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1. ABSTRACT 
 

Several lines of evidence indicate that the neural 
network that underlies the pathophysiology of obsessive-
compulsive disorder and depression centers on the 
prefronto-basal ganglia system.   Particularly involved are 
anterior cingulate cortex, the orbital prefrontal cortex, the 
ventral striatum, and parts of the thalamus.  Additional 
integral parts of the network include, the amygdala, the 
midbrain dopamine cells and the serotonergic neurons.  
Collectively, these brain regions are involved in various 
aspects of reward-based learning and good decision-making 
skills.  They are also associated with sadness and 
depression, pathological risk-taking, addictive behaviors, 
and obsessive-compulsive disorder.  Two of the most 
successful deep brain stimulation targets for obsessive-
compulsive disorder and depression are centered in white 
matter tracts.  These targets were chosen for their central 
location and ability to capture specific ascending and 
descending connections, with a particular focus on fibers 
connecting the subgenual anterior cingulate and orbital 
cortex with the basal ganglia, thalamus, and amygdala.  As 
more knowledge is obtained concerning the details of these 
connections, more precise targets may be possible. 

 
 
 
 
 
 
 
 
2. INTRODUCTION   
 
 Deep brain stimulation  (DBS) is a proven 
therapy for intractable movement disorders, such as 
essential tremor, dystonia, and Parkinson’s disease  (PD).  
Although many of these patients experience a dramatic 
reduction of their motor impairments, the effect of DBS 
on mood and cognition is also well documented  (1-4).  
DBS is now being investigated for the treatment of severe 
mental health disorders, including medication-resistant 
depression and obsessive compulsive disorder  (OCD), 
with encouraging results  (5-8).  Of the several targets 
currently under investigation, the two most promising are 
located within white matter tracts. One site is centered in 
the ventral part of the anterior limb of the internal capsule  
(VC), extending into the caudal nucleus accumbens, at the 
border of the anterior commissure.  The second site is 
located in the subgenual white matter adjacent to area 25 
in the ventromedial prefrontal cortex  (vmPFC).  White 
matter stimulation sites are in contrast to the subcortical 
grey matter targets favored in DBS for movement 
disorders, an example of the latter being the subthalamic 
nucleus  (STN) for PD.  However, it should be noted that,
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Figure 1.  Schematic overview of the cortico-subcortical 
network involved in obsessive–compulsive disorder and 
depression: ACC=anterior cingulate cortex; DA=dopamine; 
prefrontal cortex=PFC; OFC=orbital frontal cortex; 
SNR=substantia nigra, pars reticulata; 5HT=serotonin. 
Thick black lines represent the links between key structures 
involved at DBS sites; thin black lines represent additional 
important connections.   
 
recently, some groups reported successful results 
from STN stimulation for OCD, albeit in patients 
with comorbid PD  (9, 10).  In addition, other sites 
are currently being explored at clinical centers 
throughout the world, including electrodes placed 
directly into the n. accumbens.    Despite the 
effectiveness of these sites in treating intractable 
OCD and depression, the mechanism of action for 
DBS is not well understood and the specific 
pathways affected by DBS at these sites remain 
unknown.        
 
 While the pathophysiology of OCD and 
depression remain incompletely understood, 
converging lines of evidence point to abnormalities 
in the anterior cingulate cortex  (ACC) and orbital 
frontal–basal ganglia circuit, as well as the fronto-
amygdala network.  Indeed, stereotactic 
neurosurgical lesions in the VC, the anterior 
cingulate, or the subcaudate white matter, all of 
which interrupt these circuits, are effective in the 
treatment of refractory OCD and depression  (11, 
12). Regardless of the site or disease treated  
(including movement disorders), the effectiveness of 
DBS varies between patients.  This appears to be, in 
part, related to specific electrode locations in each 
individual and emphasizes the importance of 
understanding more precisely which part (s) of the 
fronto-basal ganglia and/or amygdalar neural 
network play a central role in the effectiveness of 
DBS for OCD and depression  (7, 13). 

