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1. ABSTRACT 
 

Neutrophil recruitment is an integral part of the 
immune response to infection as well as of inflammatory 
disorders. The process of neutrophil extravasation 
comprises a complex multistep cascade that is orchestrated 
by a tightly coordinated sequence of adhesive interactions 
with vessel wall endothelial cells. Adhesion receptors as 
well as signaling molecules in both neutrophils and 
endothelial cells regulate the recruitment of neutrophils into 
the site of inflammation or infection. The present review 
will focus on novel aspects with regards to the last step of 
neutrophil recruitment, namely the transmigration of 
neutrophils through endothelial cells. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The short-lived neutrophils are the most abundant 
leukocytes in the blood and the first line of defense in 
innate immunity. Neutrophils can detect bacterial 
components such as LPS and fMLP via their specific 
receptors including Toll-like receptors or G-protein coupled 
receptors (1). This results in upregulation of the migratory 
activities of neutrophils, allowing them to accumulate at 
sites of acute inflammation within a few hours. Besides 
being essential for the defense against bacterial and fungal 
pathogens, neutrophils are also a hallmark of T helper type 
1 (TH1)–associated inflammatory infiltrates (2). Activated 
recruited neutrophils release cytotoxic mediators that may 
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cause tissue damage, thereby contributing to autoimmunity 
and chronic inflammation. Neutrophil infiltration is a 
hallmark in rheumatoid arthritis, vasculitis, inflammatory 
bowel diseases and chronic lung diseases (3;4). Therefore, 
neutrophil extravasation to sites of inflammation, vascular 
injury or infection needs to be a tightly regulated process. 
Neutrophil recruitment requires a multistep cascade of 
adhesive and migratory events, which are mediated by 
three classes of adhesion receptors, the selectins, integrins 
and adhesion receptors of the immunoglobulin superfamily. 
These steps are (i) the initial selectin-mediated rolling, (ii) 
the chemokine-induced activation (iii) and the integrin-
dependent firm adhesion and subsequent transendothelial 
migration (5-7). However, recent evidence has resulted in 
the expansion of the original three-step adhesion cascade, 
including new separate steps, such as integrin-mediated 
intravascular crawling following the firm arrest of 
neutrophils (6;8;9). Moreover, transendothelial migration 
(also designated as diapedesis) can take place in both a 
paracellular and a transcellular fashion (10). The further 
subendothelial interstitial migration of leukocytes in the 
inflamed tissue is predominantly mediated by beta1-
integrin family members, such as the matrix binding 
alpha1beta1-, alpha2beta1- and alpha6beta1-integrins, as 
well as beta2-integrin family members, such as Mac-1 that 
binds to fibrinogen (11-13). This process is also facilitated 
by leukocyte-associated membrane-bound proteases or 
secreted proteases as well as glycosaminoglycan-degrading 
enzymes, which help the invasion of neutrophils through 
the extracellular matrix (11;14). After an introduction in the 
different steps of neutrophil endothelial interactions, the 
present review will focus on novel aspects regarding the 
last step of neutrophil recruitment, their transendothelial 
migration. 
 
3. THE MULTISTEP PROCESS OF NEUTROPHIL 
RECRUITMENT  
 

During rolling, neutrophils undergo a transient 
interaction with the endothelial cell surface that slows them 
down. Rolling interactions last seconds and are reversible, 
as they are mediated by weak binding between selectins, 
such as the E-, P- or L-selectin with their carbohydrate 
ligands, such as P-selectin glycoprotein-1 (PSGL-1) (15). 
The expression and the exposure of endothelial selectins, 
such as P- and E-selectin on the apical endothelial cell 
surface is a tightly regulated process. P-selectin is stored in 
Weibel-Palade bodies and can be rapidly translocated to the 
luminal surface upon endothelial cell activation with 
several stimuli. Contrastingly, E-selectin is constitutively 
not expressed, but is newly synthesized after a few hours 
(15). The P-selectin / PSGL-1 interaction is predominantly 
involved in the initial tethering (16), whereas slow and 
more stable rolling is mediated by E-selectin (17). There is 
evidence that the initial rolling and the subsequent firm 
adhesion are functionally interconnected at least at two 
levels: (i) Evidence exists that LFA-1 integrin, especially 
when it is in a low-affinity conformation, participates in 
slow rolling adhesions. The subsequent transition into the 
active conformation of LFA-1 promotes arrest from the 
rolling state (18;19). (ii) Second, besides functioning as a 
“brake” for the flowing neutrophils, rolling interactions 

allow neutrophils to sense chemokines, associated with the 
endothelial cell membrane via heparan sulphate 
proteoglycans. The chemokine-derived signals are essential 
for priming the firm adhesion step (20).  

