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1. ABSTRACT 
 

Cancers express tumor associated antigens that 
should elicit immune attack, but spontaneous immune 
rejection of established cancer is rare. Recent data 
demonstrate that specific and active tumor-mediated 
mechanisms hinder host anti-tumor immunity. CD4+CD25+ 
T regulatory cells (Tregs) are important mediators of active 
immune evasion in cancer. Disrupting tumor-mediated 
mechanisms hindering host immunity is a novel approach 
to tumor immunotherapy. Treg depletion improves 
endogenous anti-tumor immunity and the efficacy of active 
immunotherapy in animal models for cancer, suggesting 
that inhibiting Treg function could also improve the limited 
successes of human cancer immunotherapy. We have 
identified five strategies to block Treg activity: depletion, 
interference with trafficking, inhibition of differentiation, 
blockade of function or raising the effector T cell threshold 
for suppression. Discovery of additional regulatory cell

 
 
 
 

populations expands the potential targets for these 
approaches. The fusion toxin denileukin diftitox (Ontak) 
reduces Treg numbers and function in the blood of some 
patients with cancer. We discuss specific strategies to block 
Treg activity and present some of our preliminary data in 
this area. Combining Treg depletion with active vaccination 
and other approaches poses additional challenges that are 
discussed. 

 
2. INTRODUCTION 
 

Malignant tumors express numerous tumor-
associated antigens (TAA), yet rarely elicit endogenous 
immunity that effectively eradicates established tumors. 
Much data suggest that early stage cancers are eliminated 
by immune surveillance, whereas established tumors more 
likely induce immune tolerance  (1). Recent work 
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demonstrating that a multitude of tumor-derived factors 
contribute to tumor microenvironmental immune tolerance 
and immunosuppression (2) helps elucidate the relative 
lack of effective immune surveillance in tumors at later 
stages. 

 
Earlier enthusiasm that boosting the numbers or 

function of effector cells alone would be clinically useful is 
now tempered by the realization that active tumor-mediated 
programs can inhibit anti-tumor immunity. Thus, effective 
anti-cancer immunotherapy must overcome tumor 
microenvironmental immunosuppression for optimal 
utility.  

 
Strong anti-tumor immunity often requires 

breaking peripheral tolerance to tumor associated antigens 
(TAA), which may be mediated by regulatory T cells (also 
called T regulatory cells or Tregs  (3-5) as we refer to them 
in this review). Although CD4+ Tregs have been 
extensively characterized (reviewed in  (6,7), many 
questions remain regarding their origins and functions. The 
most-studied Treg population is CD4+CD25+ and 
expresses the forkhead/winged helix nuclear transcription 
factor FOXP3. These Tregs can inhibit tumor specific 
CD4+ (8) or CD8+ (9) T effector cell function through 
incompletely understood mechanisms that include soluble 
factors and cell-to-cell contact (6, 7, 9-11). Functional 
Tregs are increased in peripheral blood of patients suffering 
from many types of cancers (12-16) and are also found in 
the solid tumor mass and draining lymph nodes (13). The 
accumulation of human CD4+CD25+ Tregs as well as 
FOXP3 expression in the tumor environment portend 
reduced survival in ovarian cancer (13,17). Tregs are 
considered important mediators of tumor 
microenvironmental immunosuppression in patients with 
cancer by inhibiting TAA-specific immunity. In support, 
experimental depletion of Tregs in mouse models of cancer 
improves endogenous immune-mediated tumor clearance 
(18) and TAA-specific immunity (19), and boosts the 
potency of tumor immunotherapy, including vaccination 
(20) or CTLA-4 blockade (21). Nonetheless, Tregs also 
control self-reactive T cells present in essentially everyone, 
including the Tregs mediating homeostatic peripheral 
tolerance. Thus, the therapeutic efficacy of TAA-reactive 
Tregs depletion may be tempered by induction of 
pathologic autoimmunity if homeostatic Tregs maintaining 
normal peripheral tolerance are also eliminated. 

