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1. ABSTRACT 
 

 Aquaporins and aquaglyceroporins are 
membrane channel proteins that selectively transport water 
and small molecules such as glycerol across biological 
membranes. Molecular dynamics simulations have made 
substantial contributions toward understanding the 
permeation mechanisms of aquaporins in atomic detail. 
Osmotic pressure is the driving force of the transport by 
aquaporins. The osmotic water permeability of aquaporins 
can be estimated from equilibrium molecular dynamics 
simulations by using linear response theory. The relationship 
between osmotic permeability and channel structure was 
investigated by the recently proposed pf-matrix method. In 
addition to the water transport, other functions of aquaporins 
and aquaglyceroporins, i.e., glycerol permeation, proton 
blockage, and gating, have also been extensively studied by 
molecular dynamics simulations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 Water is the most abundant substance in cells, 
accounting for approximately 70% of the total weight of a 
cell (1). Water plays crucial roles in many biological 
phenomena including protein folding and enzyme reactions. 
Because cell membranes are nearly impermeable to water, 
aquaporins, which are channel proteins embedded in 
membranes, facilitate and regulate water transport across 
cell membranes (2). Aquaporins are present in most life 
forms including bacteria, plants, and animals. In humans, 
more than ten different aquaporins have been identified, and 
defects in some aquaporins are associated with diseases. 
 

 The main feature of aquaporins is highly 
efficient water transport. The permeability of aquaporins is 
estimated to be ~109 water molecules per subunit per second. 
A second feature of aquaporins is the prevention of proton
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Figure 1. A setup of MD simulations for an aquaporin 
homotetramer embedded in membranes (20, 30). (A) Side 
view and (B) top view. Four monomers are colored in red, 
green, magenta, and yellow. Each monomer has an 
independent water pore, in which water molecules are 
displayed only for the green monomer. The pore water 
molecules form a single file inside the channel. Other than 
the water pores, the central pore, which is formed between 
the four monomers, has been proposed as a permeation route 
for ions and gases (52-54, 57). 

 
permeation. Because pH is strictly regulated in cells, the 

leakage of protons may lead to severe cellular damage. Thus, 
it is critical that aquaporins block the leakage of protons, 
despite their highly efficient water-transport capability. 

 
 The aquaporin family contains two major 
subfamilies: the aquaglyceroporin subfamily, which 
transports small neutral molecules, e.g., glycerol, as well as 
water, and the aquaporin subfamily, which is characterized 
as being highly water selective. Three dimensional 
structures of aquaporins and aquaglyceroporins have been 

solved by using electron (3-6) and x-ray (7-12) 
crystallography. The overall structures of aquaporins and 
aquaglyceroporins are very similar: the root mean-square 
displacements for C-alpha atoms are 1.6–2.3 Å for the whole 
chain and 0.6–1.3 Å for the transmembrane helices. 
Notwithstanding the close similarity of overall structures 
among members of the aquaporin family, these proteins 
exhibit a rather wide range of permeability (13-19) due to 
subtle differences in side-chain structures of channel 
residues. 
 
 Molecular dynamics (MD) simulations have 
made substantial contributions toward understanding the 
permeation mechanisms of aquaporins and 
aquaglyceroporins. The present article reviews recent 
advances in MD simulations of aquaporins and 
aquaglyceroporins. 
 
3. WATER TRANSPORT IN AQUAPORIN 
 
 Figure 1 shows the typical setup of MD 
simulations of aquaporins. All known structures of 
aquaporins and aquaglyceroporins are homotetramers, and 
each monomer has an independent water pore (Figure 1). 
The average radii of the channels during simulations were 
about the size of one water molecule (Figure 2B). As 
expected, an aquaglyceroporin member, GlpF, which is able 
to transport glycerols, has a larger channel radius than the 
other aquaporins that transport water only.  
 
 In the channel, there are two important regions 
acting as filters. The first filter is in the vicinity of the 
asparagine-proline-alanine (NPA) motif that is highly 
conserved in the aquaporin family. The NPA region is 
located at the center of the channel (Figure 2A). The second 
filter is the aromatic/arginine (ar/R) region, which is also 
called the selectivity filter (7). The ar/R region comprises the 
narrowest part in the channel (Figure 2A) and is located on 
the extracellular side of the channel. 
 
