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1. ABSTRACT 

 
SUMOs (Small Ubiquitin-like modifiers) belong 

to a superfamily of ubiquitin like proteins (Ubls) that are 
covalently conjugated to their substrates via enzymatic 
cascade reactions. The heterodimeric activating complex 
(SAE1/SAE2, E1) and conjugating enzyme (Ubc9, E2) 
required for the SUMO conjugation pathway are distinct 
from those involved in other Ubl pathways, and the 
presence of ligases (E3) stimulates the conjugation 
reaction.  SUMO is implicated in a variety of physiological 
as well as pathological processes such as cell division, 
signal transduction, DNA damage and repair, and cancer 
development. This review focuses on the fundamental 
features of SUMO conjugation and its potential implication 
in cardiovascular development.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
Posttranslational modifications, such as chemical 

modifications (phosphorylation, acetylation, methylation), 
and covalent conjugation of small proteins (ubiquitin and 
ubiquitin-like proteins, Ubls), constitute dynamic 
regulatory mechanisms whereby the functions of a wide 
variety of proteins can be modulated. These modifications 
are extensively implicated in numerous cellular processes 
such as cell proliferation and differentiation, apoptosis, 
organogenesis.  

 
Ubls are special proteins utilized to covalently 

modify their substrates in a reversible manner. Since the 
discovery of ubiquitin in the 1970s (1, 2), great strides have 
been made towards understanding the biochemistry and 
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Figure 1. Comparison of amino acid sequences of human SUMO proteins with ubiquitin and some selected Ubl proteins.  
 

biological functions of the ubiquitination system. SUMO-1 
(Small Ubiquitin-like Modifier-1, also known as sentrin-1, 
SMT3C, UBL1, GMP-1, PIC1) was discovered by several 
groups independently in the mid 1990s (3-6). Subsequently, 
another ubiquitin-like protein, NEDD8 (Neural Precursor 
Cell-Expressed Developmentally Down-regulated-8, or 
Rub1),  was discovered and shown to function as a 
ubiquitin-like protein whose major targets are cullin family 
members (7-11). More recently, another Ubl-related protein 
coined Ufm1 (Ubiquitin Fold Modifier-1) was identified 
although its biological function as well as targets remain to 
be uncovered (12, 13).  

 
Ubiquitin-like proteins exhibit highly conserved 

three dimensional structures although their primary 
sequences vary considerably (Figure 1).  Furthermore, the 

similar mechanisms of catalytic cascade reactions apply to 
all these ubiquitin-like proteins identified to accomplish 
covalent linkages to substrates although the involved 
enzymes at each step appear unique for each particular 
conjugation pathway. The expression patterns and 
subcellular localizations of ubiquitin-like proteins also 
vary, indicating mechanisms for control of pathway 
specificity (8, 14, 15).  

 
As a sophisticated and versatile mechanism for 

governing the activities of a large pool of target proteins, 
SUMO modification is emerging as an efficient pathway 
contributing to a multitude of cellular activities under both 
physiological and pathological states including mitosis (16, 
17), stress response (18, 19), cancer development (20), 
DNA damage and repair (21), nuclear transport (4), 
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Figure 2. SUMO conjugation pathway. Maturation, SUMO conjugation motif GG is exposed via cleavage by SENPs. Activation, 
SUMO-GG forms thiol ester bond with Uba2/Aos1 in an ATP consuming way. Conjugation and ligation, SUMO-GG is 
transferred to its substrates by Ubc9 and/or E3 ligases. Please note that the presence of E3 ligases may promote the formation of 
poly-SUMO chain or/and activate atypical SUMO attachment site (s). De-conjugation, SUMO-GG is freed from its conjugating 
state by SENPs and readies for a new round of conjugation.  

 
neurodegeneration (22). The number of proteins identified 
as SUMO substrates is increasing at a rapid pace. This 
review briefly discusses the basic features of SUMO 
conjugation pathway and highlights the recent findings 
implicating its potential function in cardiovascular 
development.  