 
Therapeutic tumor vaccines effect some positive 

clinical responses, but their usefulness has been modest 
thus far. Significant and durable clinical benefits have 
generally not been observed, despite the fact that many 
vaccines engender TAA-specific immunity. It has recently 
been recognized that tumor-associated Tregs may 
contribute to the failure of some vaccines. 

 
Thus, interfering with tumor microenvironmental 

Treg function could improve the efficacy of tumor 
immunotherapy. We define five general strategies to reduce 
Treg function. The first strategy is to eliminate Tregs, 
which can be achieved through monoclonal antibodies, 
targeted toxins, certain chemotherapeutic agents or other 

molecules. Additional strategies include blocking Treg 
function and trafficking, inhibiting the interactions between 
dendritic cells and Tregs, and raising the effector T cell 
threshold for suppression. Some of these concepts have 
already been tested clinically, whereas others are in 
preclinical stages. We now discuss each strategy with 
reference to CD4+CD25+ Tregs, although they could also 
be applied to other types of regulatory cells. Additional 
considerations pertaining to the combination of Treg 
reduction and active immunizations will be addressed at the 
end of the review.   

 
3. DEPLETION OF REGULATORY T CELLS 
 
3.1. Anti-CD25 antibodies 

CD25 is the α-chain of the IL-2 receptor, and is 
constitutively expressed on many tumor-associated Tregs. 
The anti-CD25 monoclonal antibody PC61 has been shown 
to deplete CD4+CD25+Treg function rapidly and efficiently 
(19) and augment tumor rejection in mice (18). However, 
recent data suggest that PC61 mediates functional Treg 
inactivation, not depletion (22).  

 
Daclizumab (Zenapex) and basiliximab 

(Simulect) are anti-human CD25 antibodies approved for 
use in autoimmune diseases, transplantation and cancers 
including HTLV-1 induced adult T-cell 
lymphoma/leukemia (reviewed in (23)). To our knowledge 
there are no reports published on whether these anti-CD25 
antibodies deplete Tregs in humans although anecdotal 
reports suggest limited, if any, such activity. A definitive 
study testing whether these antibodies affect tumor-related 
Tregs would be very helpful. 
 
3.2. Denileukin diftitox 

Denileukin diftitox (Ontak, DAB389IL-2) is a 
recombinant protein fusing the active domain of diphtheria 
toxin to human interleukin (IL)-2. The United States Food 
and Drug Administration has approved it to treat cutaneous 
T cell leukemia/ lymphoma (24). It is targeted to the IL-2 
receptor (25,26) and is proposed to be internalized through 
CD25 (the IL-2 receptor alpha chain) by endocytosis. It 
inhibits protein synthesis and induces apoptosis. Denileukin 
diftitox also targets cells through the beta and gamma 
subunits of the IL-2 receptor (CD122 and CD132, 
respectively) in addition to CD25 (26,27) (and Curiel, et 
al., unpublished results).  

 
Because denileukin diftitox is approved for 

treatment of CD4+CD25+ cutaneous T cell 
leukemia/lymphoma , we hypothesized that it would 
deplete phenotypically similar CD4+CD25+ Tregs and 
undertook a clinical trial demonstrating that denileukin 
diftitox depletes functional Tregs in blood of human 
patients with cancer, correlating with improved immunity 
(28) and clinical benefit (29). Another clinical trial (30) 
demonstrated that denileukin diftitox pretreatment 
improved immunogenicity of a vaccine comprised of RNA-
transfected dendritic cells, augmenting proliferation of 
tumor-specific T cells compared to vaccination alone in 
patients with renal cell cancer. This study also showed that 
denileukin diftitox reduces functional blood Tregs and the 
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authors speculated this reduction as its mechanism of 
action. Denileukin diftitox reduces tumor-associated Tregs 
and augments immune-mediated tumor rejection of mice 
xenografted with syngeneic breast cancer cells (31). 
Nonetheless, a definitive relationship between Treg 
reduction and immune or clinical benefits in humans 
remains to be determined.  