 
During the activation step, chemokines including 

interleukin-8, and chemoattractants including complement 
C5a, leukotriene LTB4, platelet activating factor and 
bacteria-derived formylated peptides, induce rapid 
neutrophil adhesion, by converting the low-affinity, 
selectin-mediated interaction into the high-affinity, 
integrin-mediated firm adhesion (6;20;21). Neutrophil 
adhesion to endothelial cells is mediated by interactions 
between integrins, VLA-4 (alpha4beta1), Mac-1 
(alphaMbeta2) and LFA-1 (alphaLbeta2), present on 
neutrophils, and members of the immunoglobulin 
superfamily, such as ICAM-1, ICAM-2, VCAM-1, or the 
receptor for advanced glycation endproducts (RAGE) on 
the endothelial surface (22). These endothelial counter-
receptors are constitutively expressed (ICAM-1, ICAM-2, 
RAGE) or further up-regulated (ICAM-1, RAGE) or are 
induced (VCAM-1) (22;23). The importance of integrin-
mediated adhesion for neutrophil extravasation and the 
immune response is evidenced by several studies engaging 
mice deficient in one or more leukocyte integrins (24-27), 
or by the leukocyte adhesion deficiency syndrome (LAD I) 
in men lacking beta2-integrins (22;28).  

 
During extravasation, the activity of leukocyte 

integrins is predominantly regulated by conformational 
changes and clustering, whereas integrin expression on 
leukocytes is marginally affected. The activation of 
integrins through “inside-out” signaling, predominantly 
mediated by chemokines, involves several pathways, 
including small GTPases (29), as well as interactions 
between the cytoplasmic tail of the integrin and actin-
binding proteins, that induce integrin conformational 
changes (30). The small GTPase RAP1 (31) regulates LFA-
1 affinity (32-35). Guanine-nucleotide-exchange factors 
(GEFs), such as CALDAG-GEFI (calcium- and 
diacylglycerolregulated GEFI) (36;37), or VAV1 (38) that 
activate RAP1 participate in the modulation of leukocyte 
integrin affinity. CALDAG-GEFI-deficiency resulted in 
reduced chemokine-induced neutrophil arrest in humans 
and mice (36;38). In addition, actin-binding proteins such 
as talin (30;39) or alpha-actinin (40) as well as 14-3-3 
proteins (41) have been shown to activate the integrins by 
targeting the beta-chain. Talin is a cytoskeletal protein 
consisting of two domains, a globular head and a rod-like 
domain. The head of talin is thought to induce the 
separation of the alphaL- and beta2-cytoplasmic tails of 
LFA-1 resulting in the induction of LFA-1 high-affinity 
conformation (42;43).  

 
Neutrophil adhesion to the endothelial cells can 

be further strengthened by integrin-mediated outside-in 
signaling that takes place as a result of integrin clustering 
and conformational changes as a result of integrin ligation. 
Two Src-like protein tyrosine kinases can mediate the LFA-
1- and Mac-1-induced stabilization of adhesion after the 
initial firm arrest, as their inhibition accelerates the 
detachment of adherent neutrophils under flow conditions 



Neutrophil transmigration 

1598 

(44). Similar functions have been ascribed to the GEFs 
VAV1 and VAV3 (38). In addition, Wiskott-Aldrich 
syndrome protein (WASp)-deficient neutrophils display 
defects in the actin cytoskeleton and integrin clustering 
following the initial arrest. The WASp-deficiency 
phenotype became visible only under flow conditions (45). 
Another factor that has been implicated in leukocyte post-
adhesion strengthening events is paxillin that interacts with 
the cytoplasmic domain of the alpha4-integrin chain (46). 
  