 
3. SUMO CONJUGATION PATHWAY 
 

SUMO (Small ubiquitin-like modifier) is a 
member of Ubl superfamily. Although only one SUMO 
protein has been identified in yeast, at least three functional 
homologs of SUMO proteins have been identified in higher 
vertebrates (14, 23). SUMO-1 appears to be the most active 
under physiological conditions (14). Active SUMO-2 and -
3 share over 95% similarity at amino acid level but exhibit 
only ~50% identity with SUMO-1 (Figure 1), which is the 
most extensively studied among SUMO isoforms. SUMO-4 
was first identified involved in pathogenesis of Type I 
diabetes (23, 24), but later on reported to be ineffective in 
covalent conjugation due to the presence of a proline-90 
amino acid residue that blocks SUMO-4 maturation (25). 

 
SUMO conjugation is accomplished via the 

following phases: maturation, activation, 
conjugation/ligation, and de-conjugation (Figure 2). 
Maturation involves carboxyl-terminal cleavage of the 
originally synthesized precursor SUMO protein by a 
number of SUMO-specific hydrolase named SENPs 
(Sentrin-specific proteases) (15, 26), exposing a diglycine 
motif required for conjugation. The completion of this 
phase readies SUMO proteins for entering the subsequent 

dynamic cycle of the SUMO conjugation process. 
Activation of SUMO proteins involves the formation of a 
thioester bond between SUMO proteins and the E1 
activating enzyme in an ATP dependent fashion. Activation 
is completed after transfer of the SUMO protein to a 
conserved catalytic cysteine in the unique conjugation 
enzyme (E2)-Ubc9 (27). Thereafter, Ubc9 transfers SUMO 
protein directly to its substrates. In vivo SUMO conjugation 
and ligation can be modulated by a number of E3 ligases 
(see below). The last phase, de-conjugation, impinges on 
freeing conjugated SUMO proteins from conjugating state 
with substrates by a class of isopeptidase SENPs, which are 
also involved in the maturation of SUMO proteins (28).  

 
Although the sole Ubc9 identified to date in 

mammals possesses the capacity to recognize SUMO 
targets, and in vitro reconstituted sumoylation assays reveal 
that the presence of E1 and E2 suffice to implement SUMO 
conjugation (29, 30), SUMO E3 ligases do exist in vivo that 
facilitate the SUMO modification and contribute to the 
specificity of SUMO subtypes and substrates (31-35). PIAS 
family members, RanBP2, polycomb chromatin-modifying 
complex component Pc2, Topors, TRAF7 have been 
reported to serve as SUMO E3 ligases in some particular 
SUMO substrate modifications (36-40). Interestingly, 
among these E3 ligases, PIAS proteins link E3 ligase 
activity to their Ring domains and Topors serves as an E3 
ligase for both ubiquitination and sumoylation of p53 (36, 
41). 

 
In most cases SUMO-targeted lysine residues are 

embedded in the consensus sequence ψKXE (ψ stands for a 
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bulky hydrophobic amino acid and X represents any 
residue) (42, 43), however, not all proteins harboring this 
consensus sequence are targeted by SUMO proteins, and 
atypical SUMO linkage site (s) indeed exists. Of 
particularly interest, the presence of SUMO E3 ligase like 
PIAS1 usually promotes formation of poly SUMO chain 
and /or activates non-consensus  SUMO attachment site (s) 
(30, 44).  

 
4. SUMO MODIFIES SUBSTRATES CRITICAL FOR 
CARDIOVASCULAR DEVELOPMENT 
 

Cardiovascular malformations are the leading 
cause of death from congenital defect (45). Normal 
cardiovascular development is a complex process that 
requires highly coordinated collaborations among a variety 
of transcription factors, co-factors and signal transduction 
pathways. The fact that SUMO conjugation pathway 
components are abundant in the heart points to the 
possibility that SUMO may be implicated in cardiovascular 
development via modifying transcription factors 
indispensable for normal cardiovascular development (46, 
47). Indeed, the work from our laboratory and other 
research groups has identified several cardiac-enriched 
transcription factors as SUMO targets.  
 
