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1. ABSTRACT 
 

Peroxisome proliferator-activated receptors 
(PPARs) are members of the nuclear hormone receptor 
superfamily of ligand-dependent transcription factors. 
Three isoforms of PPAR, i.e., PPAR-α, -δ, and -γ, have 
been identified and are differentially expressed in various 
tissues, including the kidney. The target genes of PPARs 
are involved in diverse biological processes, including 
adipogenesis, lipid metabolism, insulin sensitivity, 
inflammatory response, reproduction, and cell growth and 
differentiation. PPARs have been reported to protect 
against renal injury through indirect systemic effects and/or 
direct renal effects in diabetic nephropathy, 
glomerulonephritis, renal cell carcinoma, acute renal failure 
and chronic renal disease. In this review, we summarize the 
role of the three identified PPAR isoforms, PPARα, -δ, and 
-γ, in renal physiology and discuss the renoprotective 
effects of PPAR ligands in various kidney diseases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

The kidney plays a key role in regulating sodium 
and water homeostasis and blood pressure.  Loss of renal 
function therefore causes many systemic disorders, 
including cardiovascular diseases and hypertension. With 
the prevalence of type 2 diabetes, diabetic renal 
complications, or diabetic nephropathy -- one of the major 
complications of diabetes -- has become a worldwide 
serious public-health concern, although glomerulonephritis, 
renal cell carcinoma and acute renal failure remain 
common renal diseases. If left untreated, these diseases 
progress to chronic kidney disease and, ultimately, end–
stage renal disease (ESRD) (1). With ESRD, kidneys fail to 
function, which results in sodium and water retention and 
accumulation of metabolic wastes and many toxic 
substances. Renal system data from 2004 in the United 
States revealed kidney disease as a major health problem; 
approximately 20 million patients had the disease.
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Figure 1.  Schematic representation of the mode of action of PPARs. The PPAR isoforms form heterodimers with retinoid X 
receptor α (RXRα) in the presence of their ligands. The resulting heterodimer binds to PPAR response elements (PPRE) in the 
promoter regions of PPAR-driven genes, which are involved in many biological processes closely related to renoprotective 
effects, including insulin sensitizing, and anti-proliferative, anti-fibrotic, and anti-inflammatory actions. 

 
Therefore, effective treatment of renal diseases is urgently 
needed. 

 
As a subfamily of metabolic nuclear receptors, 

peroxisome proliferator-activated receptors (PPARs) 
participate in various biological processes, including lipid 
metabolism, adipogenesis, immune response, insulin 
sensitivity, reproduction and cell growth and differentiation 
(2). With the remarkable clinical effects of PPAR synthetic 
ligands, the role of PPARs in renal disease has received a 
lot of attention. In this review, we summarize the role of 
the three identified PPAR isoforms, PPARα, -δ, and -γ, (3) 
in renal physiology and discuss the renoprotective effects 
of PPAR ligands in various kidney diseases.  
 
3. PPARS: LIGANDS AND BIOLOGICAL ROLES 
 

PPARs are members of the nuclear hormone 
receptor superfamily of ligand-dependent transcription 
factors. The three isoforms of PPAR, products of distinct 
genes, constitute the NR1C group in the nomenclature of 
nuclear receptors (4). In the presence of their specific 
ligands, PPARs usually heterodimerize with another 
nuclear receptor, retinoid X receptor α, forming a 
transcriptional complex that binds to a specific DNA 
sequence, peroxisome proliferator-response element, within 
the promoter regions of PPAR target genes. These genes 
are involved in diverse biological processes (Figure 1). 

 
PPARα, the first member of the PPAR subfamily 

identified, is highly abundant in tissues with high fatty acid 
oxidation activity, including the liver, kidney, intestine 
mucosa, heart and brown adipose (5, 6). Endogenous 

ligands such as polyunsaturated fatty acids and synthetic 
ligands, including lipid-lowering fibrates (e.g., 
fenofibrate, clofibrate), can effectively activate PPARα 
and regulate the transcription of an array of genes 
involved in lipid metabolism and inflammatory response 
(7, 8) (Table 1).  