 The average water density profile within the 
channels (Figure 2C) (20) exhibits preferential sites for 
water: these sites are positions where water can form 
hydrogen bonds with residues in the inner surface of the 
channels. Water permeation through the channel occurs as a 
series of jumping motions between the preferential sites. 
The MD simulations revealed that protein-water interactions 
are the major interactions of water molecules in the NPA and 
ar/R regions, and that water-water interactions dominate in 
the other regions of the channel (21). Except for in the filter 
regions, neighboring water molecules form a hydrogen 
bond; thus, water molecules in the channel behave like a 
hydrogen-bonded wire (Figure 1). 
 
 Aquaporin AQP0, which is found in lens fiber 
cells of eyes, has unique features. First, AQP0 exhibits a 
much lower rate of water permeation than other aquaporins 
(16). Second, AQP0 forms not only water pores but also 
junctions between lens fiber cells (22). The 
three-dimensional structure of the AQP0-mediated 
membrane junction was determined by electron 
crystallography of double-layered two-dimensional crystals
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Figure 2. The channel structures and properties during MD 
simulations (20, 30). (A) The channel region of GlpF. The pore 
structure is represented by light-blue meshes. The NPA and the 
ar/R regions are colored in yellow and cyan, respectively. Tyr23 
and Tyr149 of the superimposed AQP0 structure, which are 
shown in pink sticks and dot surfaces, protrude into the pore. 
The z-axis is aligned to the bilayer normal with the extracellular 
side on the right. (B) Average channel radii of GlpF (cyan), 
AqpZ (blue), and AQP0 (pink) in MD simulations. (C) Average 
number density of channel waters in MD simulations. (D) 
Average orientations of channel waters represented by the order 

parameter 
cosθ

, where θ is the angle between the dipole 
moment of water and the membrane normal. 

 (4, 5). The structure of the non-junctional AQP0 was also 
solved by x-ray crystallography of three-dimensional 
crystals (10). The water pores of the junctional AQP0 are 
critically narrower in several regions than those of other 
aquaporins, which led to the proposal that the junctional 
structure was a closed state of the channel. By contrast, the 
non-junctional structure was considered as an open state in 
which seven crystal water molecules were observed in the 
water pore (only three pore water molecules were found in 
the water pore of the junctional AQP0). However, even in 
the open structure of the non-junctional AQP0, the NPA 
region is occluded by Tyr23, a residue not seen in the other 
known aquaporin structures (see Figure 2A). MD 
simulations of the non-junctional AQP0 showed that the 
time average of the AQP0 channel radii were smaller than 
those of other aquaporins (Figure 2B) and, in particular, 
water density in the NPA region was almost absent (Figure 
2C) (20). Nevertheless, during the simulations, a few water 
molecules could pass through the constricted region (Figure 
3). This finding indicates that thermal fluctuations of critical 
side-chains play a crucial role in the water permeation 
through AQP0 (20, 23). 
 
4. OSMOTIC PERMEABILITY 
 
 Because the transport of aquaporins is passive, 
the driving force of the transport is osmotic pressure. The 
osmotic water permeability of a single channel pf, which 
characterizes the transport efficiency of aquaporins, is 
defined by: 
 

f w s/p j C= ∆ , (1) 

 
where jw is the molar water flux of a channel and ∆Cs is the 
concentration difference of molecules between the two sides 
of the membrane. In MD simulations, the osmotic water 
permeability has been estimated by imposing explicit 
driving forces (24, 25). However, large driving forces are 
required to observe significant water permeation within the 
time scale of MD simulations. To avoid this problem, 
alternative approaches, in which the osmotic permeability, 
pf, can be estimated from equilibrium MD simulations in the 
absence of a driving force, have been proposed, based on 
linear response theory (20, 26, 27) or Kramers-type theory 
(28, 29). 
 
 In the approach based on linear response theory 
(26), the configuration of channel water molecules is treated 
by the collective coordinate n, defined in differential form 
as: 
 

( )
/k

k S t
dn dz L

∈

= ∑ , (2) 

 
where dzk is the displacement of water k along the channel 
(aligned in the z direction), S(t) is the set of water molecules 
in the channel, and L is the length of the channel. By this 
definition, the net amount of water permeation can be 
calculated by the time average of n. Every water molecule 
crossing the membrane through the channel from one side to 
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Figure 3. A water permeation process across the NPA region of AQP0 (20). (A) Snapshots in the MD simulations of AQP0. Tyr23 
is illustrated by a stick model. Water molecules are colored in yellow, green, and pink. The yellow water molecule passed through 
the constriction region near Tyr23 in 9 ps. (B) Trajectories of water molecules in the channel. Colors of lines in the inset correspond 
to those of water molecules in the snapshots. 
 
the other increases n by +1 (upward) or −1 (downward). 
 