3. NEUROCIRCUITRY AND PATHOPHYSIOLOGY 
OF OBSESSIVE-COMPULSIVE DISORDER  (OCD) 
 
3.1. Neuroanatomical findings in OCD 
 Neuroimaging studies demonstrate the central 
role of the frontal-basal ganglia-thalamic circuit  (Figure 
1) in the pathophysiology of OCD.  This is particularly 
evident in imaging studies that show abnormalities in the 
orbital frontal cortex  (OFC), ACC, striatum and medial 
thalamus.  For example, there are subtle differences in 
OFC, striatal, and thalamic volumes in subjects with OCD 
vs. controls  (14-18).  In addition, decreased gray matter 
volumes of the medial frontal gyrus and insulo-opercular 
region have been noted in these patients, while ventral 
putamen and anterior cerebellar volumes were increased  
(19). White matter abnormalities, evidenced by diffusion 
tensor imaging  (DTI), are seen adjacent to the ACC in 
OCD patients  (20), suggesting a decreased number of 
neurons or disrupted axonal microstructure. 
 
3.2. Functional neuroimaging findings in OCD 
 Functional neuroimaging studies show 
hyperactivity at rest in this circuit when comparing OCD 
subjects to controls.  This regional hyperactivity is 
accentuated during provocation of the OCD symptoms 
versus control states  (21, 22), with distinct regional 
activation patterns shown to correlate with different 
compulsive behaviors  (23).  Moreover, there is reduced 
activity in these regions following successful treatment of 
OCD.  This occurs regardless of the type of treatment, 
including pharmacological  (24, 25), behavioral  (21,  
(26), and neurosurgical  (27) therapies.  Interestingly, 
there is also imaging evidence to suggest that at 
pretreatment, regional activity within OFC predicts 
subsequent response to treatment with medication or 
behavioral therapy  (25, 28-30).  Finally, magnetic 
resonance spectroscopy  (MRS) studies show a reduction 
in n-acetyl aspartate, a marker of healthy neurons within 
the striatum and medial thalamus in OCD  (31-33).  
Moreover, elevated glutamatergic transmission from 
OFC/ACC to striatum has been inferred from MRS 
measurements of an elevated glutamate index within the 
striatum that is correlated with OCD symptom severity 
and returns towards normal with successful treatment  
(34).  Taken together, the available human neuroimaging 
data suggest that abnormalities in OFC/ACC-basal 
ganglia-thalamic circuitry are central to the 
pathophysiology of OCD.  Further, there is evidence to 
suggest that this circuitry mediates OCD symptoms and 
that established effective treatments for OCD exert their 
benefits via modulating activity in this circuitry. 
Moreover, the magnitude of OFC activity is proportional 
to symptom severity and pretreatment activity within this 
same region predicts subsequent medication response.  
The concept that OFC mediates OCD symptoms and 
represents a substrate for pharmacotherapy also resonates 
with the results from animal studies; chronic 
administration of selective serotonergic reuptake 
inhibitors  (SSRIs) in rodents leads to serotonergic 
receptor changes in OFC over the same time course that 
anti-obsessional effects are observed in humans  (35).   
Thus, extant human imaging data and the contemporary 
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neurocircuitry model of OCD are quite consistent with the 
classic targets for ablative neurosurgical therapies  (for 
review, see Rauch 2003  (36)). In particular, it has been 
hypothesized that anterior capsulotomy disrupts 
dysfunctional OFC/ACC-thalamic communication by 
interrupting reciprocal frontal-thalamic projections  (36-
38).     Similarly, the same pathway and target location 
have been utilized in DBS for OCD with comorbid 
depression  (39), suggesting overlap of some features of 
both disorders. 
 