4.1. GATA4 

GATA4 is a zinc finger-containing transcription 
factor belonging to the GATA superfamily composed of six 
members with GATA1, 2 and 3 largely restricted to 
hematopoietic lineage and GATA4, 5 and 6 abundant in 
heart. GATA4 recognizes the consensus motif (A/T)GATA 
(A/G) found in regulatory region of the target genes such as 
α-MHC (48), ANF (49).  Gene targeting and null mutation 
studies have revealed the significant role of GATA4 in the 
regulation of heart development (50, 51). Posttranslational 
modifications such as phosphorylation have been shown to 
regulate GATA4 transcriptional activity (52, 53).  We and 
others revealed that GATA4 is modified by SUMO-1 on 
lysine residue 366 (30, 54). Mutation of this lysine reduces 
nuclear occupancy of GATA4 (30). Remarkably, SUMO 
modification of GATA4 promotes cardiac specific gene 
expression in pluripotent 10T1/2 cells, indicating that 
SUMO positively regulates GATA4 transcriptional activity, 
which was further corroborated by the finding that GATA4 
function is elevated by Ubc9, the E2 in SUMO conjugation 
pathway (55). Furthermore, ~20% of total GATA4 protein 
purified from cultured cardiomyocytes exhibits SUMO 
modification (30), suggesting that the SUMO conjugation 
of GATA4 in cardiomyocytes has physiological relevance.  
 
4.2. SFR (serum response factor) 

SRF is a critical factor for mesoderm 
development and cardiogenesis (56, 57). SUMO-1 is shown 
to target SRF on its lysine residue 147, but have no 
significant influence on its DNA binding although lysine 
147 is localized in the MADS box crucial for DNA binding 
activity (58, 59). Conversion of lysine 147 to arginine 
enhances SRF capacity to activate c-fos promoter (58), but 
impairs its function to activate cardiac α-actin promoter 
(manuscript in preparation). Correspondingly, SUMO-1 
substantiates SRF transcriptional activity to activate cardiac 

specified gene promoters. These studies support the notion 
that the functional consequence of SUMO modification of 
SRF may be promoter-dependent.  
 
4.3. Myocardin 

Myocardin and its related proteins MRTF-A and 
MRTF-B (60), belong to the SAP superfamily (SAF-A/B, 
Acinus, PIAS), harboring the chromatin remodeling SAP 
domain (61). As a co-activator of SRF, myocardin triggers 
SRF-dependent smooth muscle differentiation program (62, 
63). Loss-of-function study reveals severe defect in 
vascular smooth muscle development (64), demonstrating 
the indispensability of myocardin in VSMC lineage 
commitment. Studies performed in Xenopus also indicate 
the importance of myocardin for cardiogenesis during 
Xenopus embryonic development (63, 65). While 
myocardin alone is not sufficient to activate cardiogenic 
genes in pluripotent 10T1/2 fibroblast cells (64, 66), 
SUMO, through linkage to lysine 445 in myocardin, greatly 
enhances myocardin capacity to activate cardiac specified 
genes in 10T1/2 fibroblast cells without significantly 
affecting its ability to induce smooth muscle differentiation 
(44). Whether endogenous myocardin function is regulated 
by SUMO modification remains unclear. SUMO 
modification has no significant effects on myocardin’s 
nuclear localization and its physical interaction with SRF, 
the major factor through which myocardin functions. It is 
noteworthy that E3 ligase PIAS1 enhances myocardin 
transcriptional activity via both stimulation of SUMO 
modification of myocardin as well as direct physical 
association, either of which is required to induce 
cardiogenic gene expression in pluripotent 10T1/2 
fibroblast cells (44).  
 