 
PPARδ seems to be ubiquitously expressed at 

low levels in almost all tissues examined (6). The 
endogenous arachidonic-acid cyclooxygenase metabolite 
prostacyclin and synthetic compounds including L-
165041 and GW2433 have been shown to selectively 
activate PPARδ. A large body of evidence suggests that 
PPARδ is involved in fatty acid and lipid metabolism 
and may be a pivotal factor in metabolic control (9). 
Recently, PPARδ has also been reported to be important 
in maintaining renal cell survival in hyperosmotic 
medulla (10). 

 
PPARγ is expressed predominantly in adipose 

tissue, with low levels in stomach, intestine, urinary 
bladder, kidney, spleen, adrenal, liver, lung, brain, heart 
and vasculature (5, 6). PPARγ controls adipocyte 
proliferation and differentiation and therefore plays an 
important role in regulation of lipid storage and insulin 
sensitivity (11). PPARγ can be bound and activated by 
various small lipophilic compounds, including naturally 
occurring 15-deoxy-∆12,14-prostaglandin J2 (15d-PGJ2) 
and EETs and synthetic antidiabetic thiazolidinediones 
(TZDs) (e.g., rosiglitazone, pioglitazone), which are 
beneficial for improving insulin sensitivity. The main 
biological functions, ligands and distribution of 
expression of PPARs are summarized in Table 1. 
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Table 1. Biological roles, ligands and tissue distribution of PPAR isoforms. 
Name Biological functions Ligands Expression Reference 
PPARα1 β-oxidation, fatty acid transport, 

lipoprotein synthesis, inflammatory 
response 

8-S-hydroxyeicosatetraenoic acid,  
leukotriene B4, synthetic fibrates 

Abundant in liver, kidney, heart,  brown adipose 8 

PPARδ Lipid metabolism PGI22,  synthetic compounds L-
165041, GW2433 

Ubiquitously expressed in almost all tissues 9 

PPARγ Adipocyte proliferation and 
differentiation, lipid storage, insulin 
sensitivity 

15d-PGJ23, synthetic TZDs4 Predominantly expressed in adipose tissue, also 
mildly expressed in other tissues 

11 

Abbreviations: PPARα1, Peroxisome proliferator-activated receptor α; PGI22, prostaglandin I2; 15d-PGJ23, 15-deoxy-
∆12,14-prostaglandin J2; TZDs4, thiazolidinediones. 

 
4. PPAR ligands: Clinical implications and side effects 

 
Currently, the synthetic PPARα ligand 

fenofibrate (Lipanthyl/Tricor), and PPARγ ligands 
rosiglitazone (Avandia) and pioglitazone (Actos) have been 
used in clinical practice as lipid-lowering therapy and oral 
antidiabetic drugs, respectively. However, the use of these 
ligands may result in many side effects, including increased 
serum creatinine level (12), fluid retention and increased 
cardiovascular risk (13, 14).  Recent research interest has 
focused on developing novel compounds possessing both 
PPARα- and PPARγ-activating properties to benefit both 
plasma glucose control and lipid levels. To date, many 
PPARα/γ dual agonists have been developed and have 
shown promising therapeutic effects. However, the first 
generation of PPARα/γ dual agonists, tesaglitazar (Galida) and 
muraglitazar (Pargluva), were withdrawn from phase III 
clinical trials because of their poor safety profile. The next 
generation of fine-tuned dual PPARα/γ agonists prefers 
agonists with full PPARα and partial PPARγ activity.  
 