4. NEUROCIRCUITRY AND PATHOPHYSIOLOGY 
OF DEPRESSION 
 
 The fronto-basal ganglia circuit also plays an 
important role in the pathophysiology of depression.  This 
is illustrated in patients with cerebral infarctions 
disrupting the prefronto-subcortical circuits on the left, 
who subsequently developed depressive symptoms  (40), 
or by elderly patients with acquired minor depressive 
symptoms that corresponded with atrophy of the 
prefrontal and temporal cortices  (41).  Likewise, post-
stroke apathy was associated with reduced regional 
cerebral blood flow  (rCBF) in the left fronto-temporal 
lobes in some patients, although reductions were also seen 
in the right dorsolateral frontal cortex  (42).  This is 
consistent with reports that mood-induced changes in 
cerebral blood flow and metabolism occur in the ventral 
and dorsal prefrontal cortex, albeit in opposite ways  (43-
46).  As in OCD, the neuroimaging studies show 
abnormalities in several regions of the OFC and ACC, 
many of which appear to be state-dependent on mood  (for 
review see Drevets  (43)).  In particular, there are changes 
in cerebral blood flow and metabolism, with an increase in 
the pregenual and subgenual ACC and in the OFC.  
Interestingly, changes in metabolism and blood flow also 
are increased in the subgenual ACC and OFC during 
experimentally induced sadness in healthy subjects  (47), 
as well as in the rostral ACC and vmPFC  (48). 
Furthermore, activation of the rostral ACC, with 
corresponding amygdala deactivation, is seen in normal 
subjects presented with emotional conflict  (49).  Similar 
provocation results in coactivation of the subgenual ACC 
and amygdala in patients with neuroticism, a risk factor 
for depression  (50).  Even among depressed patient 
populations, specific clinical subtypes possess distinct 
activation patterns  (eg. decreased vmPFC activation in 
anger subtype)  (51).  This raises the question, whether 
clinically depressed patients possess a disregulated, albeit 
intact prefronto-subcortical circuit  (43).   
 
 The differences found in mood disorders may, 
in part, be a result of volumetric changes caused by a 
reduction of glia number  (52, 53) and dendritic 
arborizations, but not neuronal number. The striatum and 
amygdala, also show abnormalities in volume, metabolic 
activity, and signaling  (43, 54).   MR spectroscopy of the 
basal ganglia reveals an increased Cho/Cr ratio and 
phosphodiester  (PDE) signal, but low beta-ATP signal in 
depressed patients  (for review, see Kato, 1998  (55)).  
These findings are suggestive of degenerative changes and 
abnormal energy metabolism within the basal ganglia.  

Volume reductions and altered biochemical profiles are 
seen in the hippocampus, as well.  For example, decreased 
size of the dentate gyrus, with reduced neuronal 
branching, and diminished expression of brain-derived 
neurotrophic factor  (BDNF), have been reported as a 
consequence of stress and glucocorticosteroid 
administration  (for review, see Hajszan, 2006  (56)).  
 
5. TARGETS FOR DEEP BRAIN STIMULATION  
(DBS) 
  
 As mentioned above, two of the best DBS 
targets for OCD and depression are centered in large 
white matter tracts, the VC, or the rostral subcaudate 
white matter.  The driving hypothesis for these targets is 
that DBS activates  (or deactivates) subcomponents of the 
ascending and descending ventromedial and ventrolateral 
frontal circuits. This circuit involves structures that are 
thought to be central not only to the pathogenesis of OCD 
and depression, but also to be associated with reward, 
anxiety, and fear extinction  (21, 57, 58).  The structures 
associated with this network are: the ACC and the OFC, 
the ventral striatum, the thalamus, and the amygdala  
(Figure 1).  In addition, closely connected brainstem 
regions, including the midbrain dopamine neurons and the 
serotonergic cells of the raphe nuclei, are also an integral 
part of the system.   The VC and the subcaudate white 
matter are massive fiber bundles that carry multiple 
cortical and subcortical fibers.  Furthermore, the VC is 
also embedded in, or adjacent to, the ventral striatum.  
Thus, electrodes placed at this point will likely cause 
direct stimulation of the VS and its connections.  The VC 
lies primarily rostral to, or at the level of, the anterior 
commissure.  Its ventral-most region breaks up into 
relatively small bundles that are imbedded within the VS.  
These bundles merge rostrally with the underlying 
subcaudate white matter.   The rostral subcaudate white 
matter lies immediately ventral to the caudate n., rostral to 
the n. accumbens  (Figure 2A).  As it extends caudally, 
circumventing the caudate n., it divides into the external 
and extreme capsules.  Cortico-cortical and descending 
fibers from the OFC/ventral ACC, along with ascending 
fibers, enter either the internal capsule, or pass in small 
bundles through the VS.   It is important to note that there 
is a significant lack of information concerning the specific 
fibers that run through various parts of these fiber bundles.  
It may well be that differences in the effectiveness of DBS 
across patients is related to the specific connections that 
are stimulated that vary according to electrode 
placements. 
 