 
Another recent clinical study showed that 

denileukin diftitox treatment did not effect objective 
clinical responses in human melanoma or renal cell 
carcinoma, or inhibit CD4+CD25+ cell-mediated 
suppressive action in vitr  (32). Reasons for a lack of 
denileukin diftitox effects on Treg function in this study 
are unknown, but could be due to differences in dosing 
or scheduling, differences in cancer immunobiology, 
prior IL-2 treatments, or other factors. Prior IL-2 
treatment may be significant as IL-2 augments blood 
CD4+CD25+FOXP3+ Treg numbers in renal cell 
carcinoma and melanoma (33), and pediatric sarcoma 
(34) patients and signaling through the IL-2 receptor on 
Tregs increases Treg survival and suppressor function 
(35). In addition, a report just published showed that 
denileukin diftitox reduces Treg numbers and function 
in melanoma with improved melanoma-specific 
immunity (36). 

 
Recently activated T cells also express high-

levels of CD25. Thus, denileukin diftitox could also 
deplete CD25+ effector cells. In fact, we have noted 
effector cell reduction in some patients after three or 
more weekly denileukin diftitox infusions at 12 µg/kg 
(Curiel, et al., unpublished results). Recent in vitro work 
(30) supports the concept that denileukin diftitox may 
deplete recently activated T cells. An optimal balance 
between Treg depletion and effector function may be 
attained with different denileukin diftitox schedules or 
doses. We are now testing monthly infusion in ovarian 
cancer in this regard. 

 
3.3 Cytotoxic chemotherapy 
3.1. Cyclophosphamide 

Cyclophosphamide is an alkylating agent 
widely employed in a number of chemotherapeutic 
regimens. Low-dose cyclophosphamide can decrease 
Treg numbers and thus may be useful as an immune 
modulator, even with cyclophosphamide-resistant 
tumors (37,38), although the mechanism is incompletely 
understood (39). Treg depletion by cyclophosphamide in 
a tumor model in rats augments the potency of active 
tumor-specific immunotherapy (40 and Treg reduction 
with low-dose, metronomic cyclophosphamide has 
recently been convincingly demonstrated in humans 
(41). 

 
3.2. Fludarabine 

The purine analogue Fludarabine is used to treat 
chronic lymphocytic leukemia (42). It decreases or 
eliminates CD4+CD25+ T cell suppression in patients with 
chronic lymphocytic leukemia (43). The effect of 
fludarabine on Tregs in chronic lymphocytic leukemia as 
well as other malignancies, merits further investigation.        

4. BLOCKADE OF REGULATORY T CELL 
FUNCTION 
 
4.1. Anti-GITR antibody 

GITR (glucocorticoid-induced tumor necrosis 
factor receptor-related gene) is a cosignaling molecule 
found on murine (44) and human (45) T lymphocytes. It is 
expressed constitutively at high levels on Tregs and its 
expression is upregulated further upon T cell activation 
(46). GITR stimulation using anti-GITR monoclonal 
antibody reduces the suppressor function of murine Tregs 
(46,47), but not human Tregs (48). Agonistic anti-GITR 
monoclonal antibody treatment of tumor-bearing mice 
elicits potent tumor-specific immunity and eliminates 
established tumors in the absence of overt pathologic 
autoimmunity (48). Underlying molecular mechanisms 
have not been described in detail but likely involve 
inhibition of Treg–mediated suppression during antigenic 
stimulation (49). To our knowledge, this strategy has not 
yet been tested in a human clinical trial. 
 