5. PPARS: INTRARENAL LOCALIZATION 
 

All three PPAR isoforms are functionally 
expressed in the kidney. PPARα is highly expressed in the 
epithelial cells of proximal tubules and medullary thick 
ascending limbs, with much lower levels in glomerular 
mesangial cells (15-17), whereas PPARγ is expressed 
primarily in the epithelium of distal medullary collecting 
ducts and to a lesser extent in the glomerular mesangial 
cells, endothelial cells and podocytes, proximal tubular 
cells, endothelial cells of renal microvasculature, and 
interstitial fibroblast cells (15, 18). In the kidney, PPARδ 
seems to be diffusely expressed in the renal cortex and 
medulla, with relatively higher levels in medullary 
interstitial and stromal cells (15). The differential intrarenal 
localization of all three PPAR isoforms suggests that they 
play distinct roles in maintaining normal renal functions. In 
the following sections, we discuss the role of the three 
PPAR isoforms in renal pathophysiological settings and the 
therapeutic potential of PPAR ligands in various renal 
diseases, especially diabetic nephropathy.  
 
6. PPARs: therapeutic role in renal diseases 
6.1. PPARα and renal disease  

As mentioned above, in the kidney, PPARα is 
selectively expressed in the proximal tubule cells, where its 
activation is essential for renal fatty acid metabolism, 
energy homeostasis, and anti-inflammatory regulation (3, 
18). Large numbers of studies have indicated that PPARα 
agonists significantly attenuate renal injury in various 

kidney diseases such as diabetic nephropathy, acute renal 
failure, glomerulonephritis, and chronic renal failure (19-
22). Thus, PPARα could serve as an important 
renoprotective factor contributing to the prevention or 
delay of renal disease progression. 
 
6.1.1. PPARα and diabetic nephropathy 

Increasing evidence suggests that PPARα 
activators are effective in improving insulin resistance in 
type 2 diabetic patients with the insulin resistance 
syndrome (23). Indeed, Park et al. showed that fenofibrate 
treatment reduced fasting blood glucose, ameliorated 
insulin resistance, reduced hypertrophy of pancreatic islets, 
and reduced urinary albumin excretion in diabetic animals 
(19). To date, multiple mechanisms have been proposed for 
the hypoglycemic and insulin-sensitizing effect of PPARα 
agonists. Fibrates have been reported to reduce the 
triglyceride content in skeletal muscle (24, 25), which is 
associated with improved insulin sensitivity (26). PPARα 
agonists have also been found to increase hepatic fatty acid 
catabolism, thus resulting in decreased systemic and tissue 
free fatty acid content (27). Koh et al. showed that 
fenofibrate treatment prevented the development of 
diabetes in Otsuka Long Evans Tokushima Fatty (OLETF) 
rats by reducing adiposity, improving peripheral insulin 
sensitivity, and exerting beneficial effects on pancreatic β-
cells (24). Recently, Mishra et al. demonstrated that 
PPARα is a diabetes-induced transcription factor that helps 
control the renal response to lipids (28). Moreover, the 
renal-protective effects of fenofibrate might be achieved 
through the reduction of glomerular hypertrophy and 
mesangial matrix accumulation (19, 29). Taken together, 
these data suggest that PPARα may represent a potential 
therapeutic target for treating insulin resistance and type 2 
diabetes and preventing diabetic renal complications.  
 

Interestingly, several recent studies have found a 
paradoxical phenomenon, that PPARα deletion has a 
protective effect similar to that of its ligands in mice with 
insulin resistance induced by high-fat diet. Insulin 
resistance was improved in both young and old PPARα-
null mice (30-32). As expected, the old PPARα-null mice 
showed milder albuminuria than wild-type mice (32). To 
date, the underlying mechanisms remain unknown and 
require further investigation.  
   