6. CIRCUITRY OF THE VENTRAL 
PREFRONTAL–BASAL GANGLIA SYSTEM 
 
6.1. Functional overview of prefrontal cortex 
 A key component to good decision-making is 
the ability to accurately evaluate elements of outcome 
including reward value, predictability, and risk.  Different 
prefrontal cortical areas and corresponding striatal regions 
are involved in various aspects of reward evaluation and 
incentive-based learning  (59-63), and are associated with 
sadness and depression, pathological risk-taking, addictive
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Figure 2.   Coronal sections through the forebrain of a non-
human primate demonstrating the relevant anatomical 
structures (see Figure 1) at different rostral-caudal levels.  
A.  At the level of the rostral pole of the striatum; B, at the 
level of the shell; C, at the level of the anterior commissure; 
D, at the level of the amygdala. ac=anterior commissure; 
amy=amygdala; Cd=caudate nucleus; dPFC=dorsal 
prefrontal cortex; ic=internal capsule; GP=globus pallidus; 
P=putamen; sh=shell of the n. accumbens; 
sgACC=subgenual anterior cingulate cortex; Th=thalamus; 
VC=ventral anterior internal capsule; VS=ventral striatum.  
 
behaviors, and OCD  (64-66).  The ventral prefrontal 
areas, the ACC and OFC mediate the different aspects of 
reward-based behaviors, error prediction and the choice 
between short and long-term gains.  In contrast, the 
dorsolateral prefrontal cortex  (dlPFC) is associated with 
executive function, and is thought to provide some 
cognitive control over motivational and emotional 
behaviors  (67-70).  
 
6.2. Organization of the prefrontal cortex 
 The ACC is divided into areas 24, 32, and 25.  
Area 24 is further divided into 24 a, b, and c.  24c is 
closely linked to premotor areas, 24b is closely linked to 
the dorsolateral prefrontal cortex, and 24a, 32, and 25 are 
linked to limbic regions.  Area 25 is most closely linked to 
connections with the amygdala and hypothalamus  (71).  
Recent functional imaging studies support a division of 
the ACC into dorsal  (area 24) and ventral regions  (areas 
32, 25), with the dorsal region associated with cognitive 
function and ventral areas associated with reward and 
mood.  The OFC is divided into a medial orbital region 

and a lateral region. The medial region is closely 
associated with areas 25 and 32 of the ACC, while the 
lateral area has tight connections with the lateral 
prefrontal cortex.   Based on cortico-cortical and 
subcortical connections, the medial OFC provides a bridge 
between areas associated with emotion and those 
associated with cognition  (72, 73).  The dorsal medial  
(area 9) and dorsal lateral  (area 45) are important in self-
reference and working memory, respectively.  Area 46 is 
involved in spatial working memory processing and in 
active selection of the stimuli from memory  (74-77).  
Area 9, especially medial area 9, is associated with social-
cognitive processing, involving perception and inference 
of mental state  (78, 79).  In summary, taken together, 
human functional imaging studies have divided the 
prefrontal cortex into the dorsomedial prefrontal cortex  
(dmPFC), the vmPFC, OFC, and the dlPFC based on 
specific roles for mediating different aspects of learning 
and decision making  (59, 68-70). 
 
6.3. Prefrontal cortical-basal ganglia pathways 
6.3.1. Organization of the basal ganglia 
 The basal ganglia are divided into dorsal and 
ventral systems, associated with motor and cognitive 
functions  (dorsal striatum) and motivational functions  
(ventral striatum), respectively  (Figure 2B).  The striatum 
is the main input structure of the basal ganglia. Its afferent 
projections are derived from three major sources:  1. It 
receives a massive and topographic input from cerebral 
cortex. 2. The second largest input is derived from the 
thalamus.  3. The third main input is from the brainstem, 
primarily from the dopaminergic cells of the midbrain. 
The ventral system includes the ventral striatum  (the n. 
accumbens, and the ventromedial parts of the rostral 
caudate n. and putamen), the ventral pallidum, the ventral 
tegmental area  (VTA) and the medial region of the STN.  
The ventral pallidum  (VP), the pallidal region specifically 
connected to the ventral striatum, is located ventral to the 
anterior commissure and extends rostrally invading the 
parts of the ventral striatum  (Figure 2C).  Caudally, it 
occupies the ventral and medial extremes of the external 
and internal pallidal segments.  The substantia nigra is 
divided into two parts, the substantia nigra, pars compacta  
(SNc), and the substantia nigra, pars reticulata  (SNr)  
(Figure 3)  (80). 
 