4. NEUTROPHIL TRANSENDOTHELIAL 
MIGRATION  
 

After their firm adhesion, neutrophils crawl over 
the endothelial cell surface to the nearest junction using 
their integrins Mac-1 and LFA-1, a process called 
locomotion or crawling (8). Recently, in vivo evidence 
about neutrophil crawling was presented (9). 
Transendothelial migration primarily takes place in a 
paracellular manner, i.e. at the intercellular junctions. In 
particular, tricellular junctions (47), as well as endothelial 
junctions positioned above areas where the basement 
membrane expresses lower levels of matrix proteins (48), 
have been proposed as preferential areas of extravasation 
for transmigrating neutrophils in vivo. Moreover, recent 
evidence indicated that neutrophils and other leukocytes 
may enter the extravascular tissue in a transcellular 
manner, i.e. through the endothelial cells (12;49;50). In 
fact, the transcellular pathway may become more 
prominent when intravascular crawling is disabled in vivo 
(9). In vitro findings, pointed to the predominance of the 
paracellular route for neutrophils, however, 5% of 
neutrophils were found to use the transcellular route (49). 
Interestingly, longer TNF-alpha pretreatment or ICAM-1 
overexpression resulted in an increase of the relative 
contribution of the transcellular pathway in neutrophil 
transmigration (51). 

 
For the paracellular pathway, endothelial 

junctions represent the major barrier for the transmigrating 
neutrophil. At least two types of junctions are involved in 
transmigration: (i) Adherens junctions (zonula adherens) 
formed by VE-cadherins that promotes calcium-dependent, 
homophilic cell-cell contacts. The link between cell-
membrane-associated VE-cadherin and the actin 
cytoskeleton is mediated by intracellular catenins. (ii) 
Tight junctions (zonula occludens), the most apical 
junctions, form a close intercellular adhesive contact and 
consist of three types of transmembrane proteins, occludin, 
claudins and junctional adhesion molecules (JAM), which 
are linked intracellularly to cytoskelettal signaling 
molecules such as zonula occludens-1 (ZO-1) (52).  
 
4.1. VE-cadherin 

VE-cadherin acts as a gatekeeper for the passage 
of leukocytes, since antibodies against VE-cadherin 
increase the permeability of endothelial-cell monolayers 
and the rate of neutrophil extravasation in vivo (53), 
whereas in vitro studies indicate that VE-cadherin gaps 
form transiently during diapedesis (54). However, it is still 
unclear, whether the disappearance of VE-cadherin from 
the junction at the site of neutrophil transmigration is a 

prerequisite for the process or a consequence thereof. A 
potential explanation is that neutrophil adhesion to 
endothelial cells results in a decrease in VE-cadherin-
mediated adhesion partially regulated by VE-cadherin 
phosphorylation. The phosphorylation of tyrosines 658 and 
731 in the cytoplasmic tail of VE-cadherin as well as of Ser 
665 has been correlated with the barrier function of VE-
cadherin (55;56). More recently ICAM-1-mediated 
neutrophil adhesion to endothelial cells was shown to 
induce VE-cadherin tyrosine phosphorylation promoting 
neutrophil transmigration (57). Other pathways including 
the GTPase Rac1, reactive oxygen species and the ROS-
activated proline-rich tyrosine kinase 2 that can 
phosphorylate beta-catenin have also been implicated as 
signaling intermediates (58;59).  

 
Interestingly, neutrophil-derived elastase is able 

to degrade the extracellular part of VE-cadherin. Thus, 
neutrophils may engage this mechanism to facilitate their 
migration through endothelial cell-cell junctions (60;61). 
However, the importance of proteolytic cleavage of VE-
cadherin by neutrophil proteases is unclear, since elastase-
deficient or MMP-9-deficient neutrophils had no defect in 
transendothelial migration under flow (62).  
 

4.2. JAMs and related molecules  
JAMs are immunoglobulin superfamily members, 

consisting of two extracellular Ig-like domains (63;64) that 
are found in tight junctions of endothelial and epithelial 
cells most likely due to their class-II PDZ domain-binding 
motif at their final carboxy-terminus, which predisposes 
them to interact with junction-associated PDZ-domain-
containing molecules (63;64). JAM-A is also found on 
different circulating blood cells including platelets, 
neutrophils, monocytes, and lymphocytes (65), whereas the 
expression pattern of JAM-B and JAM-C is more restricted 
with JAM-C being also present on platelets and a B-cell 
subpopulation (66-69). Besides their propensity to interact 
in a homophilic fashion through a conserved motif in their 
membrane-distal domain (70-72), JAMs are also engaged 
as counter-receptors for leukocyte integrins: In particular, 
JAM-A binds to LFA-1 (73;74), JAM-B associates with 
VLA-4 (75) and JAM-C interacts with Mac-1 (68).  