 In the equilibrium simulations, the time average 
of n, 

0
( )n t , becomes zero. However, the time average of 

n2, 2

0
( )n t , is not zero, and behaves as the 

one-dimensional diffusion: 
 

2

0
( ) 2 nn t D t C≈ + , (3) 

 
where Dn is the diffusion coefficient, and C is a constant. 
The diffusion coefficient is related to the single-channel 
osmotic permeability constant pf as follows: 
 

f w np v D= , (4) 

 
where vw is the volume of a single water molecule. 
 
 Although pf calculated from simulations can be 
directly compared with the experimental value, a single 
quantity pf does not explain in detail the contributions of 
each local channel region to water permeability. Therefore, 
the theory was extended to a form that explicitly describes 
the contributions from the local regions (30). The channel is 
subdivided into N subchannels with length LN ( NL NL= ). 
The collective coordinate, ni, for subchannel i is defined as: 
 

( )
/

i

i k N
k S t

dn dz L
∈

= ∑ , (5) 

 
where Si(t) is the set of water molecules in subchannel i 
( 1, , N= L ). Since /ii

n n N=∑ , the mean square 
displacement of n becomes: 
 

2 2

00
,

( ) ( ) ( ) /i j
i j

n t n t n t N=∑ , (6) 

 
where 

0
( ) ( )i jn t n t  is written in a similar manner to Eq. (3), 

as: 
 

0
( ) ( ) 2i j ijn t n t D t C≈ + . (7) 

 
The value of pf is thus divided into the local contribution pij 
as follows: 
 

2
f

,
/ij

i j
p p N=∑ , (8) 

with 
wij ijp v D= .

 (9) 
 
We refer to the matrix of pij as the pf matrix. Note that the 
diagonal element pii is the water permeability of subchannel 
i, and the off-diagonal element pij (i ≠ j) denotes the 
covariance between the water molecules in i and those in j. It 
is convenient to convert the diagonal and off-diagonal 
elements pij into the correlation coefficient cij, defined as  
 

( )1/ 2

ij ij ii jjc p p p= . We refer to the matrix of cij as the pf 

correlation matrix. 
 
 The most important feature of the pf matrix is 
that the average of all the elements corresponding to the 
channel region, including both diagonal and off-diagonal 
elements, equals pf (see Eq. 8). The formulation of the pf 
matrix indicates that the correlated motions of widely 
separated water molecules influence osmotic permeability, 
as do adjacent water molecules. 
 
 Figure 4 shows the diagonal elements of pf 
matrices and pf correlation matrices for AqpZ, GlpF, and 
AQP0 (30). AqpZ, a highly water selective aquaporin found 
in Escherichia coli, showed high correlation for the entire 
channel. In the other aquaporins, clear reductions in cij for 
subchannels i and j separated by the NPA region were 
observed. In particular, AQP0, for which MD simulations 
were conducted in the non-junctional form, had almost no 
correlation across the NPA region due to no water density 
around the NPA region (Figure 4D). As described above, the 
elimination of water around the NPA region is caused by the 
occluding side chain of Tyr23 in AQP0 (see Figure 2A and 
C). 
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Figure 4. The pf matrices for AqpZ, GlpF and AQP0 (30). (A) Diagonal elements pii of the pf matrix for AqpZ (blue), GlpF (cyan), 
and AQP0 (pink). The pf correlation matrices are shown for AqpZ (B), GlpF (C), and AQP0 (D). The broken lines indicate the 
position of the NPA region. 
 
It is interesting to compare the pf matrices of AqpZ, a pure 
water channel, and GlpF, a glycerol channel. In AqpZ, the 
strong correlation (i.e., the off-diagonal elements) largely 
contributed to the osmotic permeability (Figure 4B). In 
contrast, GlpF had weaker correlations than AqpZ (Figure 
4C). Instead of the correlation, the diagonal elements pii of 
GlpF were larger than those of AqpZ (Figure 4A). The large 
pore size in GlpF (see Figure 2B) seems to increase the local 
permeability (i.e., the diagonal elements pii) and to decrease 
the correlation in water motion. As shown in Figure 2C, the 
water density in the pore of GlpF is significantly larger than 
that of AqpZ. Compared with the nearly ideal single-file 
water configuration in AqpZ, additional water molecules in 
the large pore of GlpF appear to break one-dimensional 
hydrogen bond networks of waters to reduce the correlation 
between the two ends of the channel. 