4.2. TLR signaling 

Approximately 15 Toll-like receptors (TLR) are 
expressed ubiquitously on a variety of mammalian cells, 
including human Tregs (50). They recognize certain 
bacterial and viral pathogen-associated molecular patterns, 
and affect significant elements of specific immunity 
including dendritic cell maturation (50). Treg-mediated 
suppression can be inhibited by TLR-derived signals in 
vitro (51). TLR signaling for tumor immunotherapy is 
important as demonstrated by in vitro experiments showing 
that only vaccines providing appropriate TLR signals can 
reverse Treg−mediated tolerance. Further, dendritic cell-
based vaccines (which lack TLR signals) break tolerance of 
CD8+ cells only after removal of Tregs or with addition of 
another TLR agonist (52). These experiments suggest that 
Treg inhibition using TLR ligation (such as TLR9 ligation 
by CpG oligonucleotides) may be a novel way to enhance 
the potency of certain cancer vaccines. Dendritic cell-based 
vaccines combined with Treg depletion is another 
alternative strategy, as discussed. 
 
4.3. Anti-CTLA-4 antibodies 

Cytotoxic T lymphocyte antigen-4 (CTLA-4) is 
expressed at high levels on most Tregs (6,7,53,54), but also 
on certain other CD4+ and CD8+ T lymphocytes (55). As it 
downregulates T cell responsiveness (56,57), CTLA-4-
mediated inhibition can hinder T cell activation in the 
initiation and progression of anti-tumor immunity (55). 
CTLA-4 blockade engenders strong anti-tumor immunity in 
murine melanoma (21). A human anti-CTLA-4 monoclonal 
antibody has been tested in phase I cancer clinical trials 
(58) with some encouraging results. Significant pathologic 
autoimmunity has been observed with this treatment (59), 
but may possibly be reduced by using different anti-CTLA-
4 antibody clones. 

 
A recent study of CTLA-4 blockade suggests that 

its anti-tumor effects are due to direct effects on CD4+ and 
CD8+ effector T cells, not through inhibition or depletion of 
Tregs (59). Thus, although CTLA-4 blockade is a 
promising immunotherapy candidate, its major mode of 
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action may not be through direct suppression of Treg 
function. 
 
5. BLOCKADE OF REGULATORY T CELL 
TRAFFICKING  
 
5.1. Chemokine signaling 

Chemokines are small molecules that modulate 
trafficking of immune cells between normal and 
pathologically altered tissues, among other function (60). 
While normal tissues produce differing chemokines, 
cancers likewise secrete them (61). We recently 
demonstrated that the chemokine CCL22 mediates Treg 
migration into the human ovarian cancer microenvironment 
(13). We further showed that the CCL22 receptor, CCR4, is 
expressed on the majority of Tregs in ovarian cancer. 
Blockade of CCL22 significantly decreases Treg migration 
into ovarian tumors in an immunodeficient murine 
xenograft model, accompanied by immune rejection in the 
presence of anti-tumor effector T cells (13). Thus, blocking 
Treg trafficking may be useful to treating human cancers. 
However, CCL22 may also facilitate trafficking of effector 
T cells. Therefore, any potential benefit of CCL22 
blockade, or of interrupting other trafficking signals 
requires further study as to potential therapeutic utility. 
While selective small-molecule chemokine receptor 
antagonists have gone into phase I clinical trials (62), 
therapeutic utility may be limited by the binding 
promiscuity of chemokine receptors, the redundancy of 
chemokine/ligand pairs, and the role of chemokines in 
normal tissue homeostasis or anti-tumor immunity. These 
additional effects of chemokine/receptor antagonism must 
be taken into account in strategies to block chemokines and 
their receptors. 
 
6. BLOCKADE OF REGULATORY T CELL 
DIFFERENTIATION 

 
6.1. Dendritic cell-regulatory T cell interactions 

Dendritic cells are comprised of diverse 
populations of antigen presenting cells with diverse 
anatomic localizations, cell-surface phenotypes, and 
immunological functions (63). Human dendritic cells are 
typically categorized into myeloid (MDC) and 
plasmacytoid (PDC) subpopulations (63). In addition, a 
novel subpopulation of antigen presenting cells, vascular 
leukocytes, has been identified recently. These cells 
resemble dendritic cells as greater than 97% express CD11c 
and class II major histocompatibility antigens, but are 
distinct from MDCs or PDCs as they also express 
endothelial-specific markers (64). Whereas it is well-
established that dendritic cells can initiate or upregulate 
immune responses, it is now becoming clearer that they are 
also capable of inducing immune tolerance (2).   