6.1.2. PPARα and acute renal failure 

Recently, Portilla et al. revealed that PPARα 
plays an important protective role in acute renal tubular 
injury induced by ischemia/reperfusion and cisplatin. 
Cisplatin is one of the most common antitumor agents used 
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in chemotherapy for malignant disease, and its major side 
effect is nephrotoxicity. Synthetic PPARα ligands attenuate 
cisplatin-induced acute renal injury by preventing the 
inhibition of fatty acid oxidation (33), reducing apoptosis and 
necrosis of the proximal tubules through decreasing 
endonuclease G activity (34), and limiting inflammatory 
processes by blocking NF-κB activity (21, 35).  Most recently, 
Kamijo et al. demonstrated that injection of fatty acid-binding 
albumin into PPARα-null mice resulted in more severe tubular 
lesions than in wild-type mice, which provides further 
evidence that PPARα is a renoprotective factor (36). 
Similarily, the PPARα agonist was shown to protect against 
ischemic renal injury via preservation of renal acyl CoA 
oxidase and cytochrome P450 4A1 gene expression through a 
PPARα-dependent pathway during ischemia/reperfusion injury 
(37). The renal protective action of the PPARα agonist in 
ischemia and nephrotoxin-induced renal tubular injury appears 
to be PPARα dependent, since PPARα gene-deficient mice 
subjected to renal ischemia/reperfusion or treated with 
nephrotoxins exhibited enhanced cortical necrosis and 
impaired renal function (37, 38).  
 
6.1.3. PPARα and glomerulonephritis 

In recent years, the immunoregulatory activity of 
ligands for PPARs has attracted intensive attention (39, 40). 
Anti-glomerular basement membrane (GBM) 
glomerulonephritis characterized by crescent formation and 
necrotizing inflammation of glomerular capillaries is the 
most severe form of glomerulonephritis. By using a rat 
anti-GBM glomerulonephritis model, Saga et al. found that 
bezafibrate, a PPARα agonist, can markedly suppress anti-
GBM crescentic glomerulonephritis (41). In accordance 
with this result, Kamijo et al. recently reported that PPARα 
can protect against glomerulonephritis induced by long-
term exposure to the plasticizer di- (2-ethylhexyl)phthalate 
(42). All these findings suggest that PPARα might be a 
novel therapeutic target for the treatment of 
glomerulonephritis. 
 
6.2. PPARδ and renal disease 

PPARδ plays a key role in biological processes 
such as fertility, lipid metabolism, bone formation, mast 
cell immunity, skin and brain development, wound healing, 
and tumorigenesis. Although PPARδ mRNA is detected in 
almost all tissues and cells examined, it is relatively 
abundant in the kidney, with ubiquitous expression in all 
nephron segments (15).  
 

Because of the high expression level in the 
kidney, PPARδ participates in renal physiological 
regulation and pathophysiological processes. Letavernier et 
al. provided evidence that PPARδ may protect the kidney 
against ischemia/reperfusion-induced acute renal failure by 
activating the antiapoptotic Akt signaling pathway and 
increasing the spread of tubular epithelial cells. In this 
study, PPARδ+/- and PPARδ-/- mutant mice showed more 
severe kidney dysfunction and injury than wild-type mice. 
Wild-type mice pre-treated with the PPARδ agonist were 
completely protected against renal dysfunction (43).  
 

Moreover, although nonsteroidal anti-
inflammatory drugs (NSAIDs) are among the most 

common pain relief medicines in the world, they are well 
recognized as a major class of therapeutic agent that causes 
renal papillary necrosis (44). Inhibition of PPARδ activity may 
contribute to this side effect (10). Overexpression of PPARδ 
can prevent medullary interstitial cell death due to reduced 
ability to tolerate hypertonic stress by COX2 inhibition, which 
suggests that PPARδ might be an important survival factor for 
medullary interstitial cells in the hypertonic condition in the 
renal medulla.    

 
PPARδ may also be involved in the pathogenesis of 

diabetic nephropathy. Overexpression or activation of PPARδ 
in skeletal muscle can significantly improve mouse endurance 
exercise ability, and resist to obesity with improved metabolic 
profiles, even in the absence of exercise (45). Regarding the 
direct renal effects, Escher et al. have recently found the 
PPARδ mRNA level in the kidney remarkably down-regulated 
after an overnight fast and quickly restored to the normal level 
upon refeeding (46). In addition to nutritional regulation, the 
expression of PPARδ in the kidney was also down-regulated in 
type 1 diabetic Akita and OVE26 mice, which resulted in 
decreased fatty acid oxidation and increased renal triglyceride 
accumulation (47). These findings provide strong evidence that 
PPARδ activation may be beneficial for amelioration of 
diabetic nephropathy. 
 