 A surprising feature of the pf correlation 
matrices is that no significant reduction in correlation 
around the ar/R region was observed, even in the narrowest 
region of the channel (Figure 4). Instead of correlation, the 
diagonal elements were small around the ar/R region 
compared with those of other regions (Figure 4A), 
indicating that the local permeability around the ar/R region 
is low. This may be due to the strong interaction between the 
water and protein in the ar/R region. As discussed below, the 
ar/R region is responsible for the water selectivity of 
aquaporins. 
 
 The pf matrix method revealed detailed 
differences in the permeation behavior of aquaporins. The pf 
matrix method is an efficient and general way to analyze the 
osmotic permeation of water channels. This method is 
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Figure 5. (A) The Grotthuss mechanism of proton transport. (B-D) Schematic representations of three explanations of proton 
blockage in aquaporins. (B) The bipolar water orientations observed in MD simulations prevent proton hopping via the Grotthuss 
mechanism (32-34). (C) Due to large dehydration penalty, the translocation of a proton from bulk water to the pore is accompanied 
by the large free-energy cost (35-37). (D) The electrostatic field generated mainly by the macrodipoles of alpha-helices in 
aquaporin is unfavorable for proton conduction (38-40). 
 
applicable to other channel proteins or to artificial channels 
such as those in designed carbon nanotubes. 
 
5. PROTON BLOCKAGE 
 
 In bulk water, protons can be conducted quickly 
through a chain of water molecules according to the 
Grotthuss mechanism (Figure 5A) (31). In the Grotthuss 
mechanism, protons hop from one water molecule to another 
water molecule via the rearrangement of covalent and 
hydrogen bonds. If water molecules in pores have the same 
orientation, the leakage of protons through the pores is 
permitted via the Grotthuss mechanism. How do aquaporins 
block the leakage of protons? Several simulations have been 
performed to address this question (21, 32-43). Three main 
explanations have been proposed so far. The first 
explanation is the bipolar water orientation (Figure 5B) 
(32-34), which has been observed in several simulations of 
aquaporins (Figure 2D) (20, 21, 32, 33). Water molecules are 
oriented in opposite directions with their hydrogen atoms 
pointing toward the exits. The asparagine residue in the NPA 
motif forms a hydrogen bond with a central water molecule, 
making its lone electron pairs unavailable as proton 
acceptors for the neighboring water molecules. Because 
proton hopping via the Grotthuss mechanism requires that 
each water molecule must be both a proton donor and 
acceptor for neighboring water molecules, the hydrogen 
bonding arrangement of the bipolar orientation inhibits 
proton conduction via the Grotthuss mechanism. The second 
explanation is the dehydration penalty for hydrated protons 
(Figure 5C) (35-37). Because bulk water is a highly polar 
environment and the aquaporin pore does not provide 
sufficient interactions for protons, the translocation of a 
proton from bulk water to the pore is accompanied by the 
large free-energy cost of the dehydration. The third 
explanation is that electrostatic interactions provided by 
aquaporins are unfavorable for proton conduction (Figure 
5D) (38-40). The electrostatic barrier, generated mainly by 
the helical macrodipoles of alpha-helices in aquaporins, is 
responsible for the free-energy peak of the proton 

translocation near the NPA region. In addition, the 
electrostatic interactions of the ar/R region also contribute to 
the inhibition of proton conduction. These three 
explanations are related to each other. The electrostatic field 
generated by aquaporins is the main cause of the bipolar 
water orientation. The dehydration penalty is the balance 
between the hydration free energy and the interaction free 
energy in the pore including electrostatic contributions. 
Therefore, the cause of the proton blockage in aquaporins 
can be considered as the multiple related factors (31). 
 