 
We have identified distinct mechanisms by which 

dendritic cells can induce Tregs that could impede tumor 
immunity  (2,65-67). In this regard, it may be possible to 
reduce Treg suppression in the tumor indirectly by blocking 
dendritic cell trafficking or function in the tumor 
environment and thereby reducing Treg differentiation or 
trafficking 

6.1.1. PDC-T Cell interactions 
By contrast with normal blood PDCs, PDCs in 

the tumor microenvironment enhance tumor vascularization 
(68), and promote differentiation of IL-10-expressing T 
cells (66). Tumor PDC-activated T cells include 
CD8+CCR7+CD62L+IL-10+ cells that suppress T effector 
function through IL-10  (68) and are thus functional 
CD8+ Tregs. Therefore, PDC-CD8+ T cell interactions 
could foster differentiation of CD8+ Tregs in tumor and 
this differentiation could possibly be inhibited by 
interfering with these tumor PDC-T cell interactions.   

 
The chemokine CXCL12 (stromal derived 

factor 1, SDF-1), is secreted in enormous quantities by 
ovarian cancer cells and attracts dysfunctional PDC (67) 
which can then foster CD8+ regulatory T cell 
differentiation (66). We demonstrated that CXCR4 
blockade with a specific antibody increases tumor PDC 
apoptosis, while reducing their chemotaxis and 
adhesion/transmigration in vitro (67). Various bicyclam 
compounds that specifically antagonize CXCR4 signals 
(AMD3100 (69) or AMD3465 (70)) are useful in certain 
clinical settings such as mobilizing stem cells or 
blocking human immunodeficiency virus infection (71). 
In the treatment of cancer, they may also be useful in 
the tumor microenvironment by reducing PDC entry, 
thus reducing PDC-T cell interactions (in addition to 
reducing CXCR4-mediated tumor metastasis or other 
detrimental events).  In addition, recent studies suggest 
that IL-2 enhances Treg cell migration into tumors by 
increasing Treg CXCR4 expression, a receptor for 
CXCL12 (72). Thus, CXCR4 blockade may decrease 
Treg numbers or function as well as PDC migration in 
ovarian cancer.  

 
PDCs could alternatively be depleted 

selectively. Relatively specific antigens expressed on 
human PDCs (BDCA-2 or BDCA-4) (73) and murine 
PDCs (mPDCA-1) (74) have been described. While a 
depleting antibody for mPDCA-1 is available, an 
effective depleting antibody for human PDC has not 
been reported to our knowledge. Thus, while 
manipulating PDC-T cell interactions represents an 
attractive strategy for tumor immunotherapy, much more 
research must be done to establish its clinical efficacy 
and a suitable means to effect it. 

 
6.1.2. MDC-T cell interactions 

B7-H1 is member of the B7 family of cosignaling 
molecules and is upregulated on MDCs in ovarian cancer 
(65). Signaling through B7-H1 enhances tumor growth (75) 
by inducing apoptosis of effector T cells (76). Furthermore, 
B7-H1 signals in the tumor environment induce IL-10 
production by T cells, causing immune suppression (65). 
Blockade of B7-H1 enhances MDC-mediated T cell 
activation accompanied by downregulation of T-cell IL-10 
production and upregulation of T cell IL-2 and interferon-γ 
(65). B7-H1 signals on endothelial cells can induce 
CD4+CD25+FOXP3+ Tregs (77). Thus, blockade of B7-
H1 signals on MDCs (and perhaps other cells) in the tumor 
environment could inhibit development or function of 
tumor-associated Tregs.  
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6.1.3. Vascular leukocyte-T cell interactions 
Vascular leukocytes exhibit properties of both 

DCs and endothelial-like cells. Vascular leukocytes 
have been shown to accumulate in the environment of 
human and murine ovarian cancer and other tumors 
(64,78). These cells use their vasculogenic potential to 
develop blood vessels and promote tumor growth in vivo 
(64,78). 