6.3.2. Cortical connections to the basal ganglia 
 The OFC and ACC project primarily to the 
rostral and ventral striatum  (the medial caudate n., the 
medial and ventral rostral putamen, and the n. accumbens -
- both the shell and the core)  (81)  (Figure 2B).  The shell 
receives the densest innervation from medial areas 25, 14, 
and 32, and from the agranular insular cortex; areas 
involved in monitoring the internal milieu. The entire 
reward-related striatum, as defined by ACC/OFC inputs, 
occupies a large rostral region and encompasses 
approximately 22% of the entire striatum.   This region is 
not limited to the ventral striatum at rostral levels, but 
extends into a large medial and central area, occupying 
much of the rostral pole before tapering off caudally.  
Consistent with this large extent of the reward-related 
striatum, reward-responsive activation is not limited to the
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Figure 3.  Schematic illustrating the organization of the 
midbrain dopamine neurons and their projection to striatum 
and cortex.  DLPFC=dorsolateral prefrontal cortex; 
DS=dorsal striatum; OFC/ACC=orbital frontal 
cortex/anterior cingulate cortex; SNc=substantia nigra, pars 
compacta; SNr=substantia nigra, pars reticulata; 
VS=ventral striatum; VTA=ventral tegmental area. 
 
ventral striatum, but rather found throughout a large dorsal-
ventral region  (82-87). The dorsomedial prefrontal cortex 
projects primarily to the rostral central region of the 
caudate n. and extends from the rostral pole of the striatum 
through its caudal extent  (81).  Consistent with input from 
this cortical area, cells in the head of the caudate n. fire 
during the delayed portion of the task, resembling activity 
observed in the dlPFC  (88-90).  Furthermore, imaging 
studies support the idea that the head of the caudate is 
instrumental in delayed tasks, particularly in specific 
working memory tasks  (91, 92).  While there is a clear 
general topography of cortical inputs to the striatum, 
resulting in an overall functional distribution of afferent 
projections, it is now known that there is an equally 
important mechanism for integration across functional 
cortico-striatal circuits.  This is accomplished through a 
convergence between cortical afferent projections from 
different functional regions  (81).  Thus, within the ventral 
striatum, innervation from the dlPFC interfaces with inputs 
from several other cortical areas, including those from both 
the ACC and OFC. 
 
6.3.3. The ventral striatum 
  While the ventral striatum is similar to the dorsal 
striatum in most respects, there are some important and 
unique features  (93).  The ventral striatum contains a 
subterritory called the shell  (94), an area that plays a 
particularly important role in the circuitry underlying goal-
directed behaviors, behavioral sensitization, and changes in 
affective states  (95-99).  While several transmitter and 
receptor distribution patterns distinguish the shell, the most 
consistent marker is the lack of calbindin-positive staining  

(100).  This striatal region, along with immediately 
adjacent areas of the ventral striatum, unlike the rest of the 
striatum, has a unique connection to the hypothalamus.   In 
addition, while the basic cortical basal ganglia loop is 
similar in all basal ganglia circuits, the ventral striatum 
alone receives additional subcortical input from the 
amygdala and from the hippocampus.  These regions do 
not project extensively to other parts of the striatum  (101, 
102).  The hippocampus has a relatively confined 
projection, terminating primarily in the shell of the n. 
accumbens.  In contrast, the amygdala projects more 
widely throughout the ventral striatum.  These two inputs 
place the ventral striatum in a unique position for 
modulating emotion and motivation.  Finally, the ventral 
striatum also receives a dense serotonergic input.  
Although serotonin fibers are found throughout the 
striatum, its innervation of the ventral striatum is 
particularly dense. 
 