6.3. PPARγ and renal disease 

Although TZDs are a group of insulin sensitizers 
and are widely used in clinical therapy for type 2 diabetes, 
their renoprotective actions are just now being carefully 
evaluated. Increasing evidence has revealed the protective 
effects of PPARγ activation on diabetic nephropathy, renal 
cell carcinoma, renal failure and glomerulonephritis, which 
strongly suggests that PPARγ may be a potential 
therapeutic target for the treatment of these renal diseases 
(48-51).  The mechanisms mediating the renoprotective 
effect of PPARγ ligands may involve both systemic 
metabolic control and direct action on the kidney. 
 
6.3.1. PPARγ and diabetic nephropathy 

As one of the major complications of diabetes, 
diabetic nephropathy is characterized by renal hypertrophy 
and extracellular matrix accumulation, which without 
effective intervention eventually progresses to fibrosis with 
loss of renal function. PPARγ agonist TZDs may hold great 
promise for treating both insulin resistance and diabetic 
renal complications. The therapeutic effects of TZDs on 
prevention or even reversal of the progression of diabetic 
nephropathy are achieved possibly through both indirect 
systemic and direct renal effects (Figure 2). 
 

PPARγ exerts its insulin-sensitizing effects in 
adipose tissue, skeletal muscle, liver, and pancreatic β-
cells. Loss-of-function mutation of PPARγ results in severe 
insulin resistance, partial lipodystrophy, diabetes, 
hypertension and dyslipidemia in humans, in part because 
of excessive lipid accumulation in skeletal muscle and liver 
(52). PPARγ-agonist TZDs increase the sensitivity of the 
liver to insulin-stimulated suppression of gluconeogenesis 
and enhance glucose utilization in the skeletal muscle (53). 
In the adipose tissue, PPARγ activation increases glucose 
uptake and results in profound changes in adipokine 
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Figure 2. Summary of the therapeutic actions of PPARγ in diabetic nephropathy. Both systemic action and direct renal effect are 
involved in the renoprotective effect of PPARγ agonists. TNF-α, tumor necrosis factor α; TGF-β, transforming growth factor β; IL-
6, interleukin 6. 

 
expression and secretion, including suppression of insulin-
desensitizing tumor necrosis factor α (TNF-α), interleukin-
6 (IL-6) and resistin, and induction of insulin-sensitizing 
adiponectin and visfatin (54-58). In a recent study, 
activation of PPARγ protected pancreatic β-cells from 
cytokine-induced cytotoxicity (59). In addition, PPARγ can 
act as an anti-inflammatory factor to reduce the production 
of cytokines (TNF-α, IL-1, and IL-6) (60), probably by 
inhibiting the activity of pro-inflammatory transcription 
factors such as nuclear factor κB (NF-κB), activator protein 
1 (AP-1) and signal transducer and activator of 
transcription (STAT) (61).  The anti-inflammatory effect of 
PPARγ is highly beneficial, since low-grade inflammation 
is associated with the pathogenesis of insulin resistance 
(62). Thus, systemic effects such as improving insulin 
resistance and attenuating inflammation may represent two 
major mechanisms mediating the beneficial effect of 
PPARγ on glycemic control in type 2 diabetes, thereby 

preventing the development or slowing the progression of 
diabetic nephropathy. PPARγ may also benefit the kidney 
by lowering blood pressure. Although results remain 
inconclusive (63, 64), PPARγ activation is believed to be 
effective in lowering blood pressure via attenuating the 
activity of the renin-angiotensin system and mitogen-
activated protein kinase (MAPK), phosphatidylinositol 3-
kinase, and ROS-generating enzymes (65-67).  
Interestingly, several lines of evidence point to an insulin-
sensitizing action of PPARγ antagonism (68-70). Although 
the underlying mechanism is unknown, these observations 
suggest that the PPARγ antagonist may also have potential 
therapeutic implication in insulin resistance and type 2 
diabetes.  
 

