhibition 
of iNOS attenuated acute lung injury without worsening 
injury-related pulmonary hypertension. However, the long-
term effects of iNOS inhibition in burn and smoke 
inhalation injury have not yet been evaluated. In this 
regard, it is necessary to keep in mind that inhibition of 
iNOS may blunt the physiological, bactericidal properties 
of NO, possibly resulting in suppression of the host defense 
system with subsequent superinfection of burn tissue. 
Furthermore, NO physiologically exerts anti-aggregatory 
effects on different cell types, including platelets. Blunting 
these properties may increase the risk of blood clotting and 
embolism. Therefore, further studies should investigate the 
long-term effects of iNOS inhibition after burn and smoke 
inhalation injury in large animals. 
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