4.4. Myocyte enhancer factors (Mef2s) 

Mef2s are transcription factors regulating muscle 
specific gene activity. Mef2 genes are expressed in early 
myogenic lineage and knockdown of Mef2 activity 
suppresses cardiomyocytes differentiation and heart 
development (67, 68). All four Mef2 genes harbor the 
SUMO consensus sequence IKSE, but it has only been 
shown that SUMO targets hMef2A, hMef2C and hMef2D 
(69). SUMO-site-mutated Mef2s exhibit higher activity 
than wild-type in the activation of MEF binding sites and 
promote myogenesis in 10T1/2 cells (70, 71). Interestingly, 
HDAC4 serves as an E3 ligase to stimulate Mef2 
sumoylation, which inhibits Mef2 activity. Since mouse 
Mef2B is also a potent activator in myogenic lineage 
commitment (72), it will be of great interest to explore 
whether Mef2B is SUMO targeted and how its function is 
regulated.  
 
4.5. Nkx2.5 

Nkx2.5, the cardiac specific homeodomain gene 
(73, 74), is the most recently identified SUMO substrate 
from our laboratory (manuscript in preparation). Nkx2.5 is 
a member of the NK-2 class of homeodomain (HD) and 
required for the normal heart development (75, 76). Nkx2.5 
is one of the earliest known markers of cardiac progenitors 
in vivo (73, 74, 77). Nkx2.5 plays important roles in tissue 
patterning and lineage determination. Homozygous Nkx2.5 
null mice die at E9-10 day before heart looping is 
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completed, but allows for appearance of beating 
cardiomyocytes (78, 79), supporting the notion that Nkx2.5 
plays a central role for early cardiac morphogenesis. 
Nkx2.5 activity is stimulated via SUMO attachment. 
 

SUMO modification has been shown to affect 
protein-protein interaction (80, 81). Given the prevalent 
existence of physical associations among cardiac enriched 
factors with some of which targeted by SUMO 
modification, it is possible that SUMO may potentiate the 
combinatorial actions exerted by protein-protein interaction 
such as GATA4-Nkx2.5 (82), SRF-GATA4 (83), SRF-
myocardin (63), and GATA4-myocardin (84).  
 
5. SUMO TARGETS SIGNAL TRANSDUCTION 
PATHWAYS INVOLVED IN CARDIOVASCULAR 
DEVELOPMENT 
 

Normal cardiovascular development requires 
independent action as well as coordinated crosstalk among 
multiple signal transduction pathways. Interestingly, 
SUMO has been shown to target the receptors and effectors 
of several signaling pathways, hereby modulating the 
influence of signal transductions in cardiovascular 
development.  

 
5.1. Steroid receptors: 

It has been well established that steroid receptors 
belonging to the nuclear receptor super-family play 
important roles in the normal formation of cardiovascular 
system (85-87). Many steroid receptors, including the 
androgen receptor, estrogen receptor α (ERα), 
progesterone receptor, glucocorticoid receptor (GR) and 
mineralocorticoid receptor (MR), are reported to be SUMO 
targeted (88). The functional consequences of SUMO 
modification of these steroid receptors may be positive 
(activated), like ERα SUMO modification (89), or may be 
promoter-dependent, like the SUMO modification of 
androgen receptor and MR as well as GR (90-92). 
Interestingly, some of these modifications are ligand-
dependent, suggestive of the existing crosstalk between 
SUMO conjugation pathway and the signaling pathway 
involving steroid receptors.  
 
5.2. Wnt signaling 

Wnt signaling pathway is implicated in heart 
formation both negatively and positively (93, 94). T-cell 
factor 4 (TCF-4), the downstream effector of Wnt 
signaling, is SUMO-1-modified on at least one consensus 
sequence, lysine 297, causing stimulation of TCF-4 
transcriptional activity (95). The E3 ligase PIASy 
potentiates TCF-4 SUMO attachment and its activity. 
However, PIASy inhibits the transcriptional activity of 
LEF1, another member of TCF family, via potentiation of 
its SUMO conjugation (32). These observations indicate 
that the precise functional consequence after SUMO 
impinges on Wnt signaling pathway is complex and worth 
further evaluation.  