Abundant evidence from studies of patients, 
animal models, and cell models has shown that local 
activation of PPARγ in the kidney is involved in its 
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renoprotection. TZD therapy was repeatedly reported to be 
effective in reducing microalbuminuria in patients with 
type 2 diabetes (71-73). Compared to other oral 
hypoglycemic agents (including insulin, metformin, 
glyburide, and glibenclamide), all TZD PPARγ agonists 
(troglitazone, rosiglitazone, and pioglitazone) produce 
similar glycemic control but appear to provide superior 
renal protection in patients with type 2 diabetes (74-76). 
For example, Miyazaki et al. recently reported that 12 
weeks of rosiglitazone treatment significantly decreased 
albuminuria, which might be due at least in part to direct 
activation of renal PPARγ (48). Consistent with these 
clinical observations, PPARγ-agonist TZDs have been 
shown to improve diabetic nephropathy in animal models 
of both type 1 and type 2 diabetes (75, 77-80). Indeed, 
troglitazone treatment significantly decreased albuminuria, 
reduced glomerular hyperfiltration, ameliorated mesangial 
expansion, and inhibited renal matrix protein and TGF-β 
expression in the kidney of streptozotocin-induced type 1 
and Zucker type 2 diabetic rats (79, 81, 82). As well, Baylis 
et al. (80) demonstrated that rosiglitazone treatment 
reduced albuminuria, improved glomerular filtration rate, 
and normalized glomerulosclerosis and tubulointerstitial 
fibrosis in obese type 2 diabetic rats.  Importantly, a recent 
report showed that telmisartan is a weak PPARγ agonist 
and its treatment slows the progression of diabetic 
nephropathy (83). This observation suggests that the 
renoprotective effect of angiotensin II type 1 receptor 
blockers may be attributed to PPARγ activation in part. 

 
Studies of cultured renal cells provide strong 

support for the possibility that direct renal action may also 
be involved in mediating the beneficial renal effect of 
PPARγ agonists. PPARγ agonists can inhibit the 
proinflammatory phenotype induced by advanced 
glycosylation end products (AGE) in cultured renal 
proximal tubular epithelial cells through STAT-1–
mediated pathways involving IL-8 and intercellular 
adhesion molecule 1 (ICAM-1) (84). PPARγ activators 
are also reported to significantly suppress the expression 
of transforming growth factor β (TGF-β), type IV 
collagen and ICAM-1 and infiltration of macrophages in 
the kidneys of diabetic rats, as well as inhibit NF-κB 
and ICAM-1 in cultured glomerular endothelial cells 
and mesangial cells (82, 85, 86). In addition, PPARγ 
ligand treatment inhibits cell growth and promotes cell 
differentiation in cultured mesangial cells (18, 87). 
Activation of PPARγ markedly blocked AGE-induced 
MAPK activity (88) and high glucose-stimulated 
vascular endothelial-cell growth factor expression (89), 
which is consistent with the inhibitory effect of PPARγ 
on cell proliferation of mesangial cells. Furthermore, 
TZDs ameliorate diabetic nephropathy via cell cycle-
dependent mechanisms by inhibiting activity of p44/42 
MAPK and bcl-2-dependent p27 (90). In the proximal 
tubular HK2 cells, activation of PPARγ induces the G1-
phase cell-cycle arrest and suppresses high glucose-
induced AP-1 activity and monocyte chemoattractant 
protein 1 expression (91). Collectively, these studies 
suggest that PPARγ has anti-inflammatory and 
antiproliferative effects in various renal cells, thereby 
attenuating diabetic renal complications.  