 
A first evidence for a putative role of JAM-A in 

neutrophil diapedesis derived from experiments 
demonstrating inhibition of neutrophil recruitment in 
experimental meningitis with an antibody to JAM-A (76). 
JAM-A-deficient mice displayed reduced neutrophil 
recruitment in a peritonitis model, however, in this model, 
it was exclusively JAM-A on the myeloid cells / 
neutrophils that was necessary for transmigration, whereas 
JAM-A on endothelial cells was found to not be required 
(77;78). Contrastingly, endothelial JAM-A mediated 
neutrophil extravasation in a liver model for ischemia-
reperfusion injury model (78). 

 
The heterophilic binding of JAM-C to Mac-1 was 

found to mediate a firm platelet-neutrophil interaction 
especially under low-shear rate (68). In addition, soluble 
JAM-C blocked neutrophil transmigration through 
endothelial and epithelial cells (79-81). Neutrophil 
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accumulation in a model of lung inflammation was 
inhibited by blocking antibodies against JAM-C and was 
enhanced by endothelial-specific overexpression of JAM-C 
(81). However, whether these functions of JAM-C can be 
corroborated with JAM-C deficient mice remains 
controversial (82;83). In addition to binding to Mac-1, 
JAM-B efficiently binds to JAM-B (84), and an antibody to 
JAM-C dissociated the JAM-C/JAM-B heterodimers at the 
endothelial cell-cell contacts, thereby rendering JAM-C 
accessible for the integrin Mac-1 (85). We recently 
demonstrated an unexpected function of JAM-C to mediate 
an increase in endothelial permeability. Knockdown of 
JAM-C increased activity of the small GTPase RAP1 in 
endothelial cells and promoted VE-cadherin-mediated 
interendothelial contacts, representing the first functional 
interplay between tight junctions and adherens junctions in 
endothelial cells (72;86). In contrast, JAM-A may promote 
the activity of RAP1 in epithelial cells (87). Together, the 
underlying mechanism for the role of JAM-C in neutrophil 
transmigration is rather complex. It remains to be 
determined which of the above outlined pathways is 
operative in mediating the effect of JAM-C in neutrophil 
extravasation in vivo. 

 
The JAM-related endothelial selective adhesion 

molecule (ESAM) differs from JAMs by having a longer 
cytoplasmic tail ending in a type-I PDZ-domain binding 
motif (63). In a recent study, ESAM-deficient mice 
displayed reduced neutrophil diapedesis and thereby 
delayed neutrophil accumulation in thioglycollate-induced 
peritonitis, as well as upon TNF-alpha or IL-1beta 
stimulation (88). A potential explanation could be that 
ESAM expression regulates the activity of RhoA GTPase, 
which is involved in regulation of the endothelial barrier 
and neutrophil transmigration (89;90). It is intriguing to 
hypothesize that JAMs and related molecules such as 
ESAM regulate the activity of small GTPases in endothelial 
cells and thereby participate in neutrophil transmigration. 
However the underlying mechanistic details are not yet 
defined and merit further investigation.  

 
4.3. Platelet endothelial cell adhesion molecule-1 
(PECAM-1) and CD99 

PECAM-1 is a member of the immunoglobulin 
superfamily consisting of six Ig domains and is expressed 
at the intercellular borders of endothelial cells as well on 
platelets, neutrophils, monocytes and some T cells (91;92). 
The two amino terminal Ig domains of PECAM-1 are 
involved in a homophilic interaction which is considered to 
operate during neutrophil transendothelial migration. 
Blocking the homophilic interaction of PECAM-1 inhibits 
transendothelial migration in vitro and in vivo (93-97), and 
leukocytes blocked at the PECAM-1-dependent step remain 
adherent on the apical surface of the endothelial cells. 
Endothelial PECAM-1 recycles between the junctions and 
the subjunctional plasmalemma, and is targeted to the zone 
of active leukocyte transmigration (97). PECAM-1 
knockout mice in the mouse strain C57Bl/6 did not show a 
reduction in neutrophil recruitment (98), however, breeding 
these mice into different mouse strains did result in a 
decrease in the recruitment of neutrophils into inflamed 
peritoneum (99). Interestingly, PECAM-1 deficiency was 

found to affect preferentially interleukin (IL)-1beta- but not 
TNF-alpha-induced inflammation (100). 