 
5.3. Hypoxia-inducible signaling pathway 

The transcription factor HIF is a key component 
in the hypoxia-associated signaling pathway that activates 

genes involved in angiogenesis. HIF-1 functions as a 
heterodimer composed of HIF-1α (oxygen-sensitive 
subunit) and HIF-1β (constitutively expressed subunit, also 
known as aryl hydrocarbon nuclear translocator). Knockout 
of either HIF1α or HIF1β results in defects in 
cardiovascular and vessel development, leading to the 
embryonic lethality in mice (96, 97). The functions of these 
two factors are modulated via post-translational 
modification, including sumoylation. It was previously 
reported that SUMO targets HIF1α on lysine 391 and 477, 
located in the oxygen-dependent degradation domain 
(ODDD), and enhances HIF-1α  stability and thereby its 
activity (98). A recently identified protein named RSUME 
also stabilizes HIF-1α  via sumoylation during hypoxia 
(99). However, more recently, Cheng J et al demonstrated 
that SUMO serves as a signal for ubiquitination of HIF1α, 
therefore decreasing its activity (100).  SUMO also 
positively influences HIF-1β activity via affecting its 
physical association with other factors (101). Given that 
hypoxia increases SUMO-1 expression in the heart (102), 
these findings suggest that SUMO may become actively 
involved in the cellular process associated with the changes 
in oxygen homeostasis via modulating HIF.  

 
5.4. Transforming growth factor-β signaling (TGF-β) 

Many of the TGF-β superfamily proteins are 
involved in the development and functional maintenance of 
cardiovascular system (103, 104). The downstream targets 
activated by TGF-β signaling pathway are SMAD proteins, 
of which SMAD4 is a common factor implicated in both 
TGF-β and BMP signaling. SUMO-1 attachment to lysine 
residues 159 and 113 of SMAD4 increases its 
transcriptional activity via stabilization (105, 106), 
however, sumoylation of SMAD4 is also found to inhibit 
some TGF-β-responsive gene (107), indicating that the net 
functional effect of SUMO linkage to SMAD4 may be 
context-dependent. The precise import of SUMO 
modulation of SMAD4 in cardiac development has yet to 
be elucidated.  
 

SUMO not only targets transcription factors that 
directly bind cognate DNA sequences in the specific 
promoter regions and affects target genes activity, but also 
modifies co-factors (co-activators and co-repressors) 
associated with them and then becomes involved in 
modulating corresponding signaling pathways.  Some co-
factors affected by SUMO modification are listed in the 
Table 1.  
 
6. CONCLUSION AND PERSPECTIVE 
 

SUMO covalent conjugation and de-conjugation 
is a fascinating process that governs the activity of a variety 
of substrates. Although extensive efforts have been 
invested into better understanding the biochemical 
pathways regulated by SUMO and the involvement of 
SUMO conjugation in physiological as well as patho-
physiological processes, the understanding of the role of 
this pathway in cardiovascular development is just 
evolving. Normal cardiovascular development necessities 
orchestrated actions among cardiac-enriched transcription
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Table 1. Some co-factors targeted by SUMO modification 
Name of co-factors Activity after sumoylation Major binding partners References 
SRC elevated Steroid receptor  (108) 
P300 repressed Nuclear receptors and many TFs  (109) 
CREB binding protein repressed Nuclear receptors and many TFs  (110) 
CtBP repressed HDACs, SMAD6, etc  (86) 
HDAC1,4,6 repressed Multi-protein co-repressor complexes  (111, 112) 

TFs: transcription factors 
 

factors, co-factors and signal transduction pathways, and 
how SUMO conjugation pathway is incorporated into these 
actions merits exploration. To gain a further insight into the 
molecular mechanisms underlying the implication of 
SUMO pathway in cardiogenesis, some critical issues need 
to be addressed. The temporal and spatial sumoylation 
pattern, the activity of SUMO pathway components as well 
as their regulations during the full course of cardiac 
development need further investigation. Furthermore, 
SUMO pathway components such as Ubc9 and SUMO-1 
may perform some biochemical functions independent of 
covalent conjugation (113, 114), which raises the question 
as to how important these non-covalent function of SUMO 
pathway components is versus the conjugation ability in the 
physiological context of cardiovascular development. With 
an expeditious advance in SUMO field, more exciting 
achievements and better comprehension regarding the 
contribution of SUMO pathway to cardiovascular 
development are anticipated.  
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