In addition, increasing evidence supports the idea 
that antifibrotic effect of TZDs may also represent an 
important mechanism by which PPARγ agonists improve 
diabetic nephropathy (Table 2). TZDs can ameliorate renal 
fibrosis by regulating many fibrosis relevant genes. 
Treatment of human cortical fibroblasts with pioglitazone 
exhibited an antiproliferative and hypertrophic effect with 
reduced type IV collagen and fibronectin secretion, 
suppressed matrix metalloproteinase-9 (MMP-9) activity, 
and decreased tissue inhibitor of metalloproteinase-1 
(TIMP-1) and TIMP-2 production (92). Similar result was 
observed in human proximal tubular cells. PPARγ agonists 
exerted antifibrotic actions by attenuating the increase in 
AP-1, TGF-β1, and the extracellular matrix protein 
fibronectin (93). Antifibrotic hepatocyte growth factor 
(HGF) was found to be a direct target gene of PPARγ in 
mesangial cells and renal interstitial fibroblasts (94). In 
addition, PPARγ agonists activated c-met receptor tyrosine 
phosphorylation, induced Smad transcriptional co-repressor 
TG-interacting factor (TGIF) expression, and blocked 
TGF-β/Smad-mediated gene transcription in mesangial 
cells. Ablation of c-met receptor through the LoxP-Cre 
system in mesangial cells abolished the antifibrotic effect 
of 15d-PGJ2 (94). These antifibrotic effects of PPARγ 
agonists in multiple cultured renal cells were consistent 
with the in vivo findings that PPARγ activation improved 
diabetic nephropathy not only in type 1 (95), but also in 
type 2 diabetes (96). 
 

Taken together, PPARγ agonists can improve 
albuminuria and slow the progression of glomerulosclerosis 
in patients with type 2 diabetes and in animal models. 
Because of these desirable renoprotective effects, PPARγ is 
a promising target for treating glomerular fibrotic diseases, 
especially diabetic nephropathy. 

 
It is worth mentioning that combined treatment 

with PPARα and PPARγ agonists may have better 
therapeutic potential than each alone in the treatment of 
type 2 diabetes and diabetic nephropathy. Increasing 
evidence from both clinical trials and animal experiments 
show that PPARα/γ dual agonists have striking effects on 
improvement of insulin resistance, hyperglycemia, 
dyslipidemia, blood pressure and β-cell function in type 2 
diabetes (92, 97-106). In addition, the renoprotective effect 
of the dual agonists has been recently evaluated and shown 
marked reduction in albuminuria and renal glomerular 
fibrosis in both type 1 and type 2 diabetic mice (95, 96). 
 
6.3.2. PPARγ and renal cell carcinoma 

Research into the impact of PPARγ on renal cell 
carcinoma was initiated in 2001. Inoue et al. found that 
PPARγ has strong immunoreactive expression in renal 
cancer tissues and the PPARγ agonists inhibit the growth of 
renal cancer cell lines (107). The underlying mechanism 
might be that TZDs inhibit cell proliferation and induce 
apoptosis by down-regulating the expression of cyclin D1, 
Cdk4, vascular endothelial growth factor and basic 
fibroblast growth factor while up-regulating the expression 
of p21 and p27 (49, 108, 109). However, the in vivo 
efficacy of PPARγ agonist in animal models has not been 
tested, and such studies would address the important 
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Table 2. Genes involved in antifibrotic action of TZDs in renal cells 
Cell type Genes relevant to fibrosis Reference 
Cortical fibroblast ↓type IV collagen 

↓fibronectin 
↓MMP-91 
↓TIMP-12 
↓TIMP-2 

92 

Proximal tubular cell ↓AP-13 
↓TGF-β14 

↓fibronectin 93 

Mesangial cell, 
Interstitial fibroblast 

↑HGF5 
↑TGIF6 
↓TGF-β1 
↓PAI-17 

↓α-SMA8 
↓fibronectin 
↓Smad 

94 

Abbreviations: MMP-91, matrix metalloproteinase-9; TIMP-12, tissue inhibitor of metalloproteinase-1; AP-13, activator protein 1; 
TGF-β14, transforming growth factor β1; HGF5, hepatocyte growth factor; TGIF6, TG-interacting factor; PAI-17, plasminogen 
activator inhibitor-1; α-SMA8, α-smooth muscle actin. 

 
question of whether PPARγ could be a therapeutic target 
for the treatment of renal tumors.  