 
 Besides the cation-independent Ig domain 1 and 
2-dependent homophilic binding of PECAM-1, a cation-
dependent PECAM-1 heterophilic interaction mediated by 
Ig domain 6 of the molecule has been reported to 
participate at a late step of diapedesis, namely the migration 
through the basement membrane (94). In this context, we 
recently identified a member of Ly-6 family, CD177, as a 
novel heterophilic binding partner of PECAM-1. CD177 is 
a 58- to 64-kDa glycosyl-phosphatidyl-inositol (GPI)-
anchored glycoprotein, which is expressed exclusively on 
neutrophils but not on other blood cells. In contrast to the 
homophilic PECAM-1 interaction, the heterophilic 
interaction between CD177 and PECAM-1 could be 
blocked by antibodies to Ig domain 6 of PECAM-1. In 
addition, we demonstrated that this heterophilic interaction 
functions in neutrophil transendothelial migration (101). 
 
 Another interesting observation is that PECAM-1 
homophilic ligation results in an upregulation of the 
laminin receptor alpha6beta1-integrin on transmigrating 
neutrophils thereby enhancing the subsequent penetration 
of the basement membrane by neutrophils. Consequently, 
neutrophils treated with antibodies to alpha6beta1-integrin 
are trapped between endothelium and the basal lamina 
(102). These findings also point to the fact that PECAM-1 
acts a signaling receptor. PECAM-1 contains two 
immunoreceptor tyrosine-based inhibitory motifs, which 
are involved in signals mediated by Src-homology-2 
containing phosphatases, such as SHP-1 and SHP-2 (103-
105). In addition, antibody crosslinking of PECAM-1 has 
been shown to upregulate the activity of beta1- and beta2-
integrins on neutrophils and other leukocytes (106;107). 
 

CD99 is a highly O-glycosylated molecule 
expressed on both neutrophils and other leukocytes and at 
the interendothelial junctions that acts in a homophilic 
manner to mediate transmigration (108). It controls a step 
in diapedesis that is distinct from and distal to the step 
mediated by PECAM-1, as cells blocked at the CD99-
dependent step are arrested halfway across the endothelial 
junction (108;109). Mouse CD99 was recently cloned and 
antibodies to mouse CD99 inhibited the recruitment of 
antigen-specific T cells into inflamed areas of the skin and 
edema formation (110). In addition, endothelial CD99 was 
found to participate in neutrophil diapedesis in vivo (110). 
CD99L2 is a recently identified molecule expressed on 
both leukocytes and endothelial cells that shares 32% 
amino acid identity with CD99. CD99L2 was shown to 
specifically participate in neutrophil but not lymphocyte 
diapedesis in vivo and blocking CD99L2 inhibited 
neutrophil transmigration through the vessel wall at the 
level of the perivascular basement membrane (110).  
 
4.4. ICAM-1  

Besides the well established evidence that the 
LFA-1 interaction with ICAM-1 mediates firm adhesion of 
neutrophils to the endothelium, recent evidence pointed to 
the importance of this interaction for transendothelial 
migration as well. During neutrophil transmigration, LFA-1 
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rapidly redistributes to form a ring-like cluster at the 
neutrophil-endothelial junctional interface through which 
transmigration occurs. Endothelial ICAM-1 colocalizes 
with this ringlike LFA-1 cluster (50). Moreover, a 
"cuplike" transmigratory structure comprising of ICAM-1-
enriched microvilli-like projections was shown to surround 
transmigrating neutrophils during diapedesis (49). 
Neutrophil attachment on endothelial cells and ICAM-1 
ligation is thought to induce cytoskeletal remodeling 
associated with ICAM-1 clustering, in a manner dependent 
on cortactin (111). Cortactin and its tyrosine 
phosphorylation are required for the clustering of ICAM-1 
around transmigrating neutrophils (112).  

  
Recently, an involvement of ICAM-2 in 

neutrophil recruitment in vivo was demonstrated by 
engaging antibodies to ICAM-2 and ICAM-2-deficient 
mice. Intravital microscopy suggested an involvement of 
ICAM-2 in neutrophil diapedesis as opposed to rolling and 
adhesion (113).  
 
5. CONCLUSIONS 
 

Despite the significant progress in our 
understanding of the process of transendothelial migration 
in the recent years, there is obviously still a lot to learn. In 
particular, the relative importance of each of the molecules 
in vivo needs to be established. Experiments comparing 
more than one of the adhesion pathways should be 
designed. In addition, it is conceivable that the different 
adhesion pathways involved in transmigration may 
cooperate at different levels and that a hierarchy may exist 
amongst them. However, these concepts require further 
investigations. Future experiments need also to focus on the 
tissue-, vascular bed- and inflammatory stimulus-specificity 
of each of the above described pathways. Understanding 
the molecular contributors of neutrophil and leukocyte 
transmigration in detail will provide the platform for the 
design of specific therapeutic approaches in inflammatory 
diseases.    
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