 
The immune function of vascular leukocytes in 

tumors is not fully characterized. They are tolerogenic, 
probably through inducing IL-10 secreting T cells and 
also promote tumor growth. In this aspect, vascular 
leukocytes resemble tolerogenic dendritic cells that 
drive Treg development. New data now suggests that 
vascular leukocytes can contribute to Treg expansion in 
cancer (G. Coukos, et al., unpublished data). Thus, 
preventing T cell-vascular leukocyte interactions might 
decrease Treg numbers or function. 

 
6.1.4. Other strategies  

Additional pathways leading to Treg 
differentiation may be useful to disrupt to attempt to 
reduce Treg numbers or function. These pathways 
include signals from IL-2, IL-10, interferon-α, VEGF, 
TGF-β and prostaglandins among others (2,4,5,7,79,80). 
Raising the threshold of effector T cell to Treg-mediated 
inhibition (such as through CTLA-4 signaling blockade) 
is an interesting concept, however, it could be limited by 
serious consequences of T-cell overactivation (81). 

 
7 COMBINING DEPLETION OF REGULATORY T 
CELLS WITH TUMOR VACCINES 

 
As we begin to combine Treg depletion with 

active cancer vaccination, the following additional 
considerations must be addressed for optimal effectiveness. 

 
7.1. Antigen specificity of Tregs  

Recent evidence demonstrates that Tregs have 
antigen specificity, and TAA-specific CD4+CD25+ 
Tregs have been identified (82). A therapeutic modality 
that selectively depletes TAA-specific Tregs would be 
highly desirable as this might perturb homeostatic 
immunity the least. However, such a strategy is 
dependent on identifying TAA-specific Tregs. Whereas 
techniques exist to track antigen specific CD4+ and 
CD8+ T cells in vivo, antigen specific Tregs cannot yet 
be routinely identified in vivo . Further, it will be 
difficult or impossible to relate the effects of Treg 
depletion to observed immune effects without 
information regarding the removal of suppressive 
barriers to activation of TAA-specific effector T cells. 
Related to this issue is the lack of a clear understanding 
of what role additional Treg populations might play in 
suppressing TAA-specific immunity even if these Tregs 
are not TAA-specific. These additional Tregs could 
mediate immune suppression through generic 
suppression of any local T cell, or might inhibit innate 
immune cells (such as natural killer cells or 
macrophages) that might otherwise contribute to anti-
tumor immunity. 

7.2. Expansion of Tregs by cancer vaccines 
Recent data suggest that cancer vaccines may 

contribute to immunosuppression by expanding tumor 
microenvironmental Tregs (83). These data are consistent 
with prior observations that specific subsets of dendritic 
cells can also expand various Treg subsets (65,66). Taken 
together, these data imply that the capacity of cancer 
vaccines to induce effective anti-tumor immunity may be 
impaired by the simultaneous expansion of vaccine-induced 
Tregs. Therefore, future cancer vaccine trials should 
consider measuring expansion of TAA-specific Tregs in 
addition to studying expansion of TAA-specific immunity. 