6. PERMEATION OF GLYCEROL AND OHTER 
MOLECULES 
 
 Aquaglyceroporins, which constitute a 
subfamily of the aquaporin family, facilitate small neutral 
molecules, e.g., glycerol, as well as water molecules. In 
contrast to water transport, the direct observation of 
complete glycerol permeation in conventional MD 
simulations is difficult because glycerol permeation has a 
longer time scale than typical current MD simulations (44). 
Instead of direct observations, free-energy approaches are 
often utilized to overcome the time-scale limitation of MD 
simulations (45). In the free-energy approaches, rare events 
are sampled by applying external forces. After the sampling, 
statistical mechanics procedures are used to remove the 
effects of external forces, and free-energy profiles can be 
constructed. In GlpF, a glycerol channel, free-energy 
profiles of glycerol permeation through the pore were 
calculated, employing Jarzynski’s equation (46) or an 
adaptive biasing force approach (47). To investigate 
determinants of substrate selectivity in this channel, the 
free-energy profiles of glycerol permeation in AqpZ, a pure 
water channel, were also calculated and compared with 
those of GlpF (48). As expected, AqpZ has a much larger 
free-energy barrier than GlpF, indicating that AqpZ is 
impermeable to glycerol under normal conditions. In both 
AqpZ and GlpF, the free-energy barrier is located at the ar/R 
region, which may be primarily responsible for substrate 
selectivity.  
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 Recently, comprehensive MD simulations 
investigating the selectivity mechanism of AQP1 and GlpF 
were reported (49). In this study, free-energy profiles for O2, 
CO2, NH3, glycerol, urea and water through the water pores 
in AQP1 and GlpF were calculated using the umbrella 
sampling method. For small molecules permeating through 
AQP1, an anticorrelation between solute hydrophobicity 
and the free-energy barrier at the ar/R region was observed.  
Large molecules such as urea or glycerol were sterically 
excluded in AQP1 due to the small pore size at the ar/R 
region. Compared with AQP1, GlpF has the hydrophobic 
pocket opposite to the arginine at the ar/R region. Thus, 
GlpF allows hydrophobic solutes and comparatively large 
molecules to pass through the ar/R region, whereas AQP1 is 
impermeable to those molecules. 
 
7. GATING 
 
 Gating is one of the fundamental functions of 
channels such as ion channels. Although most aquaporins 
are believed to be permanently open, some aquaporins 
exhibit gating in response to changes in conditions such as 
pH and phosphorylation (50). In bovine AQP0, water 
conductance is dependent on pH, with a maximum 
conductance at pH 6.5 and only about half of the maximum 
conductance at pH 7.5 (51). In a plant aquaporin, SoPIP2;1, 
phosphorylation of Ser115, which is located at the 
cytoplasmic side, triggers the channel opening (12). A drop 
in cytoplasmic pH, as well as dephosphorylation of Ser115, 
causes the channel closure of SoPIP2;1. MD simulations of 
SoPIP2;1 showed that, upon the phosphorylation, a 
cytoplasmic loop capping the channel in the closed state 
underwent large conformational changes, resulting in the 
opening of the water pore (12). 
 
 A gating motion of AqpZ was observed in MD 
simulations (27, 48). In the MD simulations, the sidechain of 
the highly conserved Arg189 at the ar/R region fluctuates 
between two distinct configurations denoted “up” and 
“down”. In the up configuration, the conformation of the 
sidechain of Arg189 is similar to that of other aquaporins, 
and the channel is open. In the down configuration, the 
sidechain of Arg189 occludes the pore in the ar/R region, 
leading that the channel is closed. In another x-ray structure 
of AqpZ derived from a different crystal form, two 
configurations of Arg189 corresponding to the open and 
closed states were also observed (11). In the x-ray structure, 
crystal packing appears to influence the preference of two 
configurations of Arg189. The possibility that 
protein-protein interactions may be involved in regulation of 
the gating was argued (11). However, the supporting 
functional evidence of gating of Arg189 has not been known 
yet. Its physiological significance, therefore, remains 
speculative (50). 
 
8. SUMMARY AND PERSPECTIVE 
 
 Aquaporins are one of the most characterized 
channel proteins with atomic-resolution structural data. MD 
simulations have made substantial contributions to 
elucidating the mechanisms of water and glycerol 
permeation, proton blockage, and gating of aquaporins. New 

methodologies for understanding the mechanisms have also 
been developed to overcome limitations of MD simulations. 
In humans, more than ten different aquaporins are present, 
and some of these proteins may have functions other than the 
transport of water and glycerols (and small neutral 
molecules) through the water pores. For example, a 
secondary role of AQP0 has been proposed to be cell 
adhesion in lens fiber cells (2). The junctional structure of 
AQP0 was solved by using electron crystallography (4, 5). 
In addition to AQP0, the double-layered junctional structure 
was also determined for AQP4, suggesting that AQP4 also 
plays a role in cell adhesion (6). Stability of interlayer 
interactions is an intriguing issue for MD simulations. 
 
 Another pore, known as a central pore, is formed 
between the four monomers of aquaporins (see Figure 1B). 
The central pore has been proposed to be a permeation route 
of ions (52, 53) and gases (54). Gating for the central pore 
upon cGMP binding was also proposed (55, 56). Although 
MD simulations have contributed to the understanding of the 
functions of the central pore (53, 54), compared with the 
well-studied water pores, the central pore of aquaporins is 
still poorly understood. It remains an open question whether 
the central pore has any physiological importance (57). 
Aquaporins probably might not be a simple water pore. 
Computational approaches, as well as experimental 
approaches, will further shed light on many different 
functions of aquaporins. 
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