 
It should be noticed that although agonists of 

PPARα and PPARγ are generally believed to be antitumor 
agents, little is know about the potential safety issues that 
could be involved in the use of PPARδ agonist. Unlike 
PPARα and PPARγ, activation of PPARδ has been 
reported to be associated with accelerate intestinal adenoma 
growth (110), suggesting PPARδ may be carcinogenic. 
 
6.3.3. PPARγ and other kidney diseases 

PPARγ activation also has a protective effect on 
nephritis. In a nephrotoxic serum-induced nephritic rat 
model, PPARγ agonists markedly alleviated crescentic 
glomerulonephritis by inhibiting the infiltration of ED-1-
positive monocyte/macrophages and CD8-positive cells 
into glomeruli (111). A similar protection was observed in 
a nondiabetic glomerulosclerotic rat model made by 5/6 
nephrectomy. In this study, troglitazone treatment reduced 
albuminuria, serum creatinine level, and glomerulosclerosis 
through decreasing glomerular cell proliferation, in parallel 
with decreased mRNA expression of p21 and p27 (50). The 
renoprotective effect of PPARγ agonists on renal cell 
carcinoma and glomerular fibrosis seems to share a similar 
pathway involving cell cycle arrest, thereby inhibiting cell 
proliferation.  

 
Interestingly, endotoxin (lipopolysaccharide, 

LPS) can protect the kidney against ischemia/reperfusion-
induced renal injury by inducing endogenous ligands of 
PPARγ such as lysophosphatidic acid and 15d-PGJ2, which 
could be abolished by the selective PPARγ antagonist 
GW9662 (112). The PPARγ endogenous ligand 15d-PGJ2 
can protect renal function in acute renal failure caused by 
ischemia/reperfusion (113) or in multiple organ failure 
caused by endotoxin (114). As well, pretreating rats with 
TZD decreased cell apoptosis in injured kidney induced by 
ischemia-reperfusion by inducing hepatocyte growth factor 
(51). In addition, PPARγ mRNA and protein levels were 
reduced in rats with glycerol-induced acute renal failure. 
When PPARγ expression was restored by the PPARγ 
inducer ciglitazone, the renal dysfunction was markedly 
ameliorated (115, 116). 

 
Finally, it should be mentioned that TZD 

treatment can cause severe side effects, such as weight 
gain, fluid retention, and increased cardiovascular risk (13, 
14, 48).  Fluid retention has been found to be caused by the 

up-regulation of one PPARγ target gene, epithelial Na+ 
channel which is located in the collecting duct and 
mediates Na+ reabsorption. The collecting duct-specific 
diuretic amiloride can block this pathway and might 
provide one potential specific therapy (13, 117). In 
addition, extrarenal mechanisms are also involved in TZD-
induced fluid retention. As discussed above, PPARγ can 
lower blood pressure, which may contribute to reduced 
water excretion (118). The vasodepressor action of TZD 
demonstrated by using human arterial resistance vessels 
could cause fluid retention as well (119). Moreover, the 
altered endothelial permeability, interstitial ion transport, 
and sympathetic nervous system activity have been 
reported to be associated with the development of edema 
following TZD treatment (120). 
 
7. CONCLUSION  
 

PPARs are transcription factors and nuclear 
receptors. They are widely expressed throughout the body 
and differentially located in the kidney. Activation of the 
three PPAR isoforms can result in distinct but overlapping 
biological processes. Through both indirect systemic 
effects and direct renal actions, agonists of PPARs hold 
great promise for treatment of diabetic nephropathy, 
glomerulonephritis, acute renal failure and chronic renal 
disease.  PPARγ could also represent a therapeutic target 
for renal cell carcinoma.  However, before considering a 
translational approach, the benefits/risks of using PPAR 
agonists should be carefully evaluated. Increasing reports 
suggest that PPARα and PPARγ agonists may cause severe 
undesirable effects. Thus, caution should be taken in use of 
these agonists in clinical therapy for diabetes and renal 
diseases. 
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