 
7.3. Timing of Treg depletion in relation to active 
vaccination 

In a recent report of a mouse model for colon 
cancer, Treg depletion with PC61 antibody was most 
effective in augmenting immunity when given just at, 
versus before or after vaccination (84). These data do not 
confirm that Treg depletion when combined with active 
vaccination is always optimal at vaccination. Timing likely 
will vary depending on the specific vaccine and adjuvant 
used, the relative potencies of competing TAA-specific 
effector cells and Tregs in an individual, the method used 
to deplete Tregs, the specific cancer involved and its stage, 
in addition to other factors. This study (84) also 
demonstrated that optimal clinical efficacy depended on 
multi-modal treatment. A recent clinical trial (30) showed 
that pretreatment with denileukin diftitox improved the 
immunogenicity of vaccination with RNA-transfected 
dendritic cells, significantly improving stimulation of 
tumor-specific T cells in patients with renal cell cancer 
compared to vaccination alone. The authors of this study 
suggest that Tregs should be depleted just before 
vaccination, as this will most likely avoid collateral effects 
of the immunotoxin on vaccination-induced effector T 
cells. This valid concern is supported by in vitro data from 
the same study suggesting that activated T cells, which express 
CD25, are killed by denileukin diftitox. In addition, we have 
shown that weekly denileukin diftitox in patients with 
advanced cancers will also deplete effector cell populations 
(Curiel et al., unpublished observations). Thus, future 
strategies for Treg depletion should focus on Treg-specific 
targeting, which will become more readily available with the 
identification of Treg-specific surface antigens. Clinical studies 
investigating Treg depletion at differing times relative to 
vaccination regimens are also needed to study this effect. 
 
7.4. Pathologic consequences of Treg depletion 

It is now well accepted that peripheral tolerance 
to self antigens in mediated at least in part by CD4+CD25+ 
Tregs (7). It is therefore conceivable that Treg depletion as 
a therapeutic strategy could induce pathologic 
autoimmunity. While autoimmunity associated with Treg 
depleting interventions in cancer patients has not been 
reported to date, the potential remains and must be 
monitored. 

 
7.5. The regulatory cell population targeted for 
depletion 

Our work and that of most investigators studying 
mice and humans has focused on CD4+CD25+ Tregs. 
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Nonetheless, other regulatory cell populations proposed to 
be immunopathogenic in cancer have also been identified, 
including CD8+ Tregs  (66), immature myeloid cells (85), 
B7-H4+ myeloid cells (86) and NKT cells (87,88). These 
cells may ultimately be shown to play immunopathologic 
roles in cancer and undermine the efficacy of tumor 
immunotherapies. Further studies of their activities, and of 
effects of their depletion (including in ongoing trials aimed 
at depleting CD4+CD25+ Tregs) are thus worthwhile. 

 
8 SUMMARY AND CONCLUSIONS 

 
Recent data demonstrate that CD4+CD25+ T 

regulatory cells (Tregs) can inhibit tumor-specific 
immunity and that their increased numbers correlate with 
worsened outcomes in some cancers. Studies in mouse 
models demonstrate that reducing Treg activity boosts 
endogenous anti-tumor immunity, and increases the 
efficacy of active immune interventions. Consequently, 
inhibiting Treg function is a strategy worth considering in 
human cancer immunotherapy. Preliminary studies from 
small human clinical trials have identified denileukin 
diftitox (Ontak) as an agent useful in this regard in ovarian 
and renal cell cancer, but not in melanoma. Denileukin 
diftitox can potentially kill any T cell expressing functional 
IL-2 receptors (including effector T cells), which may limit 
clinical utility in some settings. Agents specifically 
targeting Tregs would be advantageous and are in 
development in some laboratories, including ours. 
Identification of Treg-specific markers would also be 
helpful in this regard. Cyclophosphamide, fludarabine and 
other agents are also under study to deplete Tregs.  

 
Aside from directly killing Tregs, their function 

can be reduced by interfering with their suppressor 
function, trafficking patterns or differentiation. Antigen 
specificity of Tregs and potential for inducing pathologic 
autoimmunity are concerns and areas for further study. 
When designing trials incorporating Treg depletion with 
active immunization, additional considerations include the 
timing of Treg depletion relative to vaccination, and the 
potential for vaccines to induce TAA-specific Tregs (in 
addition to generation of TAA-specific effector cells). 

 
Finally, we must remain cognizant of the 

potential immunopathologic roles played by additional 
suppressor cell populations aside from CD4+CD25+ Tregs, 
including CD8+ regulatory T cells, several myeloid cell 
populations and NKT cells, and cognizant of additional 
tumor-mediated mechanisms of defeating host immunity. 
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