6.3.4.  Subcortical connections to the basal ganglia 
  The output from the striatum is GABAergic and 
primarily projects to the globus pallidus and the SNr.  
From these output structures of the basal ganglia, 
information is transferred back to cortex via the basal 
ganglia relay nuclei of the thalamus.  For a complete 
review of basal ganglia circuitry, see Haber, 2004  (80).  It 
is the ventral striatal projection to the VP that is most 
relevant to the discussion of DBS for OCD and depression.  
The VP extends ventrally, below the anterior commissure.  
In addition, cells of the VP continue rostrally to invade the 
rostral and ventral portions of the ventral striatum, sending 
finger-like extensions into the anterior perforated space  
(103).  There is a well-characterized glutamatergic input 
from the STN nucleus to all pallidal components, including 
the VP.  These fibers also run through the ventral forebrain 
region to reach their forebrain targets.  Finally, ascending 
dopaminergic fibers terminate in the ventral pallidum, as 
they pass through on their way to the striatum.  
 
7. THE DIRECT CORTICO-THALAMIC PATHWAY   
 
 While evidence suggests the involvement of the 
basal ganglia in the pathophysiology of OCD and 
depression, the most direct and robust cortical fiber 
connections through the internal capsule are those that 
connect directly to the thalamus  (104, 105).  The general 
function of thalamic nuclei, including the relay nuclei of 
the basal ganglia, was thought to simply transfer 
information from afferent systems to cortex.  However, this 
notion has undergone some important revision in recent 
years  (106).  While the thalamo-cortical projection has 
long been known to be reciprocal  (107), it has now been 
demonstrated that the corticothalamic projection is ten 
times the density of the thalamocortical projection.  This 
has important implications for cortical control of ascending 
information that passes through the thalamus.  Moreover, 
there are two components of the corticothalamic 
projection: a reciprocal one, and a non-reciprocal one  
(105, 108-111).  The non-reciprocal component  (cortex 
projects to a thalamic region that does not receive its input) 
is considered to be a feed-forward mechanism in which the 
thalamus can influence higher cortical areas  (104-106). 
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Figure 4. Illustration of information transfer from one 
functional area of the cortex to another via a non-reciprocal 
connection to the thalamic relay nuclei.  MD=medial dorsal 
nucleus; VA=ventral anterior nucleus; VL=ventral lateral 
nucleus. 
 
The basal ganglia relay nuclei  (ventral anterior, ventral 
lateral, and medial dorsal nuclei) appear to mediate 
information flow from motivational and higher cortical 
“association” areas of the prefrontal cortex, to rostral motor 
areas involved in “cognitive” or integrative aspects of 
motor control, to primary motor areas that direct movement 
execution  (Figure 4).  Thus, the thalamus processes 
complex cortical inputs from multiple areas.  This 
information is conveyed directly back to cortex and to the 
striatum.  The thalamus is therefore in a central position to 
directly modify information in both cortex and the striatum  
(105). 
 
8. ADDITIONAL PATHWAYS CENTRAL TO OCD 
AND DEPRESSION: DOPAMINERGIC AND 
SEROTONERGIC FIBERS   
 
  There are several additional pathways to consider 
within the framework of DBS.  Two important brainstem 
systems that are involved in both the pathophysiology 
and/or therapy of these diseases are the ascending 
dopaminergic and serotonergic fibers.  These fibers 
terminate in several forebrain structures, including both the 
striatum and cortex.   In addition, ascending fibers from 
both transmitter systems project to a number of brain 
regions known to modulate emotion, including the 
amygdala and hypothalamus.  The midbrain dopamine 
neurons are divided into the SNc, and the VTA.  The SNc 
is further divided into a dorsal group and a ventral group  
(112)  (Figure 3).   The dorsal group of neurons merges 
with the immediately adjacent dopamine neurons of the 
VTA and form a continuous mediodorsal band of cells that 
are morphologically and chemically similar.  Both the 
dorsal and ventral cell groups project to the striatum.   The 

dorsal group of cells primarily innervates the ventral 
striatum, while the ventral group terminates in the dorsal 
striatum.  Moreover, in contrast to the ventral group, the 
dorsal group also projects widely throughout cortex.  The 
dorsal raphe nuclei  (DRN), including the dorsal, medial 
and central raphe nuclei, provide the primary serotonergic 
input to the striatum and cortex.  In a recent study, 
stimulation within the DRN of rats resulted in focused 
inhibition of serotonergic neurons, which correlated with 
depressive behaviors, underscoring the relevance of these 
pathways to DBS and mood  (113). 
 
9. GENERAL CIRCUITRY THROUGH THE 
VENTRAL-ANTERIOR INTERNAL CAPSULAR  
(VC) AND SUBGENUAL DBS SITES 
 
  The VC is surrounded by the VS  (Figure 2B).  
As mentioned above, the VS receives afferent fibers from 
the amygdala, specific thalamic regions, and brainstem  
(101, 102, 114, 115).  Ascending fibers from these areas, 
along with descending fibers from the vmPFC and OFC, 
travel through the VC and through the fiber bundles 
located ventral to the VC, within the VS.  In addition to the 
typical striatal cell groups, the VS contains cells belonging 
to other structures, including the ventral pallidum and the 
n. basalis  (116-118), that contribute substantially to the 
complexity of the neural network likely to be involved in 
DBS at this location.  Cortical pathways that travel through 
the VC are likely to preferentially connect directly to 
specific regions of the thalamus, including the anterior, 
dorsomedial, and ventral anterior nuclei.  Furthermore, a 
subset of fibers passing through these ventral forebrain 
bundles will terminate in the hypothalamus.  Axons from 
the ventro-amygdalofugal pathways may also be captured 
by the electrode stimulation sites in the ventral capsule.  In 
contrast, fibers from the fornix, carrying hippocampal 
inputs, enter the ventral striatum dorsally and are less likely 
to be directly stimulated by electrodes placed in the VC.  
Finally, axons from the midbrain dopamine cells form an 
ascending bundle that travels through the ventromedial part 
of the forebrain to innervate the hypothalamus, ventral 
striatum, bed n. of the stria terminalis, and ventral 
pallidum.  This bundle of fibers is embedded within, and 
ventral to, the anterior commissure and is therefore likely 
to be effected by stimulation sites at more caudal 
placement of the electrodes in the VC.  However, at rostral 
levels, dopaminergic fibers course rostrally to innervate the 
OFC and subgenual cortical areas by traveling within the 
white matter bundles embedded ventral to the striatum, and 
then merging with the subcaudate white matter.  Therefore, 
electrode placement at these more rostral sites will likely 
involve dopaminergic fibers when positioned more 
ventrally.  Ascending serotonergic fibers follow a similar 
course as the dopaminergic fibers.  However, these two 
groups of ascending projections do not completely overlap. 
 
 While stimulation of both the VC and subcaudate 
white matter will affect many of the same sets of fibers, 
fewer targets are likely to be affected at the subcaudate 
site.  For example, the VC site will likely contact ascending 
and descending fibers from both the vmPFC and the lateral 
OFC, while the subcaudate site will primarily involve 
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connections of the subgenual grey matter.  However, while 
stimulation at the VC site will capture more cortico-
thalamic fibers,  (depending on the specific VC site), fibers 
traveling to and from the hypothalamus may be better 
captured with the subcaudate target.  Likewise, the 
involvement of the amygdala will depend entirely on 
precise electrode localization within the ventral forebrain, 
as its connections mainly travel ventral to the capsule.  
 
10. SUMMARY 
 
 While much has been learned about OCD and 
depression pathophysiology and treatment, there are 
critical issues that need to be addressed regarding the 
mechanism of action by which therapies exert their 
beneficial effects.  Human imaging experiments in patients 
with OCD and depression can provide unique and powerful 
data regarding regional brain activity  (or activation) in 
vivo.  However, these methods lack the spatial resolution 
necessary to conduct fine mapping of the pathways 
involved.  While advances in neurosurgical treatment have 
been limited by the relatively static and irreversible nature 
of ablative procedures, the advent of DBS provides a new 
panorama of opportunity for a better understanding of 
frontal-basal ganglia circuits.  These methods, combined 
with more refined neuroimaging in humans, will help 
develop increasingly precise DBS targets and stimulation 
parameters for OCD and